jit.py 15.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
__all__ = [
18
    'TracedLayer', 'dygraph_to_static_code', 'dygraph_to_static_func',
19
    'dygraph_to_static_output', 'dygraph_to_static_program'
20
]
21

22
import warnings
23 24

from ..wrapped_decorator import wrap_decorator
25
from .base import program_desc_tracing_guard, switch_to_static_graph
26
from .layers import Layer
27 28 29 30
from paddle.fluid import core
from paddle.fluid.framework import Program, Block, Variable, _dygraph_tracer, dygraph_only, _dygraph_guard, _current_expected_place, in_dygraph_mode
from paddle.fluid.executor import Executor, scope_guard
from paddle.fluid.compiler import CompiledProgram
31
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
32 33 34 35 36 37 38 39 40 41 42 43


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


def _extract_vars(inputs, result_list):
    if isinstance(inputs, Variable):
44
        result_list.append(inputs)
45 46 47 48 49 50 51 52 53 54 55 56

    if isinstance(inputs, (list, tuple)):
        for var in inputs:
            _extract_vars(var, result_list)


def extract_vars(inputs):
    result_list = []
    _extract_vars(inputs, result_list)
    return result_list


57
def _dygraph_to_static_code_(dygraph_func):
58 59 60 61 62 63 64 65 66 67 68
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
        return program_translator.get_code(dygraph_func)

    return __impl__


dygraph_to_static_code = wrap_decorator(_dygraph_to_static_code_)


def _dygraph_to_static_program_(dygraph_func):
69 70 71
    def __impl__(*args, **kwargs):
        if in_dygraph_mode():
            warnings.warn(
72 73 74 75
                "The decorator 'dygraph_to_static_program' doesn't work in "
                "dygraph mode. We will just return dygraph output. Use the "
                "decorator in static mode if you would like to translate to "
                "static graph.")
76
            return dygraph_func(*args, **kwargs)
77
        program_translator = ProgramTranslator()
78
        return program_translator.get_program(dygraph_func, *args, **kwargs)
79 80 81 82

    return __impl__


83
dygraph_to_static_program = wrap_decorator(_dygraph_to_static_program_)
84 85


86
def _dygraph_to_static_func_(dygraph_func):
87 88 89
    def __impl__(*args, **kwargs):
        if in_dygraph_mode():
            warnings.warn(
90 91 92 93
                "The decorator 'dygraph_to_static_func' doesn't work in "
                "dygraph mode. We will just return dygraph output. Use the "
                "decorator in static mode if you would like to translate to "
                "static graph.")
94
            return dygraph_func(*args, **kwargs)
95 96 97 98 99
        program_translator = ProgramTranslator()
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)

    return __impl__
100

101

102
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
103

104 105 106

def _dygraph_to_static_output_(dygraph_func):
    def __impl__(*args, **kwargs):
107 108 109 110 111 112 113
        if in_dygraph_mode():
            warnings.warn(
                "The decorator 'dygraph_to_static_output' doesn't work in "
                "dygraph mode. We will just return dygraph output. Use the "
                "decorator in static mode if you would like to translate to "
                "static graph.")
            return dygraph_func(*args, **kwargs)
114 115
        program_translator = ProgramTranslator()
        return program_translator.get_output(dygraph_func, *args, **kwargs)
116

117
    return __impl__
118 119


120 121 122
dygraph_to_static_output = wrap_decorator(_dygraph_to_static_output_)


123
@dygraph_only
Z
Zeng Jinle 已提交
124 125 126 127 128
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
129
    assert isinstance(layer, Layer)
130 131 132 133 134 135 136 137 138

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
139
        original_outputs = layer(*inputs)
140 141 142 143
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
144
        out_vars = [var for var in outputs]
145

146
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
147
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
148 149 150 151 152
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

153
    return original_outputs, program, feed_names, fetch_names, parameters
154 155 156 157


class TracedLayer(object):
    """
158 159 160 161 162
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
163 164 165 166

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
167 168

    All TracedLayer objects should not be created by constructor and should
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
185
            src_tensor = p.value().get_tensor()
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
209
        This method is the only allowed method to create TracedLayer object.
210 211 212 213
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
214 215
            layer (dygraph.Layer): the layer object to be traced.
            inputs (list(Variable)): the input variables of the layer object.
216 217

        Returns:
218
            tuple: A tuple of 2 items, whose the first item is the output of
219
            :code:`layer(*inputs)` , and the second item is the created
220
            TracedLayer object.
221

222
        Examples:
223 224 225
            .. code-block:: python:

                import paddle.fluid as fluid
226
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
227 228 229
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
230 231 232
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
233 234 235 236 237

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
238
                    layer = ExampleLayer()
239 240 241
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
242 243 244 245 246 247 248 249 250

                    # run the static graph model using Executor inside
                    out_static_graph = static_layer([in_var])

                    print(len(out_static_graph)) # 1
                    print(out_static_graph[0].shape) # (2, 10)

                    # save the static graph model for inference
                    static_layer.save_inference_model(dirname='./saved_infer_model')
251
        """
252 253
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
254 255 256 257 258 259 260
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
261
            build_strategy (BuildStrategy, optional): build strategy of
262 263 264 265 266 267 268 269 270 271 272
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
273
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
274 275 276
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
277 278 279
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
280 281 282 283 284

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
285
                    layer = ExampleLayer()
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)

                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])

                    build_strategy = fluid.BuildStrategy()
                    build_strategy.enable_inplace = True

                    exec_strategy = fluid.ExecutionStrategy()
                    exec_strategy.num_threads = 2

                    static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                    out_static_graph = static_layer([in_var])
        """
        assert self._compiled_program is None, "Cannot set strategy after run"
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
        if in_dygraph_mode():
            for x, name in zip(inputs, self._feed_names):
319
                feed_dict[name] = x.value().get_tensor()
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
    def save_inference_model(self, dirname, feed=None, fetch=None):
        """
342 343
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
344 345

        Args:
346
            dirname (str): the directory to save the inference model.
347
            feed (list[int], optional): the input variable indices of the saved
348
                inference model. If None, all input variables of the
349 350 351 352 353 354 355 356
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.

        Returns:
357
            None
358 359 360 361 362

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
363
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
364 365 366
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
367 368 369
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
370 371 372 373

                    def forward(self, input):
                        return self._fc(input)

374 375 376
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')

377
                with fluid.dygraph.guard():
378
                    layer = ExampleLayer()
379 380
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
381
                    static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
382 383

                place = fluid.CPUPlace()
384 385
                exe = fluid.Executor(place)
                program, feed_vars, fetch_vars = fluid.io.load_inference_model(save_dirname,
386
                                                    exe)
387 388 389

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
390
        """
391
        from paddle.fluid.io import save_inference_model
392 393 394 395 396

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

397
            return [all_vars[idx] for idx in partial_vars]
398 399 400 401 402 403 404 405 406 407

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

408
            save_inference_model(
409 410 411 412 413
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone())