jit.py 56.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import os
import pickle
19
import warnings
20
import functools
21
from collections import OrderedDict
22 23

import six
24
import paddle
25
from paddle.fluid import core
26 27
from paddle.fluid.compiler import BuildStrategy, CompiledProgram, ExecutionStrategy
from paddle.fluid.data_feeder import check_type
28
from paddle.fluid.dygraph.base import program_desc_tracing_guard, switch_to_static_graph
29
from paddle.fluid.dygraph.dygraph_to_static.logging_utils import set_code_level, set_verbosity
30
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator, StaticLayer, unwrap_decorators
31
from paddle.fluid.dygraph.io import EXTRA_VAR_INFO_FILENAME, VARIABLE_FILENAME, TranslatedLayer
32 33
from paddle.fluid.dygraph.layers import Layer
from paddle.fluid.executor import Executor, scope_guard
34 35 36
from paddle.fluid.framework import Block, ParamBase, Program, Variable
from paddle.fluid.framework import _current_expected_place, _dygraph_guard, _dygraph_tracer
from paddle.fluid.framework import dygraph_only, in_dygraph_mode
37
from paddle.fluid.wrapped_decorator import wrap_decorator
38

39 40
__all__ = [
    'TracedLayer', 'declarative', 'dygraph_to_static_func', 'set_code_level',
C
Chen Weihang 已提交
41
    'set_verbosity', 'save', 'load', 'SaveLoadConfig'
42
]
43 44 45 46 47 48 49 50 51 52 53 54


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


def _extract_vars(inputs, result_list):
    if isinstance(inputs, Variable):
55
        result_list.append(inputs)
56
    elif isinstance(inputs, (list, tuple)):
57 58
        for var in inputs:
            _extract_vars(var, result_list)
59 60 61 62
    else:
        raise TypeError(
            "The type of 'each element of inputs' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received {}.".
            format(type(inputs)))
63 64 65 66 67 68 69 70


def extract_vars(inputs):
    result_list = []
    _extract_vars(inputs, result_list)
    return result_list


71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np
          from paddle.fluid.dygraph.jit import dygraph_to_static_func

          @dygraph_to_static_func
          def func(x):
              if fluid.layers.mean(x) < 0:
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

          x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64')

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
120 121
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
122
        if in_dygraph_mode() or not program_translator.enable_declarative:
123
            warnings.warn(
124
                "The decorator 'dygraph_to_static_func' doesn't work in "
125
                "dygraph mode or set ProgramTranslator.enable to False. "
126 127 128 129
                "We will just return dygraph output.")
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
130 131 132 133

    return __impl__


134
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
135

136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
        decorated_obj(StaticLayer): the target decorated StaticLayer object.
    """
    decorator_name = "declarative"

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


def declarative(function=None, input_spec=None):
158 159 160
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @declarative handles the Program and Executor of static mode and returns
161 162 163 164
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
165

166
    Args:
167 168 169
        function (callable): callable imperative function.
        input_spec(list[InputSpec]): list of InputSpec to specific the shape/dtype/name
            information of each input Tensor.
170

171
    Returns:
172
        Tensor(s): containing the numerical result.
173

174 175
    Examples:
        .. code-block:: python
176

177 178 179
          import paddle.fluid as fluid
          import numpy as np
          from paddle.fluid.dygraph.jit import declarative
180

181
          fluid.enable_dygraph()
182

183 184 185 186 187 188 189 190
          @declarative
          def func(x):
              x = fluid.dygraph.to_variable(x)
              if fluid.layers.mean(x) < 0:
                  x_v = x - 1
              else:
                  x_v = x + 1
              return x_v
191

192 193 194
          x = np.ones([1, 2])
          x_v = func(x)
          print(x_v.numpy()) # [[2. 2.]]
195

196
    """
197

198 199 200 201 202 203
    def decorated(python_func):
        """
        Decorates a python function into a StaticLayer object.
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
204

205 206 207 208 209 210 211
        # Step 2. copy some attributes from original python function.
        static_layer = copy_decorator_attrs(
            original_func=python_func,
            decorated_obj=StaticLayer(
                function=python_func, input_spec=input_spec))

        return static_layer
212

213 214
    # for usage: `declarative(foo, ...)`
    if function is not None:
215 216 217 218 219 220 221 222 223 224
        if isinstance(function, Layer):
            if isinstance(function.forward, StaticLayer):
                class_name = function.__class__.__name__
                warnings.warn(
                    "`{}.forward` has already been decorated somewhere. It will be redecorated to replace previous one.".
                    format(class_name))
            function.forward = decorated(function.forward)
            return function
        else:
            return decorated(function)
225

226 227
    # for usage: `@declarative`
    return decorated
228 229


230 231 232 233 234 235 236 237 238 239 240 241
class SaveLoadConfig(object):
    """
    The additional configuration options may be used in function 
    :ref:`api_imperative_jit_save` that save :ref:`api_imperative_TranslatedLayer` 
    or used in function :ref:`api_imperative_jit_load` that 
    load :ref:`api_imperative_TranslatedLayer` .
    
    Examples:
        1. Using ``SaveLoadConfig`` when saving model

        .. code-block:: python

242 243 244
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
245

246
            class SimpleNet(nn.Layer):
247 248
                def __init__(self, in_size, out_size):
                    super(SimpleNet, self).__init__()
249
                    self._linear = nn.Linear(in_size, out_size)
250

251
                @paddle.jit.to_static
252 253 254 255 256 257
                def forward(self, x):
                    y = self._linear(x)
                    z = self._linear(y)
                    return z

            # enable dygraph mode
258
            paddle.disable_static() 
259 260 261

            # train model
            net = SimpleNet(8, 8)
262 263
            adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
            x = paddle.randn([4, 8], 'float32')
264 265
            for i in range(10):
                out = net(x)
266
                loss = paddle.tensor.mean(out)
267
                loss.backward()
268 269
                adam.step()
                adam.clear_grad()
270 271 272

            # use SaveLoadconfig when saving model
            model_path = "simplenet.example.model"
273 274 275
            config = paddle.SaveLoadConfig()
            config.model_filename = "__simplenet__"
            paddle.jit.save(
276 277
                layer=net,
                model_path=model_path,
278
                config=config)
279 280 281 282 283

        2. Using ``SaveLoadConfig`` when loading model

        .. code-block:: python

284
            import paddle
285 286

            # enable dygraph mode
287
            paddle.disable_static() 
288 289 290

            # use SaveLoadconfig when loading model
            model_path = "simplenet.example.model"
291 292 293
            config = paddle.SaveLoadConfig()
            config.model_filename = "__simplenet__"
            infer_net = paddle.jit.load(model_path, config=config)
294
            # inference
295
            x = paddle.randn([4, 8], 'float32')
296 297 298 299 300 301 302 303
            pred = infer_net(x)
    """

    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
304 305
        # used for `paddle.load`
        self._keep_name_table = False
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

        # If True, programs are modified to only support direct inference deployment. 
        # Otherwise,more information will be stored for flexible optimization and re-training. 
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False

    @property
    def output_spec(self):
        """
        Selects the output targets of the saved model ( :ref:`api_imperative_TranslatedLayer` ).
        By default, all return variables of original Layer's forward function
        are kept as the output of the saved TranslatedLayer.

        The ``output_spec`` type should be list[Variable]. If the provided ``output_spec``
        list is not all output variables, the saved model will be pruned according to the
        given ``output_spec`` list.

        .. note::
            The ``output_spec`` is only used when saving model.

        Examples:
            .. code-block:: python

335 336 337
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
338

339
                class SimpleNet(nn.Layer):
340 341
                    def __init__(self, in_size, out_size):
                        super(SimpleNet, self).__init__()
342
                        self._linear = nn.Linear(in_size, out_size)
343

344
                    @paddle.jit.to_static
345 346 347
                    def forward(self, x):
                        y = self._linear(x)
                        z = self._linear(y)
348
                        loss = paddle.tensor.mean(z)
349 350 351
                        return z, loss

                # enable dygraph mode
352
                paddle.disable_static() 
353 354 355

                # train model
                net = SimpleNet(8, 8)
356 357
                adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
                x = paddle.randn([4, 8], 'float32')
358 359 360
                for i in range(10):
                    out, loss = net(x)
                    loss.backward()
361 362
                    adam.step()
                    adam.clear_grad()
363 364 365

                # use SaveLoadconfig.output_spec
                model_path = "simplenet.example.model.output_spec"
366 367 368
                config = paddle.SaveLoadConfig()
                config.output_spec = [out]
                paddle.jit.save(
369 370
                    layer=net,
                    model_path=model_path,
371
                    config=config)
372

373 374
                infer_net = paddle.jit.load(model_path)
                x = paddle.randn([4, 8], 'float32')
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
                pred = infer_net(x)
        """
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
        if not isinstance(spec, list):
            raise TypeError(
                "The SaveLoadConfig.output_spec should be 'list', but received input type is %s."
                % type(input))
            for var in spec:
                if not isinstance(var, core.VarBase):
                    raise TypeError(
                        "The element in SaveLoadConfig.output_spec list should be 'Variable', but received element's type is %s."
                        % type(var))
        self._output_spec = spec

    @property
    def model_filename(self):
        """
        The name of file to save the translated program of target Layer.
        Default filename is :code:`__model__` .

398
        Examples:
399 400
            .. code-block:: python

401 402 403
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
404

405
                class SimpleNet(nn.Layer):
406 407
                    def __init__(self, in_size, out_size):
                        super(SimpleNet, self).__init__()
408
                        self._linear = nn.Linear(in_size, out_size)
409

410
                    @paddle.jit.to_static
411 412 413 414 415 416
                    def forward(self, x):
                        y = self._linear(x)
                        z = self._linear(y)
                        return z

                # enable dygraph mode
417
                paddle.disable_static() 
418 419 420

                # train model
                net = SimpleNet(8, 8)
421 422
                adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
                x = paddle.randn([4, 8], 'float32')
423 424
                for i in range(10):
                    out = net(x)
425
                    loss = paddle.tensor.mean(out)
426
                    loss.backward()
427 428
                    adam.step()
                    adam.clear_grad()
429 430

                # saving with configs.model_filename
431 432 433 434
                model_path = "simplenet.example.model.model_filename"
                config = paddle.SaveLoadConfig()
                config.model_filename = "__simplenet__"
                paddle.jit.save(
435 436
                    layer=net,
                    model_path=model_path,
437
                    config=config)
438 439

                # loading with configs.model_filename
440 441
                infer_net = paddle.jit.load(model_path, config=config)
                x = paddle.randn([4, 8], 'float32')
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
                pred = infer_net(x)
        """
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
        if not isinstance(filename, six.string_types):
            raise TypeError(
                "The SaveLoadConfig.model_filename should be str, but received input's type is %s."
                % type(filename))
        if len(filename) == 0:
            raise ValueError(
                "The SaveLoadConfig.model_filename is empty string.")
        self._model_filename = filename

    @property
    def params_filename(self):
        """
        The name of file to save all persistable variables in target Layer. 
        Default file name is :code:`__variables__` .
        
463
        Examples:
464 465
            .. code-block:: python

466 467 468
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
469

470
                class SimpleNet(nn.Layer):
471 472
                    def __init__(self, in_size, out_size):
                        super(SimpleNet, self).__init__()
473
                        self._linear = nn.Linear(in_size, out_size)
474

475
                    @paddle.jit.to_static
476 477 478 479 480 481
                    def forward(self, x):
                        y = self._linear(x)
                        z = self._linear(y)
                        return z

                # enable dygraph mode
482
                paddle.disable_static() 
483 484 485

                # train model
                net = SimpleNet(8, 8)
486 487
                adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
                x = paddle.randn([4, 8], 'float32')
488 489
                for i in range(10):
                    out = net(x)
490
                    loss = paddle.tensor.mean(out)
491
                    loss.backward()
492 493
                    adam.step()
                    adam.clear_grad()
494 495

                model_path = "simplenet.example.model.params_filename"
496 497
                config = paddle.SaveLoadConfig()
                config.params_filename = "__params__"
498 499

                # saving with configs.params_filename
500
                paddle.jit.save(
501 502
                    layer=net,
                    model_path=model_path,
503
                    config=config)
504 505

                # loading with configs.params_filename
506 507
                infer_net = paddle.jit.load(model_path, config=config)
                x = paddle.randn([4, 8], 'float32')
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
                pred = infer_net(x)
        """
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
        if not isinstance(filename, six.string_types):
            raise TypeError(
                "The SaveLoadConfig.params_filename should be str, but received input's type is %s."
                % type(filename))
        if len(filename) == 0:
            raise ValueError(
                "The SaveLoadConfig.params_filename is empty string.")
        self._params_filename = filename

    # NOTE: [why not use params_filename=None control params saved separately]
    # The new save interface does not recommend parameters to be saved separately. 
    # Here, the concept should be separated as clearly as possible. 
    # Setting params_filename=None only means that the saved file name is set 
    # and without any other meaning. New separate_params control for file saved
    # separately can makes the concept clearer.
    @property
    def separate_params(self):
        """
        Configure whether to save the Layer parameters as separete files.
        (In order to be compatible with the behavior of :ref:`api_fluid_io_save_inference_model` )

        If True, each parameter will be saved to a file separately, the file name is the parameter name,
        and the SaveLoadConfig.params_filename configuration will not take effect. Default False.

        Examples:
            .. code-block:: python

541 542 543
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
544

545
                class SimpleNet(nn.Layer):
546 547
                    def __init__(self, in_size, out_size):
                        super(SimpleNet, self).__init__()
548
                        self._linear = nn.Linear(in_size, out_size)
549

550
                    @paddle.jit.to_static
551 552 553 554 555 556
                    def forward(self, x):
                        y = self._linear(x)
                        z = self._linear(y)
                        return z

                # enable dygraph mode
557
                paddle.disable_static() 
558 559 560

                # train model
                net = SimpleNet(8, 8)
561 562
                adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
                x = paddle.randn([4, 8], 'float32')
563 564
                for i in range(10):
                    out = net(x)
565
                    loss = paddle.tensor.mean(out)
566
                    loss.backward()
567 568
                    adam.step()
                    adam.clear_grad()
569 570

                model_path = "simplenet.example.model.separate_params"
571 572
                config = paddle.jit.SaveLoadConfig()
                config.separate_params = True
573 574

                # saving with configs.separate_params
575
                paddle.jit.save(
576 577
                    layer=net,
                    model_path=model_path,
578
                    config=config)
579 580 581 582
                # [result] the saved model directory contains:
                # linear_0.b_0  linear_0.w_0  __model__  __variables.info__

                # loading with configs.params_filename
583 584
                infer_net = paddle.jit.load(model_path, config=config)
                x = paddle.randn([4, 8], 'float32')
585 586 587 588 589 590 591 592 593 594 595 596
                pred = infer_net(x)
        """
        return self._separate_params

    @separate_params.setter
    def separate_params(self, value):
        if not isinstance(value, bool):
            raise TypeError(
                "The SaveLoadConfig.separate_params should be bool value, but received input's type is %s."
                % type(value))
        self._separate_params = value

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
    @property
    def keep_name_table(self):
        """
        Configures whether keep ``structured_name -> parameter_name`` dict in loaded state dict.
        This dict is the debugging information saved when call `paddle.save`. 
        It is generally only used for debugging and does not affect the actual training or inference. 
        By default, it will not be retained in `paddle.load` result. Default: False.
        
        .. note::
            Only used for ``paddle.load``.

        Examples:
            .. code-block:: python

                import paddle
            
                paddle.disable_static()

                linear = paddle.nn.Linear(5, 1)

                state_dict = linear.state_dict()
                paddle.save(state_dict, "paddle_dy")

                configs = paddle.SaveLoadConfig()
                configs.keep_name_table = True
                para_state_dict, _ = paddle.load("paddle_dy", configs)

                print(para_state_dict)
                # the name_table is 'StructuredToParameterName@@'
                # {'bias': array([0.], dtype=float32), 
                #  'StructuredToParameterName@@': 
                #     {'bias': u'linear_0.b_0', 'weight': u'linear_0.w_0'}, 
                #  'weight': array([[ 0.04230034],
                #     [-0.1222527 ],
                #     [ 0.7392676 ],
                #     [-0.8136974 ],
                #     [ 0.01211023]], dtype=float32)}
        """
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
        if not isinstance(value, bool):
            raise TypeError(
                "The SaveLoadConfig.keep_name_table should be bool value, but received input's type is %s."
                % type(value))
        self._keep_name_table = value

645

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
def _get_input_var_names(inputs, input_spec):
    name_none_error = "The %s's name is None. " \
        "When using jit.save, please set InputSepc's name in " \
        "to_static(input_spec=[]) and jit.save(input_spec=[]) " \
        "and make sure they are consistent."
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of InputSpec or example Tensor " \
        "in input_spec is the same as the name of InputSpec in " \
        "`to_static` decorated on the Layer.forward method."
    result_list = []
    input_var_names = [var.name for var in inputs if isinstance(var, Variable)]
    if input_spec is None:
        # no prune
        result_list = input_var_names
    elif input_spec is not None and len(input_spec) == len(input_var_names):
        # no prune
        result_list = input_var_names
        # if input spec name not in input_var_names, only raise warning 
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
                # the input_spec can be `InputSpec` or `VarBase`
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


def _get_output_vars(outputs, output_spec):
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of example Tensor " \
        "in configs.output_spec is the output tensor of " \
        "Layer.forward method."
    result_list = []
    output_vars_dict = OrderedDict()
    for var in outputs:
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
        result_list = output_vars_dict.values()
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
        result_list = output_vars_dict.values()
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


713 714 715 716 717 718 719 720 721 722 723 724 725
# NOTE(chenweihang): change jit.save/load argument `configs` to `config`
def deprecate_save_load_configs(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'configs' in kwargs:
            kwargs['config'] = kwargs['configs']
            kwargs.pop('configs')
        return func(*args, **kwargs)

    return wrapper


@deprecate_save_load_configs
726
@switch_to_static_graph
727
def save(layer, model_path, input_spec=None, config=None):
728 729 730 731 732 733 734 735 736 737
    """
    Saves input declarative Layer as :ref:`api_imperative_TranslatedLayer` 
    format model, which can be used for inference or fine-tuning after loading.

    It will save the translated program and all related persistable 
    variables of input declarative Layer to given ``model_path``.
    
    The default saved translated program file name is ``__model__``,
    and the default saved persistable variables file name is ``__variables__``,
    and it also saved some additional variable description information to file 
738
    ``__variables.info__``, these additional information is used in fine-tuning.
739 740 741 742 743 744 745 746 747

    The saved model can be loaded by follow APIs:
      - :ref:`api_imperative_jit_load`
      - :ref:`api_fluid_io_load_inference_model` (need pass ``params_filename='__variables__'``)
      - Other C++ inference APIs

    Args:
        layer (Layer): the Layer to be saved. The Layer should be decorated by `@declarative`.
        model_path (str): the directory to save the model.
748
        input_spec (list[Variable], optional): Describes the input of the saved model. 
749 750 751
            It is the example inputs that will be passed to saved TranslatedLayer's forward
            function. If None, all input variables of the original Layer's forward function
            would be the inputs of the saved model. Default None.
752
        config (SaveLoadConfig, optional): :ref:`api_imperative_jit_saveLoadConfig` object
753 754 755 756 757 758 759 760
            that specifies additional configuration options. Default None.
    Returns:
        None

    Examples:
        .. code-block:: python

            import numpy as np
761 762 763
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
764

765 766 767
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
768

769 770 771 772 773 774 775
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
776

777 778 779 780
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
781

782 783
                def __len__(self):
                    return self.num_samples
784

785 786
            class LinearNet(nn.Layer):
                def __init__(self):
787
                    super(LinearNet, self).__init__()
788
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
789

790
                @paddle.jit.to_static
791 792 793
                def forward(self, x):
                    return self._linear(x)

794 795 796 797 798 799 800 801 802 803 804
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

805
            # enable dygraph mode
806 807
            place = paddle.CPUPlace()
            paddle.disable_static(place) 
808

809
            # 1. train & save model.
810

811 812 813 814
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
815

816 817 818 819 820 821 822 823
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
824

825 826
            # train
            train(layer, loader, loss_fn, adam)
827

828
            # save
829
            model_path = "linear.example.model"
830
            paddle.jit.save(layer, model_path)
831 832 833 834 835 836
    """

    # 1. input check
    prog_translator = ProgramTranslator()
    if not prog_translator.enable:
        raise RuntimeError(
837
            "The paddle.jit.save doesn't work when setting ProgramTranslator.enable=False."
838 839 840
        )
    if not isinstance(layer, Layer):
        raise TypeError(
841
            "The input layer of paddle.jit.save should be 'Layer', but received layer type is %s."
842 843
            % type(layer))

844
    configs = config
845 846 847
    if configs is None:
        configs = SaveLoadConfig()

848 849
    # avoid change user given input_spec
    inner_input_spec = None
850 851 852 853 854
    if input_spec is not None:
        if not isinstance(input_spec, list):
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
                % type(input_spec))
855
        inner_input_spec = []
856
        for var in input_spec:
857 858 859 860 861 862
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
            elif isinstance(var, (core.VarBase, Variable)):
                inner_input_spec.append(
                    paddle.static.InputSpec.from_tensor(var))
            else:
863
                raise TypeError(
864
                    "The element in input_spec list should be 'Variable' or `paddle.static.InputSpec`, but received element's type is %s."
865 866
                    % type(var))

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
    # 2. get program from Layer
    # TODO(chenweihang): add support for other method, not only forward
    if isinstance(layer.forward, StaticLayer):
        concrete_program = layer.forward.concrete_program
    else:
        # transform in jit.save, if input_spec is incomplete, declarative will throw error
        static_forward = declarative(layer.forward, input_spec=inner_input_spec)
        concrete_program = static_forward.concrete_program
        # the input_spec has been used in declarative, which is equal to 
        # @declarative with input_spec and jit.save without input_spec,
        # avoid needless warning
        inner_input_spec = None

    # 3. build input & output of save_infernece_model
    # NOTE(chenweihang): [ Get input variables name ]
    # There are two cases, whether to prune the inputs or not
    # - not prune inputs (recommend):
    #   - the len(input_spec) == len((concrete_program.inputs) - 1
    #   - here can use concrete_program.inputs directly
    # - prune inputs:
    #   - the input_spec length < len((concrete_program.inputs) - 1
    #   - the input_spec's name should be in concrete_program.inputs
    input_var_names = _get_input_var_names(concrete_program.inputs,
                                           inner_input_spec)

    # NOTE(chenweihang): [ Get output variables ]
    # the rule is like [ Get input variables name ]. For output var, 
    # we only support VarBase spec, and actually, we only need the 
    # var name of output, and we don't recommended to use output_spec
    output_vars = _get_output_vars(concrete_program.outputs,
                                   configs.output_spec)

    # NOTE(chenweihang): we maintain the mapping of variable name to
900 901 902 903
    # structured name, the buffer variable (non-persistable)
    # saved to inference program may not need by dygraph Layer, 
    # we only record the state_dict variable's structured name
    state_names_dict = dict()
904
    for structured_name, var in six.iteritems(layer.state_dict()):
905 906
        state_names_dict[var.name] = structured_name

907
    # 4. share parameters from Layer to scope & record var info
908 909
    scope = core.Scope()
    extra_var_info = dict()
910
    for param_or_buffer in concrete_program.parameters:
911 912 913 914 915 916
        # share to scope
        param_or_buffer_tensor = scope.var(param_or_buffer.name).get_tensor()
        src_tensor = param_or_buffer.value().get_tensor()
        param_or_buffer_tensor._share_data_with(src_tensor)
        # record var info
        extra_info_dict = dict()
917 918 919
        if param_or_buffer.name in state_names_dict:
            extra_info_dict['structured_name'] = state_names_dict[
                param_or_buffer.name]
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
        extra_info_dict['stop_gradient'] = param_or_buffer.stop_gradient
        if isinstance(param_or_buffer, ParamBase):
            extra_info_dict['trainable'] = param_or_buffer.trainable
        extra_var_info[param_or_buffer.name] = extra_info_dict

    # 5. save inference model
    from paddle.fluid.io import save_inference_model

    # VARIABLE_FILENAME keep nameing style consistent with '__model__'
    if configs.params_filename is None:
        configs.params_filename = VARIABLE_FILENAME

    with scope_guard(scope):
        save_inference_model(
            dirname=model_path,
            feeded_var_names=input_var_names,
            target_vars=output_vars,
            executor=Executor(_current_expected_place()),
            main_program=concrete_program.main_program.clone(),
            model_filename=configs.model_filename,
            params_filename=None
            if configs.separate_params else configs.params_filename,
            export_for_deployment=configs._export_for_deployment,
            program_only=configs._program_only)

945
        # NOTE(chenweihang): [ Save extra variable info ]
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
        # save_inference_model will lose some important variable information, including:
        #   - Variable name and correspondence (when saved variables as one file)
        #   - Variable.stop_gradient information
        #   - Which persistent variable are parameter and which are not
        #   - Parameter.trainable information
        #
        # The lost information cannot be recovered when it is loaded again, 
        # so if we want to perform fine-tune after loading, we may need to 
        # configure redundant information to proceed.
        #
        # Due to compatibility issues, we cannot change the original storage structure, 
        # but we can save these information in `jit.save` without changing the original 
        # storage to improve user experience. So we save extra information into
        # file `__variables.info__`
        extra_var_info_path = os.path.join(model_path, EXTRA_VAR_INFO_FILENAME)
        with open(extra_var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)


965
@deprecate_save_load_configs
966
@dygraph_only
967
def load(model_path, config=None):
968 969 970 971 972 973 974 975 976 977
    """
    :api_attr: imperative

    Load model saved by :ref:`api_imperative_jit_save` or :ref:`api_fluid_io_save_inference_model`
    as :ref:`api_imperative_TranslatedLayer`, then performing inference or fine-tune training.

    .. note::
        For some historical reasons, if you load model saved by :ref:`api_fluid_io_save_inference_model`,
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
978
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
979 980 981 982 983
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
        model_path (str): The directory path where the model is saved.
984
        config (SaveLoadConfig, optional): :ref:`api_imperative_jit_saveLoadConfig` object that specifies 
985 986 987 988 989 990 991 992 993 994 995
            additional configuration options. Default None.

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
        1. Load model saved by :ref:`api_imperative_jit_save` then performing inference and fine-tune training.

        .. code-block:: python

            import numpy as np
996 997 998
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
999

1000 1001 1002
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1003

1004 1005
            IMAGE_SIZE = 784
            CLASS_NUM = 10
1006

1007 1008 1009 1010
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1011

1012 1013 1014 1015
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1016

1017 1018 1019 1020 1021
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
1022
                    super(LinearNet, self).__init__()
1023
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1024

1025
                @paddle.jit.to_static
1026 1027 1028
                def forward(self, x):
                    return self._linear(x)

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1040
            # enable dygraph mode
1041 1042
            place = paddle.CPUPlace()
            paddle.disable_static(place) 
1043 1044

            # 1. train & save model.
1045

1046
            # create network
1047 1048 1049 1050
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

1051
            # create data loader
1052 1053 1054 1055 1056 1057 1058
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1059

1060 1061
            # train
            train(layer, loader, loss_fn, adam)
1062

1063 1064 1065
            # save
            model_path = "linear.example.model"
            paddle.jit.save(layer, model_path)
1066

1067
            # 2. load model
1068

1069 1070
            # load
            loaded_layer = paddle.jit.load(model_path)
1071 1072

            # inference
1073 1074 1075
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
1076 1077

            # fine-tune
1078 1079 1080
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
1081 1082 1083 1084 1085 1086 1087


        2. Load model saved by :ref:`api_fluid_io_save_inference_model` then performing and fine-tune training.

        .. code-block:: python

            import numpy as np
1088
            import paddle
1089
            import paddle.fluid as fluid
1090 1091
            import paddle.nn as nn
            import paddle.optimizer as opt
1092

1093 1094 1095
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1096

1097 1098 1099 1100 1101 1102 1103
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1104

1105 1106 1107 1108
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1109

1110 1111
                def __len__(self):
                    return self.num_samples
1112

1113
            image = fluid.data(name='image', shape=[None, 784], dtype='float32')
1114
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1115
            pred = fluid.layers.fc(input=image, size=10, act='softmax')
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
            loss = fluid.layers.cross_entropy(input=pred, label=label)
            avg_loss = fluid.layers.mean(loss)

            optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            optimizer.minimize(avg_loss)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

1126 1127 1128 1129 1130 1131 1132 1133 1134
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
                batch_size=BATCH_SIZE, 
                shuffle=True,
                drop_last=True,
                num_workers=2)
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

            # 1. train and save inference model
            for data in loader():
                exe.run(
                    fluid.default_main_program(),
                    feed=data, 
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
            fluid.io.save_inference_model(
1145 1146 1147
                model_path, ["image"], [pred], exe)

            # 2. load model
1148 1149

            # enable dygraph mode
1150 1151 1152 1153
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1154

1155 1156 1157
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1158 1159
            pred = fc(x)

1160
            # fine-tune
1161
            fc.train()
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1179
    """
1180
    return TranslatedLayer._construct(model_path, config)
1181 1182


1183
@dygraph_only
Z
Zeng Jinle 已提交
1184 1185 1186 1187 1188
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
1189
    assert isinstance(layer, Layer)
1190 1191 1192 1193 1194 1195 1196 1197 1198

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1199
        original_outputs = layer(*inputs)
1200 1201 1202 1203
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1204
        out_vars = [var for var in outputs]
1205

1206
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
1207
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
1208 1209 1210 1211 1212
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1213
    return original_outputs, program, feed_names, fetch_names, parameters
1214 1215 1216 1217


class TracedLayer(object):
    """
1218 1219
    :api_attr: imperative
    
1220 1221 1222 1223 1224
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1225 1226 1227 1228

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1229 1230

    All TracedLayer objects should not be created by constructor and should
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1242
        self._params = parameters
1243 1244 1245 1246 1247

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1248
            src_tensor = p.value().get_tensor()
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1272
        This method is the only allowed method to create TracedLayer object.
1273 1274 1275 1276
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1277
            layer (dygraph.Layer): the layer object to be traced.
1278 1279
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1280 1281

        Returns:
1282
            tuple: A tuple of 2 items, whose the first item is the output of
1283 1284
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1285

1286
        Examples:
1287 1288 1289
            .. code-block:: python:

                import paddle.fluid as fluid
1290
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
1291 1292 1293
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
1294 1295 1296
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
1297 1298 1299 1300 1301

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
1302
                    layer = ExampleLayer()
1303 1304 1305
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
1306 1307 1308 1309 1310 1311 1312 1313 1314

                    # run the static graph model using Executor inside
                    out_static_graph = static_layer([in_var])

                    print(len(out_static_graph)) # 1
                    print(out_static_graph[0].shape) # (2, 10)

                    # save the static graph model for inference
                    static_layer.save_inference_model(dirname='./saved_infer_model')
1315
        """
1316 1317 1318 1319
        assert isinstance(
            layer, Layer
        ), "The type of 'layer' in fluid.dygraph.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received {}.".format(
            type(layer))
1320 1321
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1322 1323 1324 1325 1326 1327 1328
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1329
            build_strategy (BuildStrategy, optional): build strategy of
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
1341
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
1342 1343 1344
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
1345 1346 1347
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
1348 1349 1350 1351 1352

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
1353
                    layer = ExampleLayer()
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)

                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])

                    build_strategy = fluid.BuildStrategy()
                    build_strategy.enable_inplace = True

                    exec_strategy = fluid.ExecutionStrategy()
                    exec_strategy.num_threads = 2

                    static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                    out_static_graph = static_layer([in_var])
        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1369 1370 1371 1372 1373 1374 1375 1376
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
        ), "The type of 'build_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
            type(build_strategy))
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
        ), "The type of 'exec_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
            type(exec_strategy))
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
        if in_dygraph_mode():
            for x, name in zip(inputs, self._feed_names):
1395
                feed_dict[name] = x.value().get_tensor()
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
    def save_inference_model(self, dirname, feed=None, fetch=None):
        """
1418 1419
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1420 1421

        Args:
1422
            dirname (str): the directory to save the inference model.
1423
            feed (list[int], optional): the input variable indices of the saved
1424
                inference model. If None, all input variables of the
1425 1426 1427 1428 1429 1430 1431 1432
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.

        Returns:
1433
            None
1434 1435 1436 1437 1438

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
1439
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
1440 1441 1442
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
1443 1444 1445
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
1446 1447 1448 1449

                    def forward(self, input):
                        return self._fc(input)

1450 1451 1452
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')

1453
                with fluid.dygraph.guard():
1454
                    layer = ExampleLayer()
1455 1456
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
1457
                    static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1458 1459

                place = fluid.CPUPlace()
1460 1461
                exe = fluid.Executor(place)
                program, feed_vars, fetch_vars = fluid.io.load_inference_model(save_dirname,
1462
                                                    exe)
1463 1464 1465

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1466
        """
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
        check_type(dirname, "dirname", str,
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(feed, "feed", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(feed, list):
            for f in feed:
                check_type(f, "each element of feed", int,
                           "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(fetch, "fetch", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(fetch, list):
            for f in fetch:
                check_type(f, "each element of fetch", int,
                           "fluid.dygraph.jit.TracedLayer.save_inference_model")

1482
        from paddle.fluid.io import save_inference_model
1483 1484 1485 1486 1487

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1488
            return [all_vars[idx] for idx in partial_vars]
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

1499
            save_inference_model(
1500 1501 1502 1503 1504
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone())