nn.py 283.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
68
    'sequence_slice',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
99
    'roi_align',
X
Xin Pan 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
113
    'margin_rank_loss',
X
Xin Pan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
W
whs 已提交
157
    'affine_grid',
S
sneaxiy 已提交
158
    'sequence_reverse',
159
    'affine_channel',
M
minqiyang 已提交
160
    'hash',
D
dengkaipeng 已提交
161
    'grid_sampler',
G
gmcather 已提交
162 163
    'log_loss',
    'add_position_encoding',
Y
Yu Yang 已提交
164 165 166 167 168 169 170 171 172
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
173
       is_test=False,
174
       name=None):
Y
Yu Yang 已提交
175
    """
176
    **Fully Connected Layer**
Y
Yu Yang 已提交
177

178 179 180 181 182 183 184 185
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
186
    to the output as well.
C
caoying03 已提交
187

C
caoying03 已提交
188
    This process can be formulated as follows:
189 190 191

    .. math::

192
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
193 194 195

    In the above equation:

C
caoying03 已提交
196 197 198 199
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
200
    * :math:`Act`: The activation function.
C
caoying03 已提交
201
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
202 203

    Args:
R
ranqiu 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
219 220
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
221
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
222
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
223
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
224

225
    Returns:
F
fengjiayi 已提交
226
        Variable: The transformation result.
227 228

    Raises:
C
caoying03 已提交
229
        ValueError: If rank of the input tensor is less than 2.
230 231 232 233

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
234
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
235
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
236
    """
C
caoying03 已提交
237

C
caoying03 已提交
238
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
239 240 241 242

    dtype = helper.input_dtype()

    mul_results = []
243 244
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
245 246 247
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
248

Y
Yu Yang 已提交
249
        w = helper.create_parameter(
250
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
251
        tmp = helper.create_variable_for_type_inference(dtype)
252
        helper.append_op(
253 254 255
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
256
            outputs={"Out": tmp},
M
mozga-intel 已提交
257 258
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
259 260 261 262
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
263
    else:
X
Xin Pan 已提交
264
        pre_bias = helper.create_variable_for_type_inference(dtype)
265
        helper.append_op(
266 267 268
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
269
            attrs={"use_mkldnn": False})
270 271 272 273
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
274 275


276 277 278
def embedding(input,
              size,
              is_sparse=False,
279
              is_distributed=False,
280 281 282
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
283
    """
284 285
    **Embedding Layer**

286
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
287 288
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
289 290 291

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
292 293

    Args:
294 295 296 297 298
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
299
        is_distributed(bool): Whether to run lookup table from remote parameter server.
300 301
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
302
            with zeros whenever lookup encounters it in :attr:`input`. If
303
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
304 305
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
306
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
307

308 309 310
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
311

312 313
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
314

C
chengduoZH 已提交
315
          dict_size = len(dataset.ids)
316
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
317
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
318 319 320 321 322
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
323
    tmp = helper.create_variable_for_type_inference(dtype)
324 325
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
326 327 328 329 330
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
331 332 333 334 335
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
336 337 338
    return tmp


Y
yi.wu 已提交
339
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
340 341
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
342 343
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
344 345 346 347 348 349 350
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
351 352
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
353
    """
Y
yi.wu 已提交
354
    ${comment}
Y
Yibing Liu 已提交
355 356

    Args:
Y
yi.wu 已提交
357 358
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
359 360 361 362 363 364
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
365
        param_attr(ParamAttr|None): The parameter attribute for the learnable
366
                               hidden-hidden weights.
Y
Yibing Liu 已提交
367 368 369

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
370 371
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduo 已提交
372 373 374 375 376

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
377
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
378 379 380
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
381

382
                              1. `use_peepholes = False`
Y
yi.wu 已提交
383 384
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
385
                              2. `use_peepholes = True`
Y
yi.wu 已提交
386
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
387
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
388
                                 - The shape is (1 x 7D).
C
chengduo 已提交
389 390 391 392 393

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
394 395 396 397 398 399 400 401
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
402 403

    Returns:
Y
Yibing Liu 已提交
404 405
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
406

Y
Yibing Liu 已提交
407
    Examples:
Y
Yibing Liu 已提交
408 409
        .. code-block:: python

Y
Yibing Liu 已提交
410 411
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduo 已提交
412
                                           bias_attr=False)
Y
Yibing Liu 已提交
413 414
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
415
    """
C
chengduo 已提交
416
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
417
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
418
    size = size // 4
Y
Yu Yang 已提交
419 420 421 422 423 424 425 426
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
427 428 429 430
    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yancey 已提交
431 432 433 434 435 436 437 438 439 440
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
441 442 443

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
444
        inputs=inputs,
Y
Yu Yang 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
461 462 463 464 465 466 467 468 469 470 471
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
472 473
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
474 475 476
    """
    **Dynamic LSTMP Layer**

477 478 479 480 481 482
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
483 484 485 486 487

    The formula is as follows:

    .. math::

488
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
489

490
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
491

492
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
493

494
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
495

496
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
497

498
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
499

500
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
501

Y
Yibing Liu 已提交
502 503 504 505 506 507
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
508
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
509
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
510
          bias vector).
Y
Yibing Liu 已提交
511 512 513
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
514
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
515
    * :math:`h`: The hidden state.
516
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
517 518
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
519
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
520
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
521
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
522 523
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
524 525 526 527

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
528

Y
Yibing Liu 已提交
529 530 531 532 533 534 535 536 537 538 539 540
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
541
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
542 543
                               hidden-hidden weight and projection weight.

544 545
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
546 547
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
548 549
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
550
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
551 552 553 554 555

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
556
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
557 558 559 560 561 562
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
563
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
564 565 566
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
567
                                - The shape is (1 x 7D).
C
chengduo 已提交
568 569 570 571 572

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
573 574 575 576 577 578 579 580 581
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
582
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
583 584
                              default "tanh".
        proj_activation(str): The activation for projection output.
585
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
586 587
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
588 589
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
590 591

    Returns:
592 593 594 595
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
596 597

    Examples:
598

Y
Yibing Liu 已提交
599 600
        .. code-block:: python

601 602 603 604
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
605
            hidden_dim, proj_dim = 512, 256
606
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
607
                                     act=None, bias_attr=None)
608 609 610
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
611 612 613 614
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
615
    """
616

C
chengduo 已提交
617
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
618
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
619
    size = size // 4
Y
Yibing Liu 已提交
620 621 622 623 624 625 626 627 628 629
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
630 631 632 633 634 635
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
664 665 666 667 668 669 670 671 672
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
673
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
674

675
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
676
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
677

G
guosheng 已提交
678 679 680 681 682 683 684 685 686
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
687

G
guosheng 已提交
688
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
689

G
guosheng 已提交
690
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
691 692
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
693 694 695 696
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
697
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
698 699

    Args:
700 701
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
702
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
703
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
704 705
            is the hidden size.
        size(int): The dimension of the gru cell.
706
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
707 708
            hidden-hidden weight matrix. Note:

709
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
710
              :math:`D` is the hidden size.
711
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
712
              The first part are weights of the update gate and reset gate with
713
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
714
              candidate hidden state with shape :math:`(D \\times D)`.
715 716 717 718 719 720 721 722 723 724 725 726

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, dynamic_gru will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
727
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
728 729 730
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
731
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
732
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
733 734 735 736
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
737 738

    Returns:
G
guosheng 已提交
739
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
740
            and sequence length is the same with the input.
741

G
guosheng 已提交
742
    Examples:
743

G
guosheng 已提交
744 745
        .. code-block:: python

746 747 748 749
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
750
            hidden_dim = 512
751
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
752 753 754 755 756 757 758 759 760 761
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
762
    batch_size = input.shape[0]
G
guosheng 已提交
763
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
764
    if h_0:
G
guosheng 已提交
765
        assert h_0.shape == (
Y
Yancey 已提交
766 767 768
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
769

X
Xin Pan 已提交
770 771 772 773
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
792 793 794
def gru_unit(input,
             hidden,
             size,
795 796
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
797
             activation='tanh',
798
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
799
    """
800
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
801

802 803
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
804

805
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
806

807
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
808

809
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
810 811

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
812 813 814
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
815 816
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

817 818
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
819 820 821
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
822 823 824

    Args:
        input (Variable): The fc transformed input value of current step.
825
        hidden (Variable): The hidden value of gru unit from previous step.
826
        size (integer): The input dimension value.
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, gru_unit will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
848 849 850 851
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
852

853 854 855 856 857 858
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
859

860
             # assuming we have x_t_data and prev_hidden of size=10
861
             x_t = fluid.layers.fc(input=x_t_data, size=30)
862 863
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
864 865 866 867 868 869 870 871 872 873 874 875

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
876
    size = size // 3
Y
Yu Yang 已提交
877 878

    # create weight
879 880
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
881

X
Xin Pan 已提交
882 883 884
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
885
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
886
    # create bias
887
    if helper.bias_attr:
Y
Yu Yang 已提交
888 889 890
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
891
        inputs['Bias'] = bias
Y
Yu Yang 已提交
892 893 894

    helper.append_op(
        type='gru_unit',
895
        inputs=inputs,
Y
Yu Yang 已提交
896 897 898 899 900 901
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
902 903
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
904 905 906 907 908
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
909
@templatedoc()
910
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
911 912 913 914 915 916 917
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
918
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
919 920 921 922
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
923 924 925
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
926 927

    """
Y
Yu Yang 已提交
928 929 930 931 932 933
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
934 935 936 937 938 939 940 941
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
957
@templatedoc()
958
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
959 960 961 962 963
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
964

Y
yuyang18 已提交
965
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
966

Y
yuyang18 已提交
967 968 969
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
970
        Variable: ${viterbi_path_comment}
971

Y
yi.wu 已提交
972 973 974 975 976
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
977
    """
Y
Yu Yang 已提交
978 979
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
X
Xin Pan 已提交
980 981
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
982 983 984 985 986 987 988 989 990 991
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
992
@templatedoc()
F
fengjiayi 已提交
993
def cos_sim(X, Y):
Y
Yu Yang 已提交
994
    """
Y
yi.wu 已提交
995 996 997
    ${comment}

    Args:
998 999
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1000

Y
yi.wu 已提交
1001
    Returns:
1002
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1003
    """
F
fengjiayi 已提交
1004
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1005 1006 1007
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1018 1019 1020 1021 1022
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1023
            dropout_implementation="downgrade_in_infer"):
1024 1025 1026 1027 1028
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1029
    training. The dropout operator randomly sets (according to the given dropout
1030 1031 1032 1033
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1034 1035
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1036 1037 1038 1039 1040 1041 1042
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                           dropout op can be removed from the program. 
                                           the program will be efficient
                                        
P
phlrain 已提交
1057

1058 1059

    Returns:
1060
        Variable: A tensor variable is the shape with `x`.
1061 1062

    Examples:
1063

1064 1065
        .. code-block:: python

1066 1067
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1068 1069
    """

F
fengjiayi 已提交
1070
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1071 1072 1073
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1074 1075 1076 1077

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1078 1079 1080 1081 1082
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1083 1084 1085 1086
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1087 1088
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1089
        })
1090 1091 1092
    return out


1093
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1094
    """
Y
Yibing Liu 已提交
1095 1096
    **Cross Entropy Layer**

1097 1098 1099
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1100 1101

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1102
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1103

Y
Yibing Liu 已提交
1104
        .. math::
Y
yangyaming 已提交
1105

Y
Yibing Liu 已提交
1106 1107 1108
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1109 1110
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1111 1112 1113 1114 1115

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1116
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1117 1118 1119
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1120 1121
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1122
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1123

Y
Yibing Liu 已提交
1124
    Args:
Y
yangyaming 已提交
1125
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1126 1127 1128 1129
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1130
        label (Variable|list): the ground truth which is a 2-D tensor. When
1131 1132 1133 1134
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1135
        soft_label (bool): a flag indicating whether to
1136
                                           interpretate the given labels as soft
1137
                                           labels. Default: `False`.
M
minqiyang 已提交
1138 1139
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1140
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1141 1142 1143 1144 1145

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1146 1147 1148 1149 1150
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1151 1152 1153 1154 1155 1156

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1157
    """
F
fengjiayi 已提交
1158
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1159
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1160 1161 1162 1163 1164
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1165 1166
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1167 1168 1169
    return out


F
fengjiayi 已提交
1170
def square_error_cost(input, label):
Y
Yu Yang 已提交
1171
    """
1172 1173
    **Square error cost layer**

1174 1175
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1176

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1190 1191
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1192 1193

    Returns:
G
guosheng 已提交
1194
        Variable: The tensor variable storing the element-wise squared error \
1195
                  difference of input and label.
1196 1197 1198 1199 1200 1201 1202 1203

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1204
    """
F
fengjiayi 已提交
1205
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1206
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1207 1208 1209 1210 1211 1212
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1213
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1214
    helper.append_op(
F
fengjiayi 已提交
1215 1216
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1217 1218 1219
    return square_out


Y
yi.wu 已提交
1220
@templatedoc()
Y
Yu Yang 已提交
1221 1222 1223 1224
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1225
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1226
    """
Y
yi.wu 已提交
1227
    **Chunk Evaluator**
Y
yi.wu 已提交
1228

Y
yangyaming 已提交
1229
    This function computes and outputs the precision, recall and
1230
    F1-score of chunk detection.
Y
yi.wu 已提交
1231

Y
yi.wu 已提交
1232 1233 1234 1235 1236 1237 1238 1239
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1240

Y
yi.wu 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1266

Y
yi.wu 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1291
    Args:
1292 1293 1294 1295 1296
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1297

Y
yi.wu 已提交
1298
    Returns:
Y
update  
yi.wu 已提交
1299 1300 1301
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1302

Y
yi.wu 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1315
    """
F
fengjiayi 已提交
1316
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1317 1318

    # prepare output
X
Xin Pan 已提交
1319 1320 1321 1322 1323 1324 1325
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1326 1327 1328 1329 1330 1331 1332 1333

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1334 1335 1336 1337
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1338 1339 1340
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1341 1342
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1343
        })
1344 1345
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1346 1347


1348
@templatedoc()
Y
Yu Yang 已提交
1349 1350 1351 1352 1353 1354 1355
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1356 1357
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1358 1359 1360 1361
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1362 1363 1364 1365 1366 1367 1368

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1382

1383 1384
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1385 1386 1387 1388 1389 1390 1391
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1392
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1403
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1404 1405 1406 1407 1408 1409
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1410
def sequence_softmax(input, use_cudnn=False, name=None):
1411 1412 1413
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1414
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1431 1432 1433
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1434

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1446 1447
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1448
    softmax_out = helper.create_variable_for_type_inference(dtype)
1449 1450 1451 1452 1453 1454 1455 1456
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1457
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1458
    """
1459
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1460
    has the same shape as the input.
Q
qiaolongfei 已提交
1461

1462 1463 1464 1465 1466 1467
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1468
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1469 1470 1471 1472 1473 1474 1475

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1476
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1477 1478 1479 1480 1481 1482 1483 1484

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1485 1486 1487
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1500 1501
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1502
    softmax_out = helper.create_variable_for_type_inference(dtype)
1503 1504 1505 1506 1507 1508 1509 1510
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1511 1512 1513
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1514 1515
           stride=1,
           padding=0,
1516
           dilation=1,
Y
Yu Yang 已提交
1517 1518 1519
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1520
           use_cudnn=True,
1521 1522
           act=None,
           name=None):
Y
Yu Yang 已提交
1523
    """
C
chengduoZH 已提交
1524
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1525 1526
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1527
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1528 1529 1530 1531 1532 1533 1534
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1535 1536 1537
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1538

1539
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1540

C
chengduoZH 已提交
1541 1542
    .. math::

C
refine  
chengduoZH 已提交
1543
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1544

T
tensor-tang 已提交
1545
    Where:
C
chengduoZH 已提交
1546

1547 1548 1549 1550 1551
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1552
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1553 1554 1555

    Example:

1556 1557
        - Input:

W
weixing02 已提交
1558
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1559

W
weixing02 已提交
1560
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1561

1562
        - Output:
T
tensor-tang 已提交
1563

W
weixing02 已提交
1564
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1565

C
chengduoZH 已提交
1566
        Where
1567 1568

        .. math::
C
chengduoZH 已提交
1569

W
weixing02 已提交
1570 1571
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1572 1573

    Args:
1574
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1575
        num_filters(int): The number of filter. It is as same as the output
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1604 1605
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1606 1607
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1608
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1609
            will be named automatically. Default: None
C
chengduoZH 已提交
1610 1611

    Returns:
G
guosheng 已提交
1612
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1613 1614
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1615
    Raises:
1616 1617
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1618

C
chengduoZH 已提交
1619 1620 1621
    Examples:
        .. code-block:: python

1622 1623
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1624 1625 1626
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1627
    assert param_attr is not False, "param_attr should not be False here."
1628
    l_type = 'conv2d'
X
xzl 已提交
1629 1630
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1631
        l_type = 'depthwise_conv2d'
1632 1633 1634 1635

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1636 1637 1638 1639 1640
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1641
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1642

C
chengduoZH 已提交
1643 1644 1645
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1646
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1647

C
chengduoZH 已提交
1648 1649
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1650 1651

    input_shape = input.shape
M
minqiyang 已提交
1652
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1653 1654

    def _get_default_param_initializer():
C
chengduo 已提交
1655 1656
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1657 1658 1659 1660 1661 1662 1663 1664
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1665
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1666 1667

    helper.append_op(
1668
        type=l_type,
Y
Yu Yang 已提交
1669 1670 1671 1672 1673
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1674 1675 1676
        attrs={
            'strides': stride,
            'paddings': padding,
1677
            'dilations': dilation,
C
chengduoZH 已提交
1678
            'groups': groups,
1679
            'use_cudnn': use_cudnn,
1680
            'use_mkldnn': False
C
chengduoZH 已提交
1681
        })
Y
Yu Yang 已提交
1682 1683 1684 1685 1686 1687

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1705 1706 1707 1708 1709 1710
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1720 1721
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1722 1723 1724
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1725
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1751
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1752 1753
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1754
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1755 1756
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1757
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1758 1759
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1760
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1761 1762 1763 1764 1765 1766
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1777 1778
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1779 1780
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1781
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1782
            will be named automatically. Default: None.
C
chengduoZH 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1795 1796
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1797 1798 1799
    """

    l_type = 'conv3d'
C
chengduo 已提交
1800
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1811
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1825 1826 1827
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1828 1829 1830 1831 1832 1833 1834 1835
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1836
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1851
            'use_mkldnn': False
C
chengduoZH 已提交
1852 1853
        })

1854
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1855 1856 1857 1858

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1859
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1860
    """
Y
yangyaming 已提交
1861 1862 1863
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1875
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1876 1877 1878 1879 1880
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1881
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1882 1883 1884 1885 1886 1887 1888

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1889 1890
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1891

L
Luo Tao 已提交
1892 1893
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1894
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1895
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1896
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1897 1898 1899 1900 1901 1902 1903

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1904

Y
yangyaming 已提交
1905
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1906 1907 1908 1909 1910
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1911 1912
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1913
    """
F
fengjiayi 已提交
1914
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1915
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1916 1917
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1918 1919 1920 1921 1922 1923

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1924 1925
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1926

Y
yangyaming 已提交
1927 1928 1929 1930 1931
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1932 1933 1934
    return pool_out


C
add doc  
chengduoZH 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1954
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1955 1956 1957 1958 1959
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1960
def sequence_first_step(input):
L
Luo Tao 已提交
1961
    """
L
Luo Tao 已提交
1962
    This function gets the first step of sequence.
L
Luo Tao 已提交
1963 1964 1965 1966

    .. code-block:: text

       x is a 1-level LoDTensor:
1967
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1968 1969 1970 1971 1972
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1973
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1974
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1975

L
Luo Tao 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1985

Y
yangyaming 已提交
1986
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1987 1988 1989
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1990 1991 1992
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1993
def sequence_last_step(input):
L
Luo Tao 已提交
1994
    """
L
Luo Tao 已提交
1995
    This function gets the last step of sequence.
L
Luo Tao 已提交
1996 1997 1998 1999

    .. code-block:: text

       x is a 1-level LoDTensor:
2000
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2001 2002 2003 2004 2005
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2006
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2007
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2008

L
Luo Tao 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2018

Y
yangyaming 已提交
2019
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2020 2021 2022
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2023 2024 2025
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2026 2027 2028 2029
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2030
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2031 2032 2033 2034 2035
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2036

Y
Yibing Liu 已提交
2037 2038
	- Case:

2039
            Given the input Variable **input**:
2040

2041 2042 2043
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2044

2045
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2046

2047
            the output Variable will be
2048

2049 2050 2051
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2052 2053

    NOTE: The first dimension size of **input**, **offset** and **length**
2054
          should be equal. The **offset** should start from 0.
2055

Y
Yibing Liu 已提交
2056
    Args:
2057
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2058
                         sequences.
Y
Yibing Liu 已提交
2059 2060 2061 2062 2063 2064
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2065
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2076
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2077 2078 2079 2080
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2081
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2096
@templatedoc()
Y
Yu Yang 已提交
2097
def pool2d(input,
C
chengduoZH 已提交
2098 2099
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2100 2101
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2102
           global_pooling=False,
C
chengduoZH 已提交
2103
           use_cudnn=True,
2104
           ceil_mode=False,
2105 2106
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2107
    """
F
fengjiayi 已提交
2108
    ${comment}
2109 2110

    Args:
2111 2112 2113
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2114
                          feature, and W is the width of the feature.
2115
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2116
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2117
        pool_type: ${pooling_type_comment}
2118 2119
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
2120 2121 2122
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2123
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2124
                        layer will be named automatically.
2125 2126
        exclusive (bool): Whether to exclude padding points in average pooling 
                          mode, default is true
F
fengjiayi 已提交
2127

2128
    Returns:
F
fengjiayi 已提交
2129
        Variable: The pooling result.
F
fengjiayi 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2143 2144 2145 2146
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2147
                            global_pooling=False)
Y
Yu Yang 已提交
2148 2149 2150 2151 2152
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2153

C
chengduoZH 已提交
2154 2155 2156 2157 2158
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2159 2160 2161 2162
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2163 2164
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2165

C
Add doc  
chengduoZH 已提交
2166
    l_type = 'pool2d'
2167 2168

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2169
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2170
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2171 2172

    helper.append_op(
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2184 2185
            "use_mkldnn": False,
            "exclusive": exclusive,
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2199 2200
           name=None,
           exclusive=True):
2201 2202
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2203
    pooling configurations mentioned in input parameters.
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2216 2217
        exclusive (bool): Whether to exclude padding points in average pooling 
                          mode, default is true
2218

2219
    Returns:
2220
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2221 2222 2223 2224 2225
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2226

C
chengduoZH 已提交
2227 2228 2229 2230 2231
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2232 2233 2234
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2235

C
chengduoZH 已提交
2236 2237
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2238

2239 2240
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2241
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2242
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2243 2244

    helper.append_op(
2245
        type=l_type,
Y
Yu Yang 已提交
2246 2247 2248 2249 2250 2251 2252
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2253
            "paddings": pool_padding,
2254
            "use_cudnn": use_cudnn,
2255
            "ceil_mode": ceil_mode,
2256 2257
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2270
               data_layout='NCHW',
Y
Yang Yang 已提交
2271
               in_place=False,
2272 2273
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2274
               moving_variance_name=None,
2275 2276
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2277
    """
Q
qiaolongfei 已提交
2278 2279 2280 2281
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2282

Q
qiaolongfei 已提交
2283
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2284

Q
qiaolongfei 已提交
2285 2286
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2287 2288 2289
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2302 2303

    Args:
Q
qiaolongfei 已提交
2304
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2305 2306 2307 2308
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2309 2310 2311 2312 2313 2314 2315 2316
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2317
        data_layout(string, default NCHW): NCHW|NHWC
2318
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2319 2320 2321 2322
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2323
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2324
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2325 2326

    Returns:
Q
qiaolongfei 已提交
2327
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2328 2329 2330 2331 2332 2333 2334

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2335
    """
C
chengduo 已提交
2336
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2359
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2360

2361 2362
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2363 2364 2365
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2366
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2367
        shape=param_shape,
2368 2369 2370 2371 2372 2373 2374
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2375
            trainable=False,
W
wanghaoshuang 已提交
2376
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2377
        shape=param_shape,
2378 2379
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2380 2381 2382 2383 2384 2385

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2386 2387 2388 2389
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2390

X
Xin Pan 已提交
2391 2392
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2410 2411 2412 2413
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2414
            "use_mkldnn": False,
2415
            "fuse_with_relu": fuse_with_relu
2416
        })
Y
Yu Yang 已提交
2417 2418 2419 2420

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2421
@templatedoc()
G
guosheng 已提交
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2432
    ${comment}
G
guosheng 已提交
2433 2434 2435

    The formula is as follows:

Y
yuyang18 已提交
2436
    ..  math::
G
guosheng 已提交
2437 2438 2439 2440 2441 2442 2443

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2444 2445 2446 2447 2448 2449 2450 2451
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2452

G
guosheng 已提交
2453 2454
    Args:
        input(Variable): The input tensor variable.
2455
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2456
            normalization. Default True.
2457
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2458 2459
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2460
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2461
            Default 1.
2462
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2463
            division by zero. Default 1e-05.
G
guosheng 已提交
2464
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2465 2466
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2467 2468
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2469
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2470 2471
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2472
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2473
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2474
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2475 2476 2477
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2478 2479

    Returns:
Y
yuyang18 已提交
2480
        ${y_comment}
G
guosheng 已提交
2481 2482 2483

    Examples:

Y
yuyang18 已提交
2484 2485 2486
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2502
    if shift:
G
guosheng 已提交
2503 2504 2505 2506 2507 2508
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2509 2510 2511 2512 2513
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2529 2530 2531 2532
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2533 2534 2535
                     padding=0,
                     stride=1,
                     dilation=1,
2536
                     groups=None,
C
caoying03 已提交
2537
                     param_attr=None,
2538
                     bias_attr=None,
C
chengduoZH 已提交
2539
                     use_cudnn=True,
2540
                     act=None,
C
caoying03 已提交
2541
                     name=None):
Y
Yu Yang 已提交
2542
    """
2543 2544 2545 2546 2547 2548 2549 2550
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2551 2552
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2553 2554 2555
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2556 2557 2558 2559 2560

    For each input :math:`X`, the equation is:

    .. math::

2561
        Out = \sigma (W \\ast X + b)
2562

2563
    Where:
2564 2565 2566

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2567 2568 2569 2570
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2571

2572 2573 2574 2575
    Example:

        - Input:

2576
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2577

2578
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2579 2580 2581

        - Output:

2582
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2583 2584

        Where
Y
Yu Yang 已提交
2585

2586 2587
        .. math::

2588 2589 2590 2591
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2592 2593

    Args:
2594 2595 2596 2597
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2598 2599 2600 2601
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2630
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2631 2632 2633
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2634
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2635
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2636 2637

    Returns:
2638
        Variable: The tensor variable storing the convolution transpose result.
2639 2640

    Raises:
2641 2642
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2643 2644 2645 2646

    Examples:
       .. code-block:: python

2647 2648
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2649
    """
C
chengduo 已提交
2650
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2651 2652 2653 2654 2655 2656 2657 2658
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2659 2660 2661
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2662 2663 2664
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2665

C
chengduoZH 已提交
2666 2667
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2668

Y
Yu Yang 已提交
2669 2670 2671 2672 2673
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2674

Y
Yu Yang 已提交
2675 2676
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2677

C
chengduoZH 已提交
2678
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2679
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2680
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2681
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2682
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2683 2684 2685
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2686

2687 2688 2689 2690 2691 2692 2693
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2694
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2695
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2696

Y
Yu Yang 已提交
2697 2698 2699
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2700
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2701
    helper.append_op(
2702
        type=op_type,
Y
Yu Yang 已提交
2703 2704
        inputs={'Input': [input],
                'Filter': [img_filter]},
2705
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2706
        attrs={
2707
            'output_size': output_size,
2708 2709 2710 2711 2712
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2713 2714
        })

2715 2716 2717
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2718 2719


2720
def conv3d_transpose(input,
Y
Yu Yang 已提交
2721 2722 2723
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2724 2725 2726
                     padding=0,
                     stride=1,
                     dilation=1,
2727
                     groups=None,
C
caoying03 已提交
2728
                     param_attr=None,
2729
                     bias_attr=None,
C
chengduoZH 已提交
2730
                     use_cudnn=True,
2731
                     act=None,
C
caoying03 已提交
2732
                     name=None):
Y
Yu Yang 已提交
2733
    """
2734
    **Convlution3D transpose layer**
2735

2736
    The convolution3D transpose layer calculates the output based on the input,
2737
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2738 2739 2740 2741 2742 2743
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2744 2745 2746
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2747 2748 2749 2750 2751

    For each input :math:`X`, the equation is:

    .. math::

2752
        Out = \sigma (W \\ast X + b)
2753 2754 2755

    In the above equation:

2756 2757
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2758 2759 2760 2761
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2762

2763 2764 2765 2766
    Example:

        - Input:

2767
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2768

2769
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2770 2771 2772

        - Output:

2773
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2774 2775

        Where
Y
Yu Yang 已提交
2776

2777 2778
        .. math::

2779 2780 2781
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2782 2783

    Args:
2784
        input(Variable): The input image with [N, C, D, H, W] format.
2785 2786 2787
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2788
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2789 2790
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2791
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2792 2793 2794
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2795 2796
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2797
        stride(int|tuple): The stride size. If stride is a tuple, it must
2798 2799
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2800
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2801 2802 2803
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2804 2805 2806 2807 2808
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2818 2819
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2820 2821
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2822 2823
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2824 2825

    Returns:
2826
        Variable: The tensor variable storing the convolution transpose result.
2827 2828

    Raises:
2829 2830
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2831 2832 2833 2834

    Examples:
       .. code-block:: python

2835 2836
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2837
    """
C
chengduo 已提交
2838
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2839 2840
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2841
    if not isinstance(input, Variable):
2842
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2843 2844
    input_channel = input.shape[1]

2845 2846 2847
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2848

C
chengduoZH 已提交
2849 2850 2851
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2852 2853 2854 2855 2856 2857
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2858 2859 2860
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2861

2862
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2863
                         padding[0] - 1) // dilation[0] + 1
2864
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2865
                         padding[1] - 1) // dilation[1] + 1
2866
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2867
                         padding[2] - 1) // dilation[2] + 1
2868
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2869
    else:
2870 2871
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2872

2873
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2874
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2875 2876 2877
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2878
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2879
    helper.append_op(
2880
        type=l_type,
Y
Yu Yang 已提交
2881 2882
        inputs={'Input': [input],
                'Filter': [img_filter]},
2883
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2884 2885 2886 2887
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2888
            'groups': groups,
C
chengduoZH 已提交
2889 2890
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2891

2892 2893
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2894
    return out
Y
yangyaming 已提交
2895 2896


Y
yangyaming 已提交
2897
def sequence_expand(x, y, ref_level=-1, name=None):
2898
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2899 2900 2901 2902
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2903 2904 2905 2906 2907

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2908
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2909
                x.data = [[a], [b], [c], [d]]
2910 2911 2912
                x.dims = [4, 1]

            y is a LoDTensor:
2913 2914
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2915

Y
yangyaming 已提交
2916
            ref_level: 0
2917

Y
yangyaming 已提交
2918
            then output is a 1-level LoDTensor:
2919
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2920
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2921 2922 2923 2924
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2925
                x.data = [[a], [b], [c]]
2926 2927 2928
                x.dims = [3, 1]

            y is a LoDTensor:
2929
                y.lod = [[2, 0, 3]]
2930

Y
yangyaming 已提交
2931
            ref_level: -1
2932

Y
yangyaming 已提交
2933 2934 2935
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2936 2937 2938
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2939 2940
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2941
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2942
                        will be named automatically.
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2953
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2954
    """
Y
yangyaming 已提交
2955
    helper = LayerHelper('sequence_expand', input=x, **locals())
2956
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2957
    tmp = helper.create_variable_for_type_inference(dtype)
2958
    helper.append_op(
Y
yangyaming 已提交
2959 2960 2961 2962 2963
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2964
    return tmp
2965 2966


C
chengduo 已提交
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3023
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3024 3025 3026 3027 3028 3029 3030 3031
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3032
@templatedoc()
3033
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3034 3035 3036 3037 3038
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3039 3040 3041
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3042
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3043 3044 3045 3046
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3047 3048 3049
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3050

F
fengjiayi 已提交
3051
    Returns:
M
minqiyang 已提交
3052
        Variable: The padded sequence batch and the original lengths before
3053
                  padding. All sequences has the same length.
M
minqiyang 已提交
3054

F
fengjiayi 已提交
3055 3056 3057 3058 3059 3060 3061
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3062 3063
            pad_value = fluid.layers.assign(
                input=numpy.array([0], dtype=numpy.float32))
F
fengjiayi 已提交
3064 3065 3066 3067 3068
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3069 3070
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3071 3072 3073 3074

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3075 3076 3077 3078 3079 3080
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3081 3082
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3083
        attrs={'padded_length': maxlen})
3084
    return out, length
F
fengjiayi 已提交
3085 3086


3087
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3088
    """
3089
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3090

3091 3092
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3093 3094 3095 3096 3097 3098 3099 3100 3101
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3102 3103 3104
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3105
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3106 3107 3108 3109 3110 3111

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3112
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3113 3114 3115 3116 3117 3118

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3119 3120
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3135
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3147 3148 3149 3150 3151 3152 3153 3154 3155
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3156 3157
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3158 3159 3160

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3161 3162

    This layer does the search in beams for one time step. Specifically, it
3163 3164 3165 3166 3167 3168
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3169

3170 3171 3172 3173 3174 3175 3176 3177
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3178

3179
    Args:
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3205

3206
    Returns:
3207 3208
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3209 3210 3211 3212

    Examples:
        .. code-block:: python

3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3230 3231 3232 3233
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3234 3235 3236
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3237 3238 3239 3240 3241

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3242
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3260 3261 3262 3263 3264 3265 3266
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3267

3268 3269 3270 3271 3272 3273 3274 3275 3276
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3277

3278 3279 3280 3281 3282 3283
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3284

3285 3286 3287 3288 3289 3290 3291 3292
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3293 3294
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3310 3311 3312 3313
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3314
              param_attr=None,
C
caoying03 已提交
3315 3316
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3317 3318 3319 3320
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3321
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3322

3323
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3324

3325
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3326

3327
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3328 3329 3330

            h_t & = o_t tanh(c_t)

3331 3332 3333 3334 3335 3336
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3337 3338 3339

        .. math::

3340
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3341 3342 3343 3344 3345 3346 3347 3348

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3349
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3350 3351

    Args:
Y
yangyaming 已提交
3352 3353 3354 3355 3356 3357
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3358
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3371 3372
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3373 3374

    Returns:
Y
yangyaming 已提交
3375
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3376 3377

    Raises:
3378 3379 3380 3381
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3382 3383 3384 3385 3386 3387

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3388
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3389
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3390
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3407
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3408 3409 3410 3411
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3412 3413
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3414 3415 3416
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3417
    size = cell_t_prev.shape[1]
3418
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3419 3420
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3421
                param_attr=param_attr,
3422
                bias_attr=bias_attr)
Y
yangyaming 已提交
3423
    dtype = x_t.dtype
X
Xin Pan 已提交
3424 3425
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3426 3427 3428 3429 3430 3431 3432 3433 3434

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3435
    return h, c
G
guosheng 已提交
3436 3437


C
caoying03 已提交
3438
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3439
    """
Y
yangyaming 已提交
3440
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3441 3442 3443

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3444
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3445 3446
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3447 3448
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3449
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3450
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3451
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3452 3453
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3454 3455 3456

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3457

G
guosheng 已提交
3458 3459 3460 3461 3462 3463
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3464
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3465 3466 3467 3468
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3469 3470 3471 3472

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3473
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3474 3475 3476
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3477 3478
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3479
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3480 3481
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3482 3483 3484 3485 3486
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3487
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3488 3489 3490 3491
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3492 3493


C
caoying03 已提交
3494
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3495
    """
Y
Yibing Liu 已提交
3496
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3497 3498 3499

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3500 3501 3502
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3503
            must be in the range :math:`[-rank(input), rank(input))`. If
3504
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3505
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3506 3507
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3508
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3509
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3510
                       will be named automatically.
G
guosheng 已提交
3511 3512

    Returns:
Y
Yibing Liu 已提交
3513
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3514

G
guosheng 已提交
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3525 3526
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3527 3528 3529 3530 3531 3532 3533

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3534 3535
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3536
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3537 3538
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3539 3540 3541 3542 3543
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3544
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3545 3546 3547 3548
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3549 3550


C
caoying03 已提交
3551
def reduce_max(input, dim=None, keep_dim=False, name=None):
3552
    """
Y
yangyaming 已提交
3553
    Computes the maximum of tensor elements over the given dimension.
3554 3555 3556

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3557
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3558 3559 3560
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3561
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3562 3563
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3564
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3565 3566
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3567 3568 3569

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3570

3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3582 3583 3584 3585 3586 3587 3588

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3589 3590
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3591
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3592 3593
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3594 3595 3596 3597 3598
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3599
            'dim': dim if dim != None else [0],
3600 3601 3602 3603 3604 3605
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3606
def reduce_min(input, dim=None, keep_dim=False, name=None):
3607
    """
Y
yangyaming 已提交
3608
    Computes the minimum of tensor elements over the given dimension.
3609 3610 3611

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3612
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3613 3614 3615
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3616
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3617 3618
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3619
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3620 3621
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3622 3623 3624

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3625

3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3637 3638 3639 3640 3641 3642 3643

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3644 3645
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3646
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3647 3648
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3649 3650 3651 3652 3653
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3654
            'dim': dim if dim != None else [0],
3655 3656 3657 3658
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3659 3660


3661 3662 3663 3664 3665 3666
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3667
        dim (list|int|None): The dimensions along which the product is performed. If
3668 3669
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3670 3671
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3672 3673 3674
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3675
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3676
            layer will be named automatically.
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3691
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3692
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3693 3694 3695 3696 3697 3698 3699

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3700 3701
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3702
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3703 3704
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3705 3706 3707 3708 3709
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3710
            'dim': dim if dim != None else [0],
3711 3712 3713 3714 3715 3716
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3717
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3718
    """
C
caoying03 已提交
3719
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3720 3721 3722

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3723 3724 3725 3726 3727
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3728
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3729
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3730
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3731 3732
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3733 3734

    Returns:
D
dzhwinter 已提交
3735
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3736 3737 3738 3739 3740 3741 3742 3743 3744

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3745 3746
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3762
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3776 3777 3778 3779 3780 3781 3782 3783 3784


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3785
    .. math::
3786 3787

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3788 3789 3790 3791 3792

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3793
        x(Variable|list): The input tensor to l2_normalize layer.
3794
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3795 3796
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3797
        epsilon(float): The epsilon value is used to avoid division by zero, \
3798
            the defalut value is 1e-10.
3799
        name(str|None): A name for this layer(optional). If set None, the layer \
3800
            will be named automatically.
C
caoying03 已提交
3801 3802

    Returns:
3803
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3804 3805

    Examples:
3806

C
caoying03 已提交
3807 3808
        .. code-block:: python

3809 3810 3811 3812
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3813 3814
    """

F
fengjiayi 已提交
3815 3816
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3817 3818
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3819 3820
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3821
    helper.append_op(
3822 3823 3824 3825
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3826
        attrs={
3827 3828
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3829 3830
        })
    return out
3831 3832


S
sneaxiy 已提交
3833
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3834
    """
Y
ying 已提交
3835 3836 3837 3838
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3839

C
chengduoZH 已提交
3840
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3841
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3842

3843 3844 3845 3846 3847
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3848
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3849

C
chengduoZH 已提交
3850
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3851
      performs in the following way.
G
guosheng 已提交
3852

3853
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3854
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3855
        last two dimensions and a batched matrix multiply supporting broadcast
3856
        applies on the two tensors.
G
guosheng 已提交
3857

Y
ying 已提交
3858 3859
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3860
    removed after matrix multiplication.
G
guosheng 已提交
3861 3862 3863

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3864 3865 3866
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3867
        alpha (float): The scale of output. Default 1.0.
3868
        name(str|None): A name for this layer(optional). If set None, the layer
3869
            will be named automatically.
G
guosheng 已提交
3870 3871

    Returns:
3872
        Variable: The product Tensor variable.
G
guosheng 已提交
3873

G
guosheng 已提交
3874 3875 3876
    Examples:
        .. code-block:: python

3877
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3878 3879
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3880

3881 3882
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3883

3884 3885
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3886

3887 3888
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3889 3890 3891 3892

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3893 3894
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3895

Y
ying 已提交
3896
            # x: [M], y: [N]
3897
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3898
    """
Y
ying 已提交
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3911
            y_shape = y_shape + [1]
Y
ying 已提交
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3928
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3929
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3930
    helper.append_op(
3931 3932 3933 3934
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3935 3936 3937
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3938
            'alpha': float(alpha),
S
sneaxiy 已提交
3939
        })
3940
    return out
3941 3942


3943
def topk(input, k, name=None):
Q
qingqing01 已提交
3944 3945 3946 3947
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3948
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3949 3950 3951 3952 3953 3954
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3976 3977 3978
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3979
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3980
                 of input.
3981
        name(str|None): A name for this layer(optional). If set None, the layer
3982
                       will be named automatically.
F
fengjiayi 已提交
3983
                       Default: None
Q
qingqing01 已提交
3984 3985

    Returns:
3986 3987 3988
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3989
        within the last dimension of input.
Q
qingqing01 已提交
3990

F
fengjiayi 已提交
3991 3992
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3993 3994 3995 3996 3997 3998 3999

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4000 4001
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4013
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4014
    """
Y
ying 已提交
4015 4016 4017 4018 4019 4020 4021 4022 4023
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4024

Y
ying 已提交
4025
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4026

4027
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4028 4029
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4030
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4031

4032
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4033 4034
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4035

4036 4037 4038
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4039
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4040
                          the length of reference string.
4041
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4042
                                     calculating edit distance.
4043
        name (str): The name of this layer. It is optional.
4044

W
wanghaoshuang 已提交
4045
    Returns:
W
wanghaoshuang 已提交
4046
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4047 4048 4049 4050 4051

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
4052
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
4053
            cost = fluid.layers.edit_distance(input=x,label=y)
4054
    """
4055
    helper = LayerHelper("edit_distance", **locals())
4056

4057
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4058
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4059 4060
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4061 4062 4063 4064 4065

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4066
            attrs={"tokens": ignored_tokens})
4067 4068 4069 4070 4071
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4072
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4073
            attrs={"tokens": ignored_tokens})
4074 4075
        label = erased_label

4076
    # edit distance op
X
Xin Pan 已提交
4077 4078
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4079 4080 4081 4082
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4083 4084
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4085 4086
        attrs={"normalized": normalized})

4087
    return edit_distance_out, sequence_num
4088 4089 4090 4091 4092


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4093

Y
ying 已提交
4094 4095 4096 4097
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4115
        input.lod = [[4, 4]]
4116 4117 4118 4119 4120 4121 4122

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4123
        output.lod = [[2, 1]]
4124 4125 4126

    Args:

Y
ying 已提交
4127 4128 4129 4130 4131 4132 4133 4134 4135
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4136
        name (str): The name of this layer. It is optional.
4137 4138

    Returns:
4139
        Variable: CTC greedy decode result. If all the sequences in result were
4140
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4141 4142 4143 4144 4145

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4146

4147
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4148
    """
4149
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4150
    _, topk_indices = topk(input, k=1)
4151 4152

    # ctc align op
X
Xin Pan 已提交
4153
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4154 4155 4156
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4157
        outputs={"Output": [ctc_out]},
4158 4159
        attrs={"merge_repeated": True,
               "blank": blank})
4160
    return ctc_out
4161 4162


F
fengjiayi 已提交
4163
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4164
    """
4165 4166
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4167
    to compute Connectionist Temporal Classification (CTC) loss.
4168 4169
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4170 4171 4172
    input tensor.

    Args:
4173
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4174 4175 4176 4177
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4178
       label (Variable): The ground truth of variable-length sequence,
4179 4180 4181
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4182 4183
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4184 4185 4186
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4187
         follewed by a mean_op.
W
wanghaoshuang 已提交
4188 4189

    Returns:
4190 4191
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4192 4193

    Examples:
4194

W
wanghaoshuang 已提交
4195
        .. code-block:: python
4196

4197 4198 4199
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4200 4201

    """
F
fengjiayi 已提交
4202
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4203 4204
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4205 4206 4207 4208 4209 4210 4211 4212 4213
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4229 4230 4231
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4232 4233 4234 4235 4236
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4237

4238
            out.lod  = [[0, 1, 3]]
4239 4240 4241 4242

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4243 4244 4245 4246 4247 4248 4249
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4250 4251 4252

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4253 4254

    Returns:
4255

4256 4257 4258 4259 4260
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4261
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4262
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4263 4264
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4265
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4266 4267 4268 4269 4270 4271
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4272 4273


4274 4275 4276 4277
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4278 4279 4280 4281 4282 4283
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4284 4285
        num_neg_samples=None,
        name=None):
4286 4287 4288 4289 4290 4291 4292
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4293 4294
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4295
            sample is 1.0.
C
chengduo 已提交
4296 4297 4298 4299 4300 4301 4302 4303 4304
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4305
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4306 4307
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4308

4309
    Returns:
Y
Yibing Liu 已提交
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4337
    """
Y
Yang Yu 已提交
4338 4339 4340
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4341 4342

    dim = input.shape[1]
Y
Yang Yu 已提交
4343 4344 4345 4346 4347 4348
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4362 4363 4364
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4365

Y
Yang Yu 已提交
4366 4367 4368 4369 4370 4371 4372 4373 4374
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4375 4376 4377

    helper.append_op(
        type='nce',
C
chengduo 已提交
4378
        inputs=inputs,
Y
Yang Yu 已提交
4379 4380 4381 4382 4383 4384
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4385
    return cost / (num_neg_samples + 1)
4386 4387


C
chengduo 已提交
4388 4389 4390 4391 4392 4393
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4394 4395
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4396
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4397 4398 4399 4400 4401 4402 4403 4404 4405
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4406

W
weixing02 已提交
4407
    Args:
M
minqiyang 已提交
4408
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4409 4410 4411 4412 4413
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4425 4426 4427 4428 4429 4430 4431 4432

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4433 4434 4435
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4436 4437 4438 4439
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4440 4441
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4442 4443
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4444
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4445 4446 4447 4448 4449
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4450 4451 4452 4453 4454 4455 4456 4457
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4458 4459
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4460
        inputs=inputs,
W
weixing02 已提交
4461 4462 4463 4464 4465 4466
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4467
def transpose(x, perm, name=None):
Y
ying 已提交
4468 4469 4470 4471 4472 4473 4474
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4475 4476 4477
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4478 4479 4480 4481 4482 4483 4484

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4485 4486 4487 4488
            # use append_batch_size=False to avoid prepending extra 
            # batch size in shape
            x = fluid.layers.data(name='x', shape=[5, 10, 15], 
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4489
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4490 4491
    """

Y
fix ci.  
ying 已提交
4492
    if len(perm) != len(x.shape):
Y
ying 已提交
4493 4494 4495
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4496 4497 4498 4499 4500 4501
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4502 4503

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4504 4505
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4506
    helper.append_op(
4507
        type='transpose2',
Y
fix ci.  
ying 已提交
4508
        inputs={'X': [x]},
4509 4510
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4511 4512
        attrs={'axis': perm})
    return out
4513 4514


4515 4516 4517 4518 4519 4520 4521
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4522
    """
4523 4524 4525 4526 4527 4528 4529
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4558 4559 4560 4561 4562 4563 4564 4565 4566
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4567 4568 4569
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4570 4571 4572 4573 4574
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4602 4603 4604
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4617
            output.dims = {8, 8}
4618

4619
            output.lod = [[4, 4]]
4620

D
dzhwinter 已提交
4621
     Examples:
4622 4623 4624

        .. code-block:: python

4625 4626
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4627 4628

    """
W
wanghaoshuang 已提交
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4639 4640 4641 4642 4643 4644 4645
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4646
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4647
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4648
    helper.append_op(
4649
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4650
    return out
4651 4652


Y
yuyang18 已提交
4653
@templatedoc()
4654
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4655 4656
    """
    ${comment}
4657 4658

    Args:
Y
yuyang18 已提交
4659
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4660 4661
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4662 4663 4664 4665 4666
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4667
        ${out_comment}.
4668 4669

    Examples:
Y
yuyang18 已提交
4670 4671 4672 4673
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4674 4675 4676 4677 4678 4679
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4680
    out = helper.create_variable_for_type_inference(dtype)
4681 4682 4683 4684 4685
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4686
    return helper.append_activation(out)
4687 4688


Y
yuyang18 已提交
4689
@templatedoc()
4690 4691
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4692 4693 4694 4695 4696 4697 4698
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4699 4700

    Args:
Y
yuyang18 已提交
4701 4702
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4703 4704

    Returns:
Y
yuyang18 已提交
4705
        ${out_comment}.
4706 4707
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4708 4709 4710 4711 4712

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4713
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4714 4715 4716 4717 4718 4719
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4720 4721


4722 4723 4724
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
4725 4726
                               ignore_index=-100,
                               numeric_stable_mode=False):
4727 4728
    """
    **Softmax With Cross Entropy Operator.**
4729

4730 4731 4732 4733
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4734

4735 4736 4737
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4738

4739 4740 4741
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4742

4743
    The equation is as follows:
4744

4745
    1) Hard label (one-hot label, so every sample has exactly one class)
4746

4747 4748 4749 4750
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4751

4752 4753 4754
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4755

4756 4757 4758 4759
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
        
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

4772 4773 4774 4775 4776 4777 4778 4779
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4780 4781
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4782
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
4783 4784 4785 4786 4787 4788 4789
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
                                    When soft_label is True or CPU is used, 
                                    the algorithm is always numerically stable. 
                                    Note that the speed may be slower when use 
                                    stable algorithm. Default: False
4790

4791 4792 4793 4794 4795 4796 4797 4798 4799
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4800 4801
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4802 4803
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4804 4805
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4806 4807 4808 4809 4810 4811
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
4812 4813 4814 4815 4816
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
4817 4818 4819 4820 4821
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4822 4823
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4824
    For each instance, it computes the smooth L1 loss element by element first
4825
    and then sums all the losses. So the shape of ouput Variable is
4826
    [batch_size, 1].
4827

4828 4829
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4830
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4831
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4832
            L1 loss op with same shape as :attr:`x`.
4833
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4834 4835
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4836
            by this tensor element by element.
4837
        outside_weight (Variable|None): A tensor with rank at least 2. This
4838 4839
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4840
            element by element.
4841
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4842 4843
           scalar with default value 1.0.

4844
    Returns:
4845
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4846 4847 4848 4849 4850

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4851 4852
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4853
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4854
            out = fluid.layers.smooth_l1(x=fc, y=label)
4855
    """
4856

4857
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4858 4859
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4872 4873 4874 4875


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4876
    This layer creates the one-hot representations for input indices.
4877 4878

    Args:
Y
Yibing Liu 已提交
4879 4880
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4881 4882

    Returns:
Y
Yibing Liu 已提交
4883
        Variable: The one-hot representations of input.
4884 4885

    Examples:
C
caoying03 已提交
4886
        .. code-block:: python
4887

Y
Yibing Liu 已提交
4888 4889
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4890 4891
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4892
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4893 4894 4895 4896 4897 4898
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4899 4900


Y
Yu Yang 已提交
4901
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4902
    """
Y
yi.wu 已提交
4903 4904 4905
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4906 4907 4908 4909 4910 4911

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4912 4913
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4914 4915 4916 4917 4918 4919

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4920 4921
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4922 4923
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4924 4925 4926 4927 4928
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4929
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4930
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4931 4932
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4933 4934
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4935 4936 4937
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4938 4939


4940
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
4941
    """
C
caoying03 已提交
4942 4943
    Gives a new shape to the input Tensor without changing its data.

4944 4945 4946 4947 4948
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4949

4950
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4951

4952 4953 4954 4955
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4956
    2. 0 means the actual dimension value is going to be copied from the
4957 4958 4959 4960
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4961 4962

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4963
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4964
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4965

4966
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4967 4968
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4969 4970
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4971
    dimensions.
C
caoying03 已提交
4972

4973
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4974 4975 4976 4977
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4978 4979

    Args:
4980
        x(variable): The input tensor.
C
caoying03 已提交
4981 4982
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4983 4984 4985 4986 4987
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
4988 4989
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
4990 4991 4992 4993 4994 4995 4996
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
4997
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4998

4999
    Returns:
G
guosheng 已提交
5000 5001 5002 5003
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5004

X
Xin Pan 已提交
5005 5006 5007
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5008 5009
    Examples:
        .. code-block:: python
G
guosheng 已提交
5010

5011
            data = fluid.layers.data(
5012
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5013
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5014
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5015 5016 5017
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5018
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5019 5020 5021 5022 5023
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5024

5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5040
    helper = LayerHelper("reshape2", **locals())
5041 5042
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5043
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5044
    helper.append_op(
5045
        type="reshape2",
X
Xin Pan 已提交
5046
        inputs=inputs,
D
dzhwinter 已提交
5047
        attrs={"shape": shape},
5048 5049
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5050

D
dzhwinter 已提交
5051
    return helper.append_activation(out)
5052

5053

5054
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5055
    """
M
minqiyang 已提交
5056 5057 5058
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5059
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5060

Y
Yibing Liu 已提交
5061 5062
    Examples:
    Case 1:
M
minqiyang 已提交
5063
      Given
Y
Yibing Liu 已提交
5064 5065 5066 5067 5068 5069 5070 5071
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5072
        and
Y
Yibing Liu 已提交
5073 5074 5075
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5076

Y
Yibing Liu 已提交
5077
    Args:
5078
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5079
        axes (list): List of integers, indicating the dimensions to be squeezed.
5080
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5081 5082 5083 5084 5085 5086 5087 5088

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5089
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5090 5091
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5092 5093
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5094
    helper.append_op(
5095
        type="squeeze2",
5096
        inputs={"X": input},
Y
Yibing Liu 已提交
5097
        attrs={"axes": axes},
5098 5099
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5100

5101 5102 5103
    return out


5104
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5105
    """
M
minqiyang 已提交
5106 5107 5108
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5109

M
minqiyang 已提交
5110 5111
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5112
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5113

Y
Yibing Liu 已提交
5114
    Args:
5115
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5116
        axes (list): List of integers, indicating the dimensions to be inserted.
5117
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5118 5119 5120 5121 5122 5123 5124 5125

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5126
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5127 5128
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5129 5130
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5131
    helper.append_op(
5132
        type="unsqueeze2",
5133
        inputs={"X": input},
Y
Yibing Liu 已提交
5134
        attrs={"axes": axes},
5135 5136
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5137

5138 5139
    return out

5140

Y
yangyaming 已提交
5141
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5142
    """
Y
Yibing Liu 已提交
5143
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5144 5145 5146 5147
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5148
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5149 5150 5151 5152 5153 5154

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5155
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5156 5157 5158
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5159
            target_lod: [4, 2]
Y
yangyaming 已提交
5160 5161

            then we get a 1-level LoDTensor:
5162
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5163 5164 5165 5166 5167 5168
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5169
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5170 5171 5172 5173
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5174
                y.data = [[2, 4]]
Y
yangyaming 已提交
5175 5176 5177
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5178
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5179 5180 5181 5182 5183 5184
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5185
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5186 5187 5188 5189
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5190
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5191 5192 5193 5194
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5195
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5196 5197 5198 5199 5200
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5201
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5202
                           from :attr:`y`.
Y
yangyaming 已提交
5203
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5204
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5205 5206

    Returns:
Y
Yibing Liu 已提交
5207
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5208 5209

    Raises:
Y
Yibing Liu 已提交
5210
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5211 5212 5213 5214 5215 5216 5217 5218 5219

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5220
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5246
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5275 5276
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5289 5290 5291
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5305 5306 5307 5308


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5309
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5310
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5311

G
guosheng 已提交
5312 5313 5314 5315
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5338
                         The length of :attr:paddings must be
G
guosheng 已提交
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5349

G
guosheng 已提交
5350 5351 5352 5353 5354 5355
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5356
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5357 5358 5359 5360 5361 5362 5363
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5364 5365


C
chengduo 已提交
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5436
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5437 5438 5439 5440 5441 5442 5443 5444 5445
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5446 5447 5448 5449 5450 5451 5452
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5453 5454
    called label-smoothing regularization (LSR).

5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5478
                              be :math:`(1, class\_num)`.
5479 5480
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5481
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5501
    smooth_label = helper.create_variable_for_type_inference(dtype)
5502 5503 5504 5505 5506 5507 5508
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5509 5510


Y
yi.wu 已提交
5511
@templatedoc()
5512 5513
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5514
    ${comment}
5515 5516

    Args:
Y
yi.wu 已提交
5517 5518
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5519 5520 5521
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5522 5523

    Returns:
Y
update  
yi.wu 已提交
5524
        Variable: ${out_comment}.
5525 5526

    Examples:
5527 5528
        .. code-block:: python

5529
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5530 5531 5532
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5533 5534
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5547 5548


J
jerrywgz 已提交
5549 5550 5551 5552 5553 5554
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5555 5556
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5573 5574 5575
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5576 5577 5578 5579 5580 5581
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5582
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5623 5624
        .. code-block:: python

W
whs 已提交
5625 5626 5627 5628
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5629
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5630 5631 5632 5633 5634 5635
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5636 5637


5638 5639 5640 5641 5642
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5643
    """
Q
qiaolongfei 已提交
5644
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5645

5646
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5647 5648 5649
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5650

5651
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5652

5653
    Args:
5654
        input (Variable): The input tensor of image resize layer,
5655 5656
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5657
        out_shape(list|tuple|Variable|None): Output shape of image resize
5658 5659
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5660
        scale(float|None): The multiplier for the input height or width.
5661 5662 5663
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5664 5665
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5666 5667
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5668 5669

    Returns:
Q
update  
qiaolongfei 已提交
5670 5671
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5672

5673 5674 5675
    Examples:
        .. code-block:: python

5676
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5677
    """
5678 5679 5680 5681
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5682 5683
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5684 5685
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5686 5687 5688 5689

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5690 5691 5692
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5693
    if out_shape is not None:
B
baiyf 已提交
5694 5695 5696
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5697 5698 5699 5700 5701 5702
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5703 5704 5705 5706
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

X
Xin Pan 已提交
5707
    out = helper.create_variable_for_type_inference(dtype)
5708
    helper.append_op(
5709
        type=resample_methods[resample],
5710
        inputs=inputs,
5711 5712 5713 5714
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5715 5716


Y
yuyang18 已提交
5717
@templatedoc(op_type="bilinear_interp")
5718 5719
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5720 5721 5722 5723 5724 5725
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5726

Y
yuyang18 已提交
5727 5728 5729 5730 5731 5732 5733 5734
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5735 5736 5737 5738 5739 5740 5741
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5742 5743 5744
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5745 5746 5747 5748 5749 5750 5751
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5752
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5753

5754
    Returns:
Q
update  
qiaolongfei 已提交
5755
        Variable: The output is a 4-D tensor of the shape
5756
        (num_batches, channls, out_h, out_w).
5757 5758 5759 5760 5761 5762 5763 5764 5765 5766
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5767 5768 5769
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5770 5771 5772
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5773 5774
def gather(input, index):
    """
Q
qiaolongfei 已提交
5775 5776
    **Gather Layer**

5777
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5778 5779 5780 5781
    of X indexed by `index` and concatenate them together.

    .. math::

5782
        Out = X[Index]
W
whs 已提交
5783 5784 5785 5786 5787 5788 5789


    .. code-block:: text


                Given:

5790 5791
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5792 5793 5794 5795 5796 5797 5798 5799 5800 5801
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5802
        input (Variable): The source input with rank>=1.
W
whs 已提交
5803 5804 5805 5806 5807 5808
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5809

W
whs 已提交
5810 5811 5812 5813 5814 5815
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5816
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5817 5818 5819 5820 5821 5822 5823 5824
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5856
    out = helper.create_variable_for_type_inference(dtype)
5857 5858 5859 5860 5861 5862 5863 5864 5865
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5916
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
5917 5918 5919 5920 5921 5922 5923 5924 5925
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5939

5940 5941 5942
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5943
    """
F
stash  
fengjiayi 已提交
5944
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5945
    dtype = x.dtype
X
Xin Pan 已提交
5946
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
5947
    if seed is None:
5948
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5949
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5950
    if isinstance(seed, int):
F
fengjiayi 已提交
5951 5952 5953 5954 5955
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5956 5957 5958 5959
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5960
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5961 5962
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5963 5964
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5965
    return out
W
whs 已提交
5966 5967


5968
def log(x, name=None):
W
wanghaoshuang 已提交
5969 5970 5971 5972 5973
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5974
        Out = \\ln(x)
W
wanghaoshuang 已提交
5975 5976

    Args:
5977
        x (Variable): Input tensor.
5978 5979
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5980 5981 5982 5983 5984 5985 5986 5987

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5988
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5989 5990
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5991
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5992
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5993
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5994 5995 5996
    return out


5997
def relu(x, name=None):
W
wanghaoshuang 已提交
5998 5999
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6000
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6001 6002 6003 6004
    the tensor elementwise.

    .. math::

6005
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6006 6007

    Args:
6008
        x (Variable): The input tensor.
6009 6010
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6011 6012 6013 6014 6015 6016 6017 6018

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6019
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6020 6021
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6022
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6023
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6024
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6025
    return out
6026 6027


W
whs 已提交
6028 6029 6030
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6031 6032 6033 6034
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6035
    .. math::
6036 6037

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6038

6039
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6040 6041 6042 6043 6044
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6045
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6046
                           Its shape should be the same as input.
6047
        num_classes (int): The possible number of labels.
W
whs 已提交
6048 6049 6050 6051

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6052
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6053 6054 6055 6056

    Examples:

        .. code-block:: python
6057

W
whs 已提交
6058 6059 6060 6061
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6062 6063 6064
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6065 6066
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6067 6068
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6069
        outputs={
W
whs 已提交
6070 6071 6072
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6073 6074 6075
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6150
                    isinstance(shape, Variable)):
6151 6152 6153 6154 6155
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6156
    out = helper.create_variable_for_type_inference(x.dtype)
6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6174 6175


W
whs 已提交
6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
      
              out_shape = [2, 3, 5, 5]
      
          Step 1:
      
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
      
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
        isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6294 6295 6296 6297 6298 6299 6300 6301
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6302

6303 6304
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6305

6306 6307 6308 6309
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6310

6311 6312 6313 6314 6315
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6316 6317 6318

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6354
    out = helper.create_variable_for_type_inference("float32")
6355 6356 6357 6358 6359 6360 6361 6362

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6363 6364


M
minqiyang 已提交
6365 6366
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6367
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6368
    which compares left score and right score passed in.
M
minqiyang 已提交
6369
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6370 6371 6372 6373 6374 6375

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6376
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6377 6378
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6379
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6380 6381 6382
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6383
       Variable: The ranking loss.
M
minqiyang 已提交
6384
    Raises:
M
minqiyang 已提交
6385
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6386 6387 6388 6389 6390 6391 6392
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6393
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6394 6395 6396 6397 6398 6399
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6400 6401
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6427

W
whs 已提交
6428 6429
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6430

W
whs 已提交
6431
      Case 0:
M
minqiyang 已提交
6432

W
whs 已提交
6433 6434 6435
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6436

W
whs 已提交
6437 6438 6439
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6440

W
whs 已提交
6441
      Case 1:
M
minqiyang 已提交
6442

W
whs 已提交
6443 6444
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6445

W
whs 已提交
6446 6447 6448
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6449

W
whs 已提交
6450
      Case 2:
M
minqiyang 已提交
6451

W
whs 已提交
6452 6453
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6454

W
whs 已提交
6455 6456 6457
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6458 6459


W
whs 已提交
6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6486
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6515
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6538
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6561
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6585
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6610
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6634
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6635 6636 6637 6638 6639 6640 6641 6642
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6657
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6658
                        will be named automatically.
J
jerrywgz 已提交
6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6686
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6687 6688 6689 6690 6691 6692 6693 6694 6695
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6710
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6733
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6755
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6756 6757 6758 6759 6760 6761 6762 6763
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6777

6778 6779 6780 6781 6782 6783 6784 6785 6786 6787
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6788 6789
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6805
        ValueError: If axis is not in range [0, rank(x)].
6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6822 6823
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6824
    helper.append_op(
6825
        type='flatten2',
6826
        inputs={"X": x},
6827 6828
        outputs={'Out': out,
                 'XShape': x_shape},
6829 6830
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6831 6832


C
chenweihang 已提交
6833
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6834
    """
C
chenweihang 已提交
6835
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6836
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6837 6838
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6839

C
chenweihang 已提交
6840 6841 6842 6843
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6844
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6845 6846 6847 6848 6849 6850
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6851
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6852 6853 6854
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6855 6856 6857
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
6869 6870
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6871 6872 6873 6874 6875 6876
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6877
    return out
6878

6879

S
sneaxiy 已提交
6880 6881 6882 6883 6884 6885 6886 6887 6888
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6889

S
sneaxiy 已提交
6890
    .. math::
6891

S
sneaxiy 已提交
6892 6893 6894
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6895
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6896 6897 6898 6899
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6900 6901 6902
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6903 6904
    Returns:
        Variable: The output sequence mask.
6905

S
sneaxiy 已提交
6906 6907
    """

Q
qingqing01 已提交
6908
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6909
    if name is None:
X
Xin Pan 已提交
6910
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
6911
    else:
X
Xin Pan 已提交
6912
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
6913

Q
qingqing01 已提交
6914 6915 6916
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6917 6918
        outputs={'Y': out},
        attrs={
6919
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6920 6921 6922
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6923 6924


X
Xin Pan 已提交
6925
def stack(x, axis=0):
S
sneaxiy 已提交
6926 6927 6928 6929
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6930 6931 6932 6933 6934 6935 6936

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6937
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6938
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6939 6940

    Args:
6941
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6942
        axis (int|None): The axis along which all inputs are stacked.
6943

S
sneaxiy 已提交
6944 6945
    Returns:
        Variable: The stacked variable.
6946

S
sneaxiy 已提交
6947 6948
    """

X
Xin Pan 已提交
6949 6950 6951 6952 6953 6954
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
6955
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
6956
    helper.append_op(
S
sneaxiy 已提交
6957 6958
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6959

X
Xin Pan 已提交
6960
    return out
D
dzhwinter 已提交
6961 6962 6963 6964 6965 6966 6967


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6968

D
dzhwinter 已提交
6969 6970 6971
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6972
    raised.
D
dzhwinter 已提交
6973 6974

    Args:
M
minqiyang 已提交
6975
        x (Variable): Input variable.
D
dzhwinter 已提交
6976 6977
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6978

D
dzhwinter 已提交
6979 6980
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6981

D
dzhwinter 已提交
6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
6993
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
6994 6995 6996 6997 6998 6999 7000 7001

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7014

W
whs 已提交
7015 7016 7017 7018
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7019

W
whs 已提交
7020
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7021

W
whs 已提交
7022
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7023

W
whs 已提交
7024 7025 7026 7027
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7028

W
whs 已提交
7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7045
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7046 7047 7048 7049 7050 7051
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7052 7053


G
fix  
gongweibao 已提交
7054 7055 7056
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7057
@templatedoc()
G
fix  
gongweibao 已提交
7058 7059 7060 7061 7062 7063 7064 7065 7066
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7067
    ${comment}
G
fix  
gongweibao 已提交
7068 7069

    Args:
G
gongweibao 已提交
7070 7071 7072
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7073
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7074 7075 7076
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7077 7078
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7079
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7080 7081 7082 7083

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7084
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7101 7102


G
gongweibao 已提交
7103
@templatedoc()
X
Xin Pan 已提交
7104
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7105
    """
G
gongweibao 已提交
7106
    ${comment}
G
fix  
gongweibao 已提交
7107 7108

    Args:
G
gongweibao 已提交
7109 7110 7111 7112
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7113 7114 7115
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7116
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7117 7118 7119 7120

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7121
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7122 7123 7124 7125 7126 7127 7128 7129 7130 7131
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7132
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7133 7134 7135 7136 7137
        })

    return out


G
gongweibao 已提交
7138
@templatedoc()
G
fix  
gongweibao 已提交
7139
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7140
    """
G
gongweibao 已提交
7141
    ${comment}
G
fix  
gongweibao 已提交
7142 7143

    Args:
G
gongweibao 已提交
7144 7145 7146 7147
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7148
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7149 7150

    Returns:
G
gongweibao 已提交
7151
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7152 7153 7154 7155

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7156
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7168
@templatedoc()
G
fix  
gongweibao 已提交
7169 7170 7171 7172 7173 7174 7175 7176 7177
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7178
    ${comment}
G
fix  
gongweibao 已提交
7179 7180

    Args:
G
gongweibao 已提交
7181 7182
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7183
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7184 7185 7186 7187
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7188
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7189 7190

    Returns:
G
gongweibao 已提交
7191
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7192 7193 7194
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7195
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7214
@templatedoc()
X
Xin Pan 已提交
7215
def sum(x):
G
fix  
gongweibao 已提交
7216
    """
G
gongweibao 已提交
7217
    ${comment}
G
fix  
gongweibao 已提交
7218 7219

    Args:
G
gongweibao 已提交
7220
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7221 7222

    Returns:
G
gongweibao 已提交
7223
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7224 7225 7226
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7227 7228
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7229 7230 7231 7232
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7233
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7234 7235 7236 7237

    return out


G
gongweibao 已提交
7238
@templatedoc()
G
fix  
gongweibao 已提交
7239 7240
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7241
    ${comment}
G
fix  
gongweibao 已提交
7242 7243

    Args:
G
gongweibao 已提交
7244 7245 7246 7247
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7248 7249

    Returns:
G
gongweibao 已提交
7250
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7251 7252 7253 7254

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7255 7256
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7268
@templatedoc()
G
fix  
gongweibao 已提交
7269 7270
def shape(input):
    """
G
gongweibao 已提交
7271
    ${comment}
G
fix  
gongweibao 已提交
7272 7273

    Args:
G
gongweibao 已提交
7274
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7275 7276

    Returns:
G
gongweibao 已提交
7277
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7278 7279 7280 7281

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7282 7283
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7284
    helper.append_op(
G
fix  
gongweibao 已提交
7285
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7286 7287

    return out
G
merge  
gongweibao 已提交
7288 7289


S
sneaxiy 已提交
7290 7291 7292 7293 7294 7295 7296 7297
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7298 7299
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7300
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7301 7302 7303
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7304

S
sneaxiy 已提交
7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7316
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7317 7318 7319 7320 7321 7322 7323 7324
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7325
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7326
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7327 7328 7329 7330 7331 7332

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7333
    if name is None:
X
Xin Pan 已提交
7334
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7335 7336 7337
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7338 7339 7340 7341 7342 7343 7344 7345 7346 7347

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7348
    return helper.append_activation(out)
S
sneaxiy 已提交
7349 7350


X
Xin Pan 已提交
7351
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7352 7353 7354
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7355
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7356 7357 7358
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7359
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7360 7361 7362
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7363
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7364 7365 7366
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7367
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7368 7369 7370
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7371
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7372 7373 7374
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7375
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7387 7388
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7389
        ])
M
minqiyang 已提交
7390 7391


7392
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7393 7394
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7395 7396
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7397 7398 7399

    if out is None:
        if name is None:
X
Xin Pan 已提交
7400
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7416
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7435
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7454
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7473
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
7508 7509 7510 7511
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
7540 7541 7542 7543
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7544 7545 7546 7547 7548 7549 7550 7551

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7570
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7600
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7601 7602 7603 7604 7605 7606 7607 7608 7609
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7610 7611
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7634
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7664
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7665 7666 7667 7668 7669 7670 7671 7672 7673 7674
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
M
minqiyang 已提交
7675 7676


S
sneaxiy 已提交
7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690
@templatedoc()
def sequence_reverse(x, name=None):
    """ 
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
7691
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7692 7693 7694 7695 7696 7697 7698 7699 7700 7701
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
7702 7703


7704 7705 7706 7707 7708 7709
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
7710

7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7730
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
7743 7744


M
minqiyang 已提交
7745 7746
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
7747 7748
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
7749 7750
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
7789
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
7790
        name (str, default None): The name of this layer.
M
minqiyang 已提交
7791 7792 7793 7794 7795 7796 7797 7798 7799

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
7800 7801
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
7802 7803
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
7804 7805 7806 7807 7808 7809 7810
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
7811 7812


D
dengkaipeng 已提交
7813
@templatedoc()
7814 7815
def grid_sampler(x, grid, name=None):
    """
7816 7817 7818 7819 7820 7821 7822
    This operation samples input X by using bilinear interpolation based on 
    flow field grid, which is usually gennerated by affine_grid. The grid of
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates 
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension 
    (in width dimension) of input data x and grid_y is indexng the 3rd 
    dimention (in height dimension), finally results is the bilinear 
    interpolation value of 4 nearest corner points.
7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear 
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
7861 7862

    Args:
7863 7864 7865
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
7866 7867

    Returns:
7868 7869 7870 7871 7872 7873 7874 7875 7876 7877
        out(Variable): Output of shape [N, C, H, W] data samples input X 
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
7878 7879 7880 7881 7882 7883 7884 7885 7886
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

7887
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
7888 7889
    ipts = {'X': x, 'Grid': grid}

7890
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
7891 7892 7893
    return out


G
gmcather 已提交
7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out