jit.py 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
__all__ = ['TracedLayer']
16

17
from .base import program_desc_tracing_guard, switch_to_static_graph
18
from .layers import Layer
19 20 21 22
from paddle.fluid import core
from paddle.fluid.framework import Program, Block, Variable, _dygraph_tracer, dygraph_only, _dygraph_guard, _current_expected_place, in_dygraph_mode
from paddle.fluid.executor import Executor, scope_guard
from paddle.fluid.compiler import CompiledProgram
23 24 25 26 27 28 29 30 31 32 33 34


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


def _extract_vars(inputs, result_list):
    if isinstance(inputs, Variable):
35
        result_list.append(inputs)
36 37 38 39 40 41 42 43 44 45 46 47 48

    if isinstance(inputs, (list, tuple)):
        for var in inputs:
            _extract_vars(var, result_list)


def extract_vars(inputs):
    result_list = []
    _extract_vars(inputs, result_list)
    return result_list


@dygraph_only
Z
Zeng Jinle 已提交
49 50 51 52 53
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
54
    assert isinstance(layer, Layer)
55 56 57 58 59 60 61 62 63

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
64
        original_outputs = layer(*inputs)
65 66 67 68
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
69
        out_vars = [var for var in outputs]
70

Z
Zeng Jinle 已提交
71 72
        program_desc, feed_names, fetch_names = tracer.create_program_desc(
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
73 74 75 76 77
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

78 79 80 81 82
    return original_outputs, program, feed_names, fetch_names


class TracedLayer(object):
    """
83 84 85 86 87 88 89 90 91
    TracedLayer is used to convert a forward dygraph model to a static 
    graph model. This is mainly used to save the dygraph model for online 
    inference using C++. Besides, users can also do inference in Python 
    using the converted static graph model, which usually has better 
    performance than the original dygraph model.  

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    
    All TracedLayer objects should not be created by constructor and should 
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
110
            src_tensor = p.value().get_tensor()
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
        This method is the only allowed method to create TracedLayer object. 
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
139 140
            layer (dygraph.Layer): the layer object to be traced.
            inputs (list(Variable)): the input variables of the layer object.
141 142

        Returns:
143
            tuple: A tuple of 2 items, whose the first item is the output of
144
            :code:`layer(*inputs)` , and the second item is the created
145
            TracedLayer object.
146

147
        Examples:
148 149 150
            .. code-block:: python:

                import paddle.fluid as fluid
151
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
152 153 154
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
155 156 157
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
158 159 160 161 162

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
163
                    layer = ExampleLayer()
164 165 166
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
167 168 169 170 171 172 173 174 175

                    # run the static graph model using Executor inside
                    out_static_graph = static_layer([in_var])

                    print(len(out_static_graph)) # 1
                    print(out_static_graph[0].shape) # (2, 10)

                    # save the static graph model for inference
                    static_layer.save_inference_model(dirname='./saved_infer_model')
176
        """
Z
Zeng Jinle 已提交
177
        outs, prog, feed, fetch = _trace(layer, inputs)
178 179 180 181 182 183 184 185
        traced = TracedLayer(prog, layer.parameters(), feed, fetch)
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
186
            build_strategy (BuildStrategy, optional): build strategy of
187 188 189 190 191 192 193 194 195 196 197
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
198
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
199 200 201
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
202 203 204
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
205 206 207 208 209

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
210
                    layer = ExampleLayer()
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)

                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])

                    build_strategy = fluid.BuildStrategy()
                    build_strategy.enable_inplace = True

                    exec_strategy = fluid.ExecutionStrategy()
                    exec_strategy.num_threads = 2

                    static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                    out_static_graph = static_layer([in_var])
        """
        assert self._compiled_program is None, "Cannot set strategy after run"
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
        if in_dygraph_mode():
            for x, name in zip(inputs, self._feed_names):
244
                feed_dict[name] = x.value().get_tensor()
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
    def save_inference_model(self, dirname, feed=None, fetch=None):
        """
267 268
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
269 270

        Args:
271
            dirname (str): the directory to save the inference model.
272
            feed (list[int], optional): the input variable indices of the saved
273
                inference model. If None, all input variables of the
274 275 276 277 278 279 280 281
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.

        Returns:
282
            None
283 284 285 286 287

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
288
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
289 290 291
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
292 293 294
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
295 296 297 298

                    def forward(self, input):
                        return self._fc(input)

299 300 301
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')

302
                with fluid.dygraph.guard():
303
                    layer = ExampleLayer()
304 305
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
306 307 308 309 310 311 312 313 314
                    static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
                
                place = fluid.CPUPlace() 
                exe = fluid.Executor(place)
                program, feed_vars, fetch_vars = fluid.io.load_inference_model(save_dirname,
                                                    exe) 

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
315
        """
316
        from paddle.fluid.io import save_inference_model
317 318 319 320 321

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

322
            return [all_vars[idx] for idx in partial_vars]
323 324 325 326 327 328 329 330 331 332

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

333
            save_inference_model(
334 335 336 337 338
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone())