jit.py 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
__all__ = ['TracedLayer', 'dygraph_to_static_output']
18

19
import gast
20
import inspect
21
import textwrap
22 23

from ..wrapped_decorator import wrap_decorator
24
from .base import program_desc_tracing_guard, switch_to_static_graph
25
from .dygraph_to_static import DygraphToStaticAst
26
from .dygraph_to_static.ast_utils import ast_to_func
27
from .layers import Layer
28 29 30 31
from paddle.fluid import core
from paddle.fluid.framework import Program, Block, Variable, _dygraph_tracer, dygraph_only, _dygraph_guard, _current_expected_place, in_dygraph_mode
from paddle.fluid.executor import Executor, scope_guard
from paddle.fluid.compiler import CompiledProgram
32
from paddle.fluid import program_guard, data
33 34 35 36 37 38 39 40 41 42 43 44


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


def _extract_vars(inputs, result_list):
    if isinstance(inputs, Variable):
45
        result_list.append(inputs)
46 47 48 49 50 51 52 53 54 55 56 57

    if isinstance(inputs, (list, tuple)):
        for var in inputs:
            _extract_vars(var, result_list)


def extract_vars(inputs):
    result_list = []
    _extract_vars(inputs, result_list)
    return result_list


58 59
def _dygraph_to_static_output_(dygraph_func):
    def __impl__(*args, **kwargs):
60

61 62
        # Get AST from dygraph function
        dygraph_code = inspect.getsource(dygraph_func)
63
        dygraph_code = textwrap.dedent(dygraph_code)
64
        root = gast.parse(dygraph_code)
65

66 67 68
        # Transform AST
        dygraph_to_static = DygraphToStaticAst()
        root_wrapper = dygraph_to_static.get_static_ast(root)
69 70

        # Get static_func from AST
71 72
        func_name = dygraph_to_static.get_module_name()
        static_func, file_name = ast_to_func(root_wrapper.node, func_name)
73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        if not in_dygraph_mode():
            return static_func(*args, **kwargs)
        else:
            feed_name_to_idx = dygraph_to_static.get_feed_name_to_idx()
            feed_dict = {}
            for feed_name, idx in feed_name_to_idx.items():
                feed_dict[feed_name] = args[idx]

            # Run static_func in static mode
            startup_program = Program()
            main_program = Program()
            static_res = run_static_func(main_program, startup_program,
                                         static_func, args, kwargs, feed_dict,
                                         feed_name_to_idx)

        return static_res
90 91 92 93

    return __impl__


94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
@switch_to_static_graph
def run_static_func(main_program, startup_program, static_func, args, kwargs,
                    feed_dict, feed_name_to_idx):

    with program_guard(main_program, startup_program):
        args_list = list(args)
        for var_name, value in feed_dict.items():
            idx = feed_name_to_idx[var_name]
            args_list[idx] = data(
                name=var_name, shape=value.shape, dtype=str(value.dtype))
        args = tuple(args_list)
        static_out = static_func(*args, **kwargs)
        if not isinstance(static_out, (list, tuple)):
            static_out = [static_out]
        exe = Executor(core.CPUPlace())
        exe.run(startup_program)
        static_res = exe.run(main_program,
                             fetch_list=static_out,
                             feed=feed_dict)
    return static_res


116 117 118
dygraph_to_static_output = wrap_decorator(_dygraph_to_static_output_)


119
@dygraph_only
Z
Zeng Jinle 已提交
120 121 122 123 124
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
125
    assert isinstance(layer, Layer)
126 127 128 129 130 131 132 133 134

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
135
        original_outputs = layer(*inputs)
136 137 138 139
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
140
        out_vars = [var for var in outputs]
141

142
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
143
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
144 145 146 147 148
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

149
    return original_outputs, program, feed_names, fetch_names, parameters
150 151 152 153


class TracedLayer(object):
    """
154 155 156 157 158
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
159 160 161 162

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
163 164

    All TracedLayer objects should not be created by constructor and should
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
181
            src_tensor = p.value().get_tensor()
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
205
        This method is the only allowed method to create TracedLayer object.
206 207 208 209
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
210 211
            layer (dygraph.Layer): the layer object to be traced.
            inputs (list(Variable)): the input variables of the layer object.
212 213

        Returns:
214
            tuple: A tuple of 2 items, whose the first item is the output of
215
            :code:`layer(*inputs)` , and the second item is the created
216
            TracedLayer object.
217

218
        Examples:
219 220 221
            .. code-block:: python:

                import paddle.fluid as fluid
222
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
223 224 225
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
226 227 228
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
229 230 231 232 233

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
234
                    layer = ExampleLayer()
235 236 237
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
238 239 240 241 242 243 244 245 246

                    # run the static graph model using Executor inside
                    out_static_graph = static_layer([in_var])

                    print(len(out_static_graph)) # 1
                    print(out_static_graph[0].shape) # (2, 10)

                    # save the static graph model for inference
                    static_layer.save_inference_model(dirname='./saved_infer_model')
247
        """
248 249
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
250 251 252 253 254 255 256
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
257
            build_strategy (BuildStrategy, optional): build strategy of
258 259 260 261 262 263 264 265 266 267 268
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
269
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
270 271 272
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
273 274 275
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
276 277 278 279 280

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
281
                    layer = ExampleLayer()
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)

                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])

                    build_strategy = fluid.BuildStrategy()
                    build_strategy.enable_inplace = True

                    exec_strategy = fluid.ExecutionStrategy()
                    exec_strategy.num_threads = 2

                    static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                    out_static_graph = static_layer([in_var])
        """
        assert self._compiled_program is None, "Cannot set strategy after run"
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
        if in_dygraph_mode():
            for x, name in zip(inputs, self._feed_names):
315
                feed_dict[name] = x.value().get_tensor()
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
    def save_inference_model(self, dirname, feed=None, fetch=None):
        """
338 339
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
340 341

        Args:
342
            dirname (str): the directory to save the inference model.
343
            feed (list[int], optional): the input variable indices of the saved
344
                inference model. If None, all input variables of the
345 346 347 348 349 350 351 352
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.

        Returns:
353
            None
354 355 356 357 358

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
359
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
360 361 362
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
363 364 365
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
366 367 368 369

                    def forward(self, input):
                        return self._fc(input)

370 371 372
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')

373
                with fluid.dygraph.guard():
374
                    layer = ExampleLayer()
375 376
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
377 378 379 380 381 382 383 384 385
                    static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
                
                place = fluid.CPUPlace() 
                exe = fluid.Executor(place)
                program, feed_vars, fetch_vars = fluid.io.load_inference_model(save_dirname,
                                                    exe) 

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
386
        """
387
        from paddle.fluid.io import save_inference_model
388 389 390 391 392

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

393
            return [all_vars[idx] for idx in partial_vars]
394 395 396 397 398 399 400 401 402 403

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

404
            save_inference_model(
405 406 407 408 409
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone())