jit.py 55.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import os
import pickle
19
import warnings
20
import functools
21
from collections import OrderedDict
22 23

import six
24
import paddle
25
from paddle.fluid import core
26 27
from paddle.fluid.compiler import BuildStrategy, CompiledProgram, ExecutionStrategy
from paddle.fluid.data_feeder import check_type
28
from paddle.fluid.dygraph.base import program_desc_tracing_guard, switch_to_static_graph
29
from paddle.fluid.dygraph.dygraph_to_static.logging_utils import set_code_level, set_verbosity
30
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator, StaticLayer, unwrap_decorators
31
from paddle.fluid.dygraph.io import EXTRA_VAR_INFO_FILENAME, VARIABLE_FILENAME, TranslatedLayer
32 33
from paddle.fluid.dygraph.layers import Layer
from paddle.fluid.executor import Executor, scope_guard
34 35 36
from paddle.fluid.framework import Block, ParamBase, Program, Variable
from paddle.fluid.framework import _current_expected_place, _dygraph_guard, _dygraph_tracer
from paddle.fluid.framework import dygraph_only, in_dygraph_mode
37
from paddle.fluid.wrapped_decorator import wrap_decorator
38

39 40
__all__ = [
    'TracedLayer', 'declarative', 'dygraph_to_static_func', 'set_code_level',
C
Chen Weihang 已提交
41
    'set_verbosity', 'save', 'load', 'SaveLoadConfig'
42
]
43 44 45 46 47 48 49 50 51 52 53 54


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


def _extract_vars(inputs, result_list):
    if isinstance(inputs, Variable):
55
        result_list.append(inputs)
56
    elif isinstance(inputs, (list, tuple)):
57 58
        for var in inputs:
            _extract_vars(var, result_list)
59 60 61 62
    else:
        raise TypeError(
            "The type of 'each element of inputs' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received {}.".
            format(type(inputs)))
63 64 65 66 67 68 69 70


def extract_vars(inputs):
    result_list = []
    _extract_vars(inputs, result_list)
    return result_list


71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np
          from paddle.fluid.dygraph.jit import dygraph_to_static_func

          @dygraph_to_static_func
          def func(x):
              if fluid.layers.mean(x) < 0:
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

          x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64')

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
120 121
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
122
        if in_dygraph_mode() or not program_translator.enable_declarative:
123
            warnings.warn(
124
                "The decorator 'dygraph_to_static_func' doesn't work in "
125
                "dygraph mode or set ProgramTranslator.enable to False. "
126 127 128 129
                "We will just return dygraph output.")
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
130 131 132 133

    return __impl__


134
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
135

136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
        decorated_obj(StaticLayer): the target decorated StaticLayer object.
    """
    decorator_name = "declarative"

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


def declarative(function=None, input_spec=None):
158 159 160
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @declarative handles the Program and Executor of static mode and returns
161 162 163 164
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
165

166
    Args:
167 168 169
        function (callable): callable imperative function.
        input_spec(list[InputSpec]): list of InputSpec to specific the shape/dtype/name
            information of each input Tensor.
170

171
    Returns:
172
        Tensor(s): containing the numerical result.
173

174 175
    Examples:
        .. code-block:: python
176

177 178 179
          import paddle.fluid as fluid
          import numpy as np
          from paddle.fluid.dygraph.jit import declarative
180

181
          fluid.enable_dygraph()
182

183 184 185 186 187 188 189 190
          @declarative
          def func(x):
              x = fluid.dygraph.to_variable(x)
              if fluid.layers.mean(x) < 0:
                  x_v = x - 1
              else:
                  x_v = x + 1
              return x_v
191

192 193 194
          x = np.ones([1, 2])
          x_v = func(x)
          print(x_v.numpy()) # [[2. 2.]]
195

196
    """
197

198 199 200 201 202 203
    def decorated(python_func):
        """
        Decorates a python function into a StaticLayer object.
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
204

205 206 207 208 209 210 211
        # Step 2. copy some attributes from original python function.
        static_layer = copy_decorator_attrs(
            original_func=python_func,
            decorated_obj=StaticLayer(
                function=python_func, input_spec=input_spec))

        return static_layer
212

213 214 215
    # for usage: `declarative(foo, ...)`
    if function is not None:
        return decorated(function)
216

217 218
    # for usage: `@declarative`
    return decorated
219 220


221 222 223 224 225 226 227 228 229 230 231 232
class SaveLoadConfig(object):
    """
    The additional configuration options may be used in function 
    :ref:`api_imperative_jit_save` that save :ref:`api_imperative_TranslatedLayer` 
    or used in function :ref:`api_imperative_jit_load` that 
    load :ref:`api_imperative_TranslatedLayer` .
    
    Examples:
        1. Using ``SaveLoadConfig`` when saving model

        .. code-block:: python

233 234 235
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
236

237
            class SimpleNet(nn.Layer):
238 239
                def __init__(self, in_size, out_size):
                    super(SimpleNet, self).__init__()
240
                    self._linear = nn.Linear(in_size, out_size)
241

242
                @paddle.jit.to_static
243 244 245 246 247 248
                def forward(self, x):
                    y = self._linear(x)
                    z = self._linear(y)
                    return z

            # enable dygraph mode
249
            paddle.disable_static() 
250 251 252

            # train model
            net = SimpleNet(8, 8)
253 254
            adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
            x = paddle.randn([4, 8], 'float32')
255 256
            for i in range(10):
                out = net(x)
257
                loss = paddle.tensor.mean(out)
258
                loss.backward()
259 260
                adam.step()
                adam.clear_grad()
261 262 263

            # use SaveLoadconfig when saving model
            model_path = "simplenet.example.model"
264 265 266
            config = paddle.SaveLoadConfig()
            config.model_filename = "__simplenet__"
            paddle.jit.save(
267 268
                layer=net,
                model_path=model_path,
269
                config=config)
270 271 272 273 274

        2. Using ``SaveLoadConfig`` when loading model

        .. code-block:: python

275
            import paddle
276 277

            # enable dygraph mode
278
            paddle.disable_static() 
279 280 281

            # use SaveLoadconfig when loading model
            model_path = "simplenet.example.model"
282 283 284
            config = paddle.SaveLoadConfig()
            config.model_filename = "__simplenet__"
            infer_net = paddle.jit.load(model_path, config=config)
285
            # inference
286
            x = paddle.randn([4, 8], 'float32')
287 288 289 290 291 292 293 294
            pred = infer_net(x)
    """

    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
295 296
        # used for `paddle.load`
        self._keep_name_table = False
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

        # If True, programs are modified to only support direct inference deployment. 
        # Otherwise,more information will be stored for flexible optimization and re-training. 
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False

    @property
    def output_spec(self):
        """
        Selects the output targets of the saved model ( :ref:`api_imperative_TranslatedLayer` ).
        By default, all return variables of original Layer's forward function
        are kept as the output of the saved TranslatedLayer.

        The ``output_spec`` type should be list[Variable]. If the provided ``output_spec``
        list is not all output variables, the saved model will be pruned according to the
        given ``output_spec`` list.

        .. note::
            The ``output_spec`` is only used when saving model.

        Examples:
            .. code-block:: python

326 327 328
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
329

330
                class SimpleNet(nn.Layer):
331 332
                    def __init__(self, in_size, out_size):
                        super(SimpleNet, self).__init__()
333
                        self._linear = nn.Linear(in_size, out_size)
334

335
                    @paddle.jit.to_static
336 337 338
                    def forward(self, x):
                        y = self._linear(x)
                        z = self._linear(y)
339
                        loss = paddle.tensor.mean(z)
340 341 342
                        return z, loss

                # enable dygraph mode
343
                paddle.disable_static() 
344 345 346

                # train model
                net = SimpleNet(8, 8)
347 348
                adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
                x = paddle.randn([4, 8], 'float32')
349 350 351
                for i in range(10):
                    out, loss = net(x)
                    loss.backward()
352 353
                    adam.step()
                    adam.clear_grad()
354 355 356

                # use SaveLoadconfig.output_spec
                model_path = "simplenet.example.model.output_spec"
357 358 359
                config = paddle.SaveLoadConfig()
                config.output_spec = [out]
                paddle.jit.save(
360 361
                    layer=net,
                    model_path=model_path,
362
                    config=config)
363

364 365
                infer_net = paddle.jit.load(model_path)
                x = paddle.randn([4, 8], 'float32')
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
                pred = infer_net(x)
        """
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
        if not isinstance(spec, list):
            raise TypeError(
                "The SaveLoadConfig.output_spec should be 'list', but received input type is %s."
                % type(input))
            for var in spec:
                if not isinstance(var, core.VarBase):
                    raise TypeError(
                        "The element in SaveLoadConfig.output_spec list should be 'Variable', but received element's type is %s."
                        % type(var))
        self._output_spec = spec

    @property
    def model_filename(self):
        """
        The name of file to save the translated program of target Layer.
        Default filename is :code:`__model__` .

389
        Examples:
390 391
            .. code-block:: python

392 393 394
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
395

396
                class SimpleNet(nn.Layer):
397 398
                    def __init__(self, in_size, out_size):
                        super(SimpleNet, self).__init__()
399
                        self._linear = nn.Linear(in_size, out_size)
400

401
                    @paddle.jit.to_static
402 403 404 405 406 407
                    def forward(self, x):
                        y = self._linear(x)
                        z = self._linear(y)
                        return z

                # enable dygraph mode
408
                paddle.disable_static() 
409 410 411

                # train model
                net = SimpleNet(8, 8)
412 413
                adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
                x = paddle.randn([4, 8], 'float32')
414 415
                for i in range(10):
                    out = net(x)
416
                    loss = paddle.tensor.mean(out)
417
                    loss.backward()
418 419
                    adam.step()
                    adam.clear_grad()
420 421

                # saving with configs.model_filename
422 423 424 425
                model_path = "simplenet.example.model.model_filename"
                config = paddle.SaveLoadConfig()
                config.model_filename = "__simplenet__"
                paddle.jit.save(
426 427
                    layer=net,
                    model_path=model_path,
428
                    config=config)
429 430

                # loading with configs.model_filename
431 432
                infer_net = paddle.jit.load(model_path, config=config)
                x = paddle.randn([4, 8], 'float32')
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
                pred = infer_net(x)
        """
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
        if not isinstance(filename, six.string_types):
            raise TypeError(
                "The SaveLoadConfig.model_filename should be str, but received input's type is %s."
                % type(filename))
        if len(filename) == 0:
            raise ValueError(
                "The SaveLoadConfig.model_filename is empty string.")
        self._model_filename = filename

    @property
    def params_filename(self):
        """
        The name of file to save all persistable variables in target Layer. 
        Default file name is :code:`__variables__` .
        
454
        Examples:
455 456
            .. code-block:: python

457 458 459
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
460

461
                class SimpleNet(nn.Layer):
462 463
                    def __init__(self, in_size, out_size):
                        super(SimpleNet, self).__init__()
464
                        self._linear = nn.Linear(in_size, out_size)
465

466
                    @paddle.jit.to_static
467 468 469 470 471 472
                    def forward(self, x):
                        y = self._linear(x)
                        z = self._linear(y)
                        return z

                # enable dygraph mode
473
                paddle.disable_static() 
474 475 476

                # train model
                net = SimpleNet(8, 8)
477 478
                adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
                x = paddle.randn([4, 8], 'float32')
479 480
                for i in range(10):
                    out = net(x)
481
                    loss = paddle.tensor.mean(out)
482
                    loss.backward()
483 484
                    adam.step()
                    adam.clear_grad()
485 486

                model_path = "simplenet.example.model.params_filename"
487 488
                config = paddle.SaveLoadConfig()
                config.params_filename = "__params__"
489 490

                # saving with configs.params_filename
491
                paddle.jit.save(
492 493
                    layer=net,
                    model_path=model_path,
494
                    config=config)
495 496

                # loading with configs.params_filename
497 498
                infer_net = paddle.jit.load(model_path, config=config)
                x = paddle.randn([4, 8], 'float32')
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
                pred = infer_net(x)
        """
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
        if not isinstance(filename, six.string_types):
            raise TypeError(
                "The SaveLoadConfig.params_filename should be str, but received input's type is %s."
                % type(filename))
        if len(filename) == 0:
            raise ValueError(
                "The SaveLoadConfig.params_filename is empty string.")
        self._params_filename = filename

    # NOTE: [why not use params_filename=None control params saved separately]
    # The new save interface does not recommend parameters to be saved separately. 
    # Here, the concept should be separated as clearly as possible. 
    # Setting params_filename=None only means that the saved file name is set 
    # and without any other meaning. New separate_params control for file saved
    # separately can makes the concept clearer.
    @property
    def separate_params(self):
        """
        Configure whether to save the Layer parameters as separete files.
        (In order to be compatible with the behavior of :ref:`api_fluid_io_save_inference_model` )

        If True, each parameter will be saved to a file separately, the file name is the parameter name,
        and the SaveLoadConfig.params_filename configuration will not take effect. Default False.

        Examples:
            .. code-block:: python

532 533 534
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
535

536
                class SimpleNet(nn.Layer):
537 538
                    def __init__(self, in_size, out_size):
                        super(SimpleNet, self).__init__()
539
                        self._linear = nn.Linear(in_size, out_size)
540

541
                    @paddle.jit.to_static
542 543 544 545 546 547
                    def forward(self, x):
                        y = self._linear(x)
                        z = self._linear(y)
                        return z

                # enable dygraph mode
548
                paddle.disable_static() 
549 550 551

                # train model
                net = SimpleNet(8, 8)
552 553
                adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
                x = paddle.randn([4, 8], 'float32')
554 555
                for i in range(10):
                    out = net(x)
556
                    loss = paddle.tensor.mean(out)
557
                    loss.backward()
558 559
                    adam.step()
                    adam.clear_grad()
560 561

                model_path = "simplenet.example.model.separate_params"
562 563
                config = paddle.jit.SaveLoadConfig()
                config.separate_params = True
564 565

                # saving with configs.separate_params
566
                paddle.jit.save(
567 568
                    layer=net,
                    model_path=model_path,
569
                    config=config)
570 571 572 573
                # [result] the saved model directory contains:
                # linear_0.b_0  linear_0.w_0  __model__  __variables.info__

                # loading with configs.params_filename
574 575
                infer_net = paddle.jit.load(model_path, config=config)
                x = paddle.randn([4, 8], 'float32')
576 577 578 579 580 581 582 583 584 585 586 587
                pred = infer_net(x)
        """
        return self._separate_params

    @separate_params.setter
    def separate_params(self, value):
        if not isinstance(value, bool):
            raise TypeError(
                "The SaveLoadConfig.separate_params should be bool value, but received input's type is %s."
                % type(value))
        self._separate_params = value

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
    @property
    def keep_name_table(self):
        """
        Configures whether keep ``structured_name -> parameter_name`` dict in loaded state dict.
        This dict is the debugging information saved when call `paddle.save`. 
        It is generally only used for debugging and does not affect the actual training or inference. 
        By default, it will not be retained in `paddle.load` result. Default: False.
        
        .. note::
            Only used for ``paddle.load``.

        Examples:
            .. code-block:: python

                import paddle
            
                paddle.disable_static()

                linear = paddle.nn.Linear(5, 1)

                state_dict = linear.state_dict()
                paddle.save(state_dict, "paddle_dy")

                configs = paddle.SaveLoadConfig()
                configs.keep_name_table = True
                para_state_dict, _ = paddle.load("paddle_dy", configs)

                print(para_state_dict)
                # the name_table is 'StructuredToParameterName@@'
                # {'bias': array([0.], dtype=float32), 
                #  'StructuredToParameterName@@': 
                #     {'bias': u'linear_0.b_0', 'weight': u'linear_0.w_0'}, 
                #  'weight': array([[ 0.04230034],
                #     [-0.1222527 ],
                #     [ 0.7392676 ],
                #     [-0.8136974 ],
                #     [ 0.01211023]], dtype=float32)}
        """
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
        if not isinstance(value, bool):
            raise TypeError(
                "The SaveLoadConfig.keep_name_table should be bool value, but received input's type is %s."
                % type(value))
        self._keep_name_table = value

636

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
def _get_input_var_names(inputs, input_spec):
    name_none_error = "The %s's name is None. " \
        "When using jit.save, please set InputSepc's name in " \
        "to_static(input_spec=[]) and jit.save(input_spec=[]) " \
        "and make sure they are consistent."
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of InputSpec or example Tensor " \
        "in input_spec is the same as the name of InputSpec in " \
        "`to_static` decorated on the Layer.forward method."
    result_list = []
    input_var_names = [var.name for var in inputs if isinstance(var, Variable)]
    if input_spec is None:
        # no prune
        result_list = input_var_names
    elif input_spec is not None and len(input_spec) == len(input_var_names):
        # no prune
        result_list = input_var_names
        # if input spec name not in input_var_names, only raise warning 
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
                # the input_spec can be `InputSpec` or `VarBase`
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


def _get_output_vars(outputs, output_spec):
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of example Tensor " \
        "in configs.output_spec is the output tensor of " \
        "Layer.forward method."
    result_list = []
    output_vars_dict = OrderedDict()
    for var in outputs:
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
        result_list = output_vars_dict.values()
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
        result_list = output_vars_dict.values()
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


704 705 706 707 708 709 710 711 712 713 714 715 716
# NOTE(chenweihang): change jit.save/load argument `configs` to `config`
def deprecate_save_load_configs(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'configs' in kwargs:
            kwargs['config'] = kwargs['configs']
            kwargs.pop('configs')
        return func(*args, **kwargs)

    return wrapper


@deprecate_save_load_configs
717
@switch_to_static_graph
718
def save(layer, model_path, input_spec=None, config=None):
719 720 721 722 723 724 725 726 727 728
    """
    Saves input declarative Layer as :ref:`api_imperative_TranslatedLayer` 
    format model, which can be used for inference or fine-tuning after loading.

    It will save the translated program and all related persistable 
    variables of input declarative Layer to given ``model_path``.
    
    The default saved translated program file name is ``__model__``,
    and the default saved persistable variables file name is ``__variables__``,
    and it also saved some additional variable description information to file 
729
    ``__variables.info__``, these additional information is used in fine-tuning.
730 731 732 733 734 735 736 737 738

    The saved model can be loaded by follow APIs:
      - :ref:`api_imperative_jit_load`
      - :ref:`api_fluid_io_load_inference_model` (need pass ``params_filename='__variables__'``)
      - Other C++ inference APIs

    Args:
        layer (Layer): the Layer to be saved. The Layer should be decorated by `@declarative`.
        model_path (str): the directory to save the model.
739
        input_spec (list[Variable], optional): Describes the input of the saved model. 
740 741 742
            It is the example inputs that will be passed to saved TranslatedLayer's forward
            function. If None, all input variables of the original Layer's forward function
            would be the inputs of the saved model. Default None.
743
        config (SaveLoadConfig, optional): :ref:`api_imperative_jit_saveLoadConfig` object
744 745 746 747 748 749 750 751
            that specifies additional configuration options. Default None.
    Returns:
        None

    Examples:
        .. code-block:: python

            import numpy as np
752 753 754
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
755

756 757 758
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
759

760 761 762 763 764 765 766
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
767

768 769 770 771
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
772

773 774
                def __len__(self):
                    return self.num_samples
775

776 777
            class LinearNet(nn.Layer):
                def __init__(self):
778
                    super(LinearNet, self).__init__()
779
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
780

781
                @paddle.jit.to_static
782 783 784
                def forward(self, x):
                    return self._linear(x)

785 786 787 788 789 790 791 792 793 794 795
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

796
            # enable dygraph mode
797 798
            place = paddle.CPUPlace()
            paddle.disable_static(place) 
799

800
            # 1. train & save model.
801

802 803 804 805
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
806

807 808 809 810 811 812 813 814
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
815

816 817
            # train
            train(layer, loader, loss_fn, adam)
818

819
            # save
820
            model_path = "linear.example.model"
821
            paddle.jit.save(layer, model_path)
822 823 824 825 826 827
    """

    # 1. input check
    prog_translator = ProgramTranslator()
    if not prog_translator.enable:
        raise RuntimeError(
828
            "The paddle.jit.save doesn't work when setting ProgramTranslator.enable=False."
829 830 831
        )
    if not isinstance(layer, Layer):
        raise TypeError(
832
            "The input layer of paddle.jit.save should be 'Layer', but received layer type is %s."
833 834
            % type(layer))

835
    configs = config
836 837 838
    if configs is None:
        configs = SaveLoadConfig()

839 840
    # avoid change user given input_spec
    inner_input_spec = None
841 842 843 844 845
    if input_spec is not None:
        if not isinstance(input_spec, list):
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
                % type(input_spec))
846
        inner_input_spec = []
847
        for var in input_spec:
848 849 850 851 852 853
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
            elif isinstance(var, (core.VarBase, Variable)):
                inner_input_spec.append(
                    paddle.static.InputSpec.from_tensor(var))
            else:
854
                raise TypeError(
855
                    "The element in input_spec list should be 'Variable' or `paddle.static.InputSpec`, but received element's type is %s."
856 857
                    % type(var))

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
    # 2. get program from Layer
    # TODO(chenweihang): add support for other method, not only forward
    if isinstance(layer.forward, StaticLayer):
        concrete_program = layer.forward.concrete_program
    else:
        # transform in jit.save, if input_spec is incomplete, declarative will throw error
        static_forward = declarative(layer.forward, input_spec=inner_input_spec)
        concrete_program = static_forward.concrete_program
        # the input_spec has been used in declarative, which is equal to 
        # @declarative with input_spec and jit.save without input_spec,
        # avoid needless warning
        inner_input_spec = None

    # 3. build input & output of save_infernece_model
    # NOTE(chenweihang): [ Get input variables name ]
    # There are two cases, whether to prune the inputs or not
    # - not prune inputs (recommend):
    #   - the len(input_spec) == len((concrete_program.inputs) - 1
    #   - here can use concrete_program.inputs directly
    # - prune inputs:
    #   - the input_spec length < len((concrete_program.inputs) - 1
    #   - the input_spec's name should be in concrete_program.inputs
    input_var_names = _get_input_var_names(concrete_program.inputs,
                                           inner_input_spec)

    # NOTE(chenweihang): [ Get output variables ]
    # the rule is like [ Get input variables name ]. For output var, 
    # we only support VarBase spec, and actually, we only need the 
    # var name of output, and we don't recommended to use output_spec
    output_vars = _get_output_vars(concrete_program.outputs,
                                   configs.output_spec)

    # NOTE(chenweihang): we maintain the mapping of variable name to
891 892 893 894
    # structured name, the buffer variable (non-persistable)
    # saved to inference program may not need by dygraph Layer, 
    # we only record the state_dict variable's structured name
    state_names_dict = dict()
895
    for structured_name, var in six.iteritems(layer.state_dict()):
896 897
        state_names_dict[var.name] = structured_name

898
    # 4. share parameters from Layer to scope & record var info
899 900
    scope = core.Scope()
    extra_var_info = dict()
901
    for param_or_buffer in concrete_program.parameters:
902 903 904 905 906 907
        # share to scope
        param_or_buffer_tensor = scope.var(param_or_buffer.name).get_tensor()
        src_tensor = param_or_buffer.value().get_tensor()
        param_or_buffer_tensor._share_data_with(src_tensor)
        # record var info
        extra_info_dict = dict()
908 909 910
        if param_or_buffer.name in state_names_dict:
            extra_info_dict['structured_name'] = state_names_dict[
                param_or_buffer.name]
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
        extra_info_dict['stop_gradient'] = param_or_buffer.stop_gradient
        if isinstance(param_or_buffer, ParamBase):
            extra_info_dict['trainable'] = param_or_buffer.trainable
        extra_var_info[param_or_buffer.name] = extra_info_dict

    # 5. save inference model
    from paddle.fluid.io import save_inference_model

    # VARIABLE_FILENAME keep nameing style consistent with '__model__'
    if configs.params_filename is None:
        configs.params_filename = VARIABLE_FILENAME

    with scope_guard(scope):
        save_inference_model(
            dirname=model_path,
            feeded_var_names=input_var_names,
            target_vars=output_vars,
            executor=Executor(_current_expected_place()),
            main_program=concrete_program.main_program.clone(),
            model_filename=configs.model_filename,
            params_filename=None
            if configs.separate_params else configs.params_filename,
            export_for_deployment=configs._export_for_deployment,
            program_only=configs._program_only)

936
        # NOTE(chenweihang): [ Save extra variable info ]
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
        # save_inference_model will lose some important variable information, including:
        #   - Variable name and correspondence (when saved variables as one file)
        #   - Variable.stop_gradient information
        #   - Which persistent variable are parameter and which are not
        #   - Parameter.trainable information
        #
        # The lost information cannot be recovered when it is loaded again, 
        # so if we want to perform fine-tune after loading, we may need to 
        # configure redundant information to proceed.
        #
        # Due to compatibility issues, we cannot change the original storage structure, 
        # but we can save these information in `jit.save` without changing the original 
        # storage to improve user experience. So we save extra information into
        # file `__variables.info__`
        extra_var_info_path = os.path.join(model_path, EXTRA_VAR_INFO_FILENAME)
        with open(extra_var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)


956
@deprecate_save_load_configs
957
@dygraph_only
958
def load(model_path, config=None):
959 960 961 962 963 964 965 966 967 968
    """
    :api_attr: imperative

    Load model saved by :ref:`api_imperative_jit_save` or :ref:`api_fluid_io_save_inference_model`
    as :ref:`api_imperative_TranslatedLayer`, then performing inference or fine-tune training.

    .. note::
        For some historical reasons, if you load model saved by :ref:`api_fluid_io_save_inference_model`,
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
969
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
970 971 972 973 974
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
        model_path (str): The directory path where the model is saved.
975
        config (SaveLoadConfig, optional): :ref:`api_imperative_jit_saveLoadConfig` object that specifies 
976 977 978 979 980 981 982 983 984 985 986
            additional configuration options. Default None.

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
        1. Load model saved by :ref:`api_imperative_jit_save` then performing inference and fine-tune training.

        .. code-block:: python

            import numpy as np
987 988 989
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
990

991 992 993
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
994

995 996
            IMAGE_SIZE = 784
            CLASS_NUM = 10
997

998 999 1000 1001
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1002

1003 1004 1005 1006
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1007

1008 1009 1010 1011 1012
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
1013
                    super(LinearNet, self).__init__()
1014
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1015

1016
                @paddle.jit.to_static
1017 1018 1019
                def forward(self, x):
                    return self._linear(x)

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1031
            # enable dygraph mode
1032 1033
            place = paddle.CPUPlace()
            paddle.disable_static(place) 
1034 1035

            # 1. train & save model.
1036

1037
            # create network
1038 1039 1040 1041
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

1042
            # create data loader
1043 1044 1045 1046 1047 1048 1049
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1050

1051 1052
            # train
            train(layer, loader, loss_fn, adam)
1053

1054 1055 1056
            # save
            model_path = "linear.example.model"
            paddle.jit.save(layer, model_path)
1057

1058
            # 2. load model
1059

1060 1061
            # load
            loaded_layer = paddle.jit.load(model_path)
1062 1063

            # inference
1064 1065 1066
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
1067 1068

            # fine-tune
1069 1070 1071
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
1072 1073 1074 1075 1076 1077 1078


        2. Load model saved by :ref:`api_fluid_io_save_inference_model` then performing and fine-tune training.

        .. code-block:: python

            import numpy as np
1079
            import paddle
1080
            import paddle.fluid as fluid
1081 1082
            import paddle.nn as nn
            import paddle.optimizer as opt
1083

1084 1085 1086
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1087

1088 1089 1090 1091 1092 1093 1094
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1095

1096 1097 1098 1099
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1100

1101 1102
                def __len__(self):
                    return self.num_samples
1103

1104
            image = fluid.data(name='image', shape=[None, 784], dtype='float32')
1105
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1106
            pred = fluid.layers.fc(input=image, size=10, act='softmax')
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
            loss = fluid.layers.cross_entropy(input=pred, label=label)
            avg_loss = fluid.layers.mean(loss)

            optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            optimizer.minimize(avg_loss)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

1117 1118 1119 1120 1121 1122 1123 1124 1125
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
                batch_size=BATCH_SIZE, 
                shuffle=True,
                drop_last=True,
                num_workers=2)
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

            # 1. train and save inference model
            for data in loader():
                exe.run(
                    fluid.default_main_program(),
                    feed=data, 
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
            fluid.io.save_inference_model(
1136 1137 1138
                model_path, ["image"], [pred], exe)

            # 2. load model
1139 1140

            # enable dygraph mode
1141 1142 1143 1144
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1145

1146 1147 1148
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1149 1150
            pred = fc(x)

1151
            # fine-tune
1152
            fc.train()
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1170
    """
1171
    return TranslatedLayer._construct(model_path, config)
1172 1173


1174
@dygraph_only
Z
Zeng Jinle 已提交
1175 1176 1177 1178 1179
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
1180
    assert isinstance(layer, Layer)
1181 1182 1183 1184 1185 1186 1187 1188 1189

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1190
        original_outputs = layer(*inputs)
1191 1192 1193 1194
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1195
        out_vars = [var for var in outputs]
1196

1197
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
1198
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
1199 1200 1201 1202 1203
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1204
    return original_outputs, program, feed_names, fetch_names, parameters
1205 1206 1207 1208


class TracedLayer(object):
    """
1209 1210
    :api_attr: imperative
    
1211 1212 1213 1214 1215
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1216 1217 1218 1219

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1220 1221

    All TracedLayer objects should not be created by constructor and should
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1233
        self._params = parameters
1234 1235 1236 1237 1238

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1239
            src_tensor = p.value().get_tensor()
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1263
        This method is the only allowed method to create TracedLayer object.
1264 1265 1266 1267
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1268
            layer (dygraph.Layer): the layer object to be traced.
1269 1270
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1271 1272

        Returns:
1273
            tuple: A tuple of 2 items, whose the first item is the output of
1274 1275
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1276

1277
        Examples:
1278 1279 1280
            .. code-block:: python:

                import paddle.fluid as fluid
1281
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
1282 1283 1284
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
1285 1286 1287
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
1288 1289 1290 1291 1292

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
1293
                    layer = ExampleLayer()
1294 1295 1296
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
1297 1298 1299 1300 1301 1302 1303 1304 1305

                    # run the static graph model using Executor inside
                    out_static_graph = static_layer([in_var])

                    print(len(out_static_graph)) # 1
                    print(out_static_graph[0].shape) # (2, 10)

                    # save the static graph model for inference
                    static_layer.save_inference_model(dirname='./saved_infer_model')
1306
        """
1307 1308 1309 1310
        assert isinstance(
            layer, Layer
        ), "The type of 'layer' in fluid.dygraph.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received {}.".format(
            type(layer))
1311 1312
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1313 1314 1315 1316 1317 1318 1319
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1320
            build_strategy (BuildStrategy, optional): build strategy of
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
1332
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
1333 1334 1335
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
1336 1337 1338
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
1339 1340 1341 1342 1343

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
1344
                    layer = ExampleLayer()
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)

                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])

                    build_strategy = fluid.BuildStrategy()
                    build_strategy.enable_inplace = True

                    exec_strategy = fluid.ExecutionStrategy()
                    exec_strategy.num_threads = 2

                    static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                    out_static_graph = static_layer([in_var])
        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1360 1361 1362 1363 1364 1365 1366 1367
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
        ), "The type of 'build_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
            type(build_strategy))
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
        ), "The type of 'exec_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
            type(exec_strategy))
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
        if in_dygraph_mode():
            for x, name in zip(inputs, self._feed_names):
1386
                feed_dict[name] = x.value().get_tensor()
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
    def save_inference_model(self, dirname, feed=None, fetch=None):
        """
1409 1410
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1411 1412

        Args:
1413
            dirname (str): the directory to save the inference model.
1414
            feed (list[int], optional): the input variable indices of the saved
1415
                inference model. If None, all input variables of the
1416 1417 1418 1419 1420 1421 1422 1423
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.

        Returns:
1424
            None
1425 1426 1427 1428 1429

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
1430
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
1431 1432 1433
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
1434 1435 1436
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
1437 1438 1439 1440

                    def forward(self, input):
                        return self._fc(input)

1441 1442 1443
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')

1444
                with fluid.dygraph.guard():
1445
                    layer = ExampleLayer()
1446 1447
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
1448
                    static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1449 1450

                place = fluid.CPUPlace()
1451 1452
                exe = fluid.Executor(place)
                program, feed_vars, fetch_vars = fluid.io.load_inference_model(save_dirname,
1453
                                                    exe)
1454 1455 1456

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1457
        """
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
        check_type(dirname, "dirname", str,
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(feed, "feed", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(feed, list):
            for f in feed:
                check_type(f, "each element of feed", int,
                           "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(fetch, "fetch", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(fetch, list):
            for f in fetch:
                check_type(f, "each element of fetch", int,
                           "fluid.dygraph.jit.TracedLayer.save_inference_model")

1473
        from paddle.fluid.io import save_inference_model
1474 1475 1476 1477 1478

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1479
            return [all_vars[idx] for idx in partial_vars]
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

1490
            save_inference_model(
1491 1492 1493 1494 1495
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone())