parallel_executor.cc 41.4 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
24
#include "paddle/fluid/framework/details/multi_devices_helper.h"
25
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
29 30
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
31
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
32
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
33
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/set_reader_device_info_utils.h"
34
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
35

36 37
DECLARE_double(eager_delete_tensor_gb);

Y
Yu Yang 已提交
38
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
39
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
40
#endif
Y
Yu Yang 已提交
41
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
42 43
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
44
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
45
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
46

Y
Yang Yang 已提交
47
namespace paddle {
Y
Yu Yang 已提交
48 49
namespace framework {

Y
Yu Yang 已提交
50
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
51
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
52
static bool gProfileStarted = false;
Y
Yu Yang 已提交
53
#endif
54

Y
Yu Yang 已提交
55 56
class ParallelExecutorPrivate {
 public:
57 58 59
  ParallelExecutorPrivate(const std::vector<platform::Place> &places,
                          Scope *global_scope)
      : places_(places), global_scope_(global_scope) {
Y
Yu Yang 已提交
60
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
61 62
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
63
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
64 65 66
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
67
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
68 69 70 71
#endif
      });
    }
  }
Y
Yu Yang 已提交
72

73 74 75 76 77 78 79 80 81 82 83
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
84

85 86 87 88
  void SetHasFeed(size_t dev_idx, bool has_feed = true);

  bool AllowPartialFeed() const;

89
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
90 91 92

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

93
  /**
T
tianshuo78520a 已提交
94 95
   * NOTE(zengjinle): the fed variables of users should not be reused,
   * because users may feed them into another network. Changing the fed
96 97 98 99 100 101
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
T
tianshuo78520a 已提交
102
   *  - FeedTensorsIntoLocalScopes: this method would share memory of fed
103 104
   *                                variables, so we have to skip these.
   *
T
tianshuo78520a 已提交
105
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of fed
106 107 108 109 110 111 112 113 114 115
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

116
#if defined(PADDLE_WITH_NCCL)
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
133 134
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
135 136 137 138 139 140 141 142 143 144 145 146
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
147
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
148 149
      } else {
        nccl_id = new ncclUniqueId();
150 151 152
        PADDLE_ENFORCE_EQ(
            platform::dynload::ncclGetUniqueId(nccl_id), ncclSuccess,
            platform::errors::PreconditionNotMet("Get NCCL unique ID failed."));
153 154
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
155 156 157 158
      }

      flat_nccl_ids.push_back(nccl_id);

159 160
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
161 162 163 164 165 166
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
167 168
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
169 170 171 172 173 174
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
175 176 177
      PADDLE_ENFORCE_NOT_NULL(
          nccl_id_var,
          platform::errors::NotFound("Can't find nccl_id_var '%s'.", var_name));
178 179 180 181
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

182 183
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
184 185

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
186 187 188 189
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
190 191 192
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
G
gongweibao 已提交
193 194 195
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
196 197 198 199 200

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
201 202 203
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
204 205 206
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
207

208 209 210 211
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
212 213
    }
  }
214

215
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
216 217 218
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
219 220 221
      PADDLE_ENFORCE_EQ(var->IsInitialized(), true,
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
222 223 224 225 226 227
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

228
    if (bst->use_hierarchical_allreduce_) {
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
      PADDLE_ENFORCE_GT(
          bst->num_trainers_, 1,
          platform::errors::PreconditionNotMet(
              "The num_trainers should be greater than 1, but received %llu.",
              bst->num_trainers_));
      PADDLE_ENFORCE_GT(
          bst->hierarchical_allreduce_inter_nranks_, 1,
          platform::errors::PreconditionNotMet(
              "The inter_nranks should be greater than 1, but received %d.",
              bst->hierarchical_allreduce_inter_nranks_));
      PADDLE_ENFORCE_EQ(
          bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_, 0,
          platform::errors::PreconditionNotMet(
              "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
              bst->hierarchical_allreduce_inter_nranks_));
244 245 246 247 248

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

249 250
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
251
    InitNCCLCtxs(scope, *bst);
252
  }
253 254
#endif

255 256 257 258 259
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
260
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
261 262
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
263
  std::vector<Scope *> local_exec_scopes_;
264
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
265
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
266

267 268
  std::unordered_map<std::string, bool> is_persistable_;

269
#if defined(PADDLE_WITH_NCCL)
270
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
Y
Yu Yang 已提交
271
#endif
C
chengduoZH 已提交
272 273
  bool own_local_scope_;
  bool use_cuda_;
274
  bool use_all_reduce_;
275
  size_t nranks_;
S
sneaxiy 已提交
276

277
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
278
  ir::GarbageCollectorMap gcs_;
279 280

  details::ParallelSSAGraphExecutor *inference_executor_{nullptr};
Y
Yu Yang 已提交
281 282
};

283 284 285 286 287 288 289 290 291 292
void ParallelExecutorPrivate::SetHasFeed(size_t dev_idx, bool has_feed) {
  if (inference_executor_) {
    inference_executor_->SetHasFeed(dev_idx, has_feed);
  }
}

bool ParallelExecutorPrivate::AllowPartialFeed() const {
  return inference_executor_ && inference_executor_->SupportPartialFeed();
}

293
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
Z
Zeng Jinle 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  bool need_mem_opt = build_strategy_.enable_inplace_ ||
                      build_strategy_.memory_optimize_.get() || is_gc_enabled;

  if (!need_mem_opt) return graph;

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
    inplace_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
331 332
    VLOG(1) << "Inplace strategy is enabled, when "
               "build_strategy.enable_inplace = True";
333 334
  }

335
  if (build_strategy_.memory_optimize_.get()) {
336 337 338 339 340 341 342 343 344 345
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
346 347 348
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
349
  }
350

351
  if (!is_gc_enabled) {
352 353 354 355
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
356 357 358 359 360
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
361
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
362
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
363 364
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
365 366
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
367
      } else {
S
sneaxiy 已提交
368 369
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
370 371
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
372
    } else {
S
sneaxiy 已提交
373
#endif
S
sneaxiy 已提交
374 375 376 377 378
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
379 380
        PADDLE_THROW(platform::errors::PreconditionNotMet(
            "Unsupported place for garbage collection"));
S
sneaxiy 已提交
381
      }
S
sneaxiy 已提交
382 383 384 385
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
386
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
387 388
  }

S
sneaxiy 已提交
389
  if (!gcs_.empty()) {
S
sneaxiy 已提交
390 391
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
392 393
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
394 395
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
396
                                     &last_live_ops_of_vars);
397
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
398
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
399
    VLOG(10) << "EagerDeletionPass Applied";
400 401 402
    VLOG(1) << "Garbage collection strategy is enabled, when "
            << "FLAGS_eager_delete_tensor_gb = "
            << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
403 404 405 406
  }
  return graph;
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
class ResetHasFeedGuard {
 public:
  explicit ResetHasFeedGuard(ParallelExecutorPrivate *pe_member)
      : pe_member_(pe_member) {}

  ~ResetHasFeedGuard() {
    for (size_t i = 0; i < pe_member_->places_.size(); ++i) {
      pe_member_->SetHasFeed(i, false);
    }
  }

 private:
  ParallelExecutorPrivate *pe_member_;
};

422 423
size_t ParallelExecutor::DeviceCount() const { return member_->places_.size(); }

424 425 426 427
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

Y
Yan Xu 已提交
442 443 444 445 446 447 448 449
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
450
    : member_(new ParallelExecutorPrivate(places, scope)) {
451 452
  ir::InitReaderQueueDeviceCount(graph, *(member_->global_scope_),
                                 member_->places_.size());
453
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
454
  member_->build_strategy_ = build_strategy;
C
chengduo 已提交
455 456
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
457
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
C
chengduo 已提交
458 459 460 461 462 463 464
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
465 466
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
  if (member_->use_cuda_) {
467 468 469
    PADDLE_ENFORCE_EQ(
        places.size(), 1,
        platform::errors::Unavailable("Windows can support Single GPU only."));
470 471
  }
#endif
Y
Yancey1989 已提交
472

473 474 475 476 477 478 479 480 481 482
#if defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_NCCL)
  PADDLE_ENFORCE_EQ(
      places.size(), 1,
      platform::errors::PermissionDenied(
          "Your machine has multiple cards, "
          "but the WITH_NCCL option is not turned on during compilation, "
          "and you cannot use multi-card training or prediction. "
          "Please recompile and turn on the WITH_NCCL option."));
#endif

483
  VLOG(1) << string::Sprintf(
484 485 486
      "The Program will be executed on %s using ParallelExecutor, %lu "
      "cards are used, so %lu programs are executed in parallel.",
      (member_->use_cuda_ ? "CUDA" : "CPU"), places.size(), places.size());
C
chengduo 已提交
487

488
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
489
  // Create local scopes
490
  if (local_scopes.empty()) {
C
chengduoZH 已提交
491
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
492 493
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
494
      member_->local_scopes_.emplace_back(&scope->NewScope());
495 496
    }
  } else {
C
chengduoZH 已提交
497
    member_->own_local_scope_ = false;
498 499 500 501 502
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size(),
                      platform::errors::PreconditionNotMet(
                          "member_->places_.size() = %d is not equal to "
                          "local_scopes.size() = %d",
                          member_->places_.size(), local_scopes.size()));
503
    for (size_t i = 0; i < member_->places_.size(); ++i) {
504
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
505
    }
Y
Yu Yang 已提交
506 507
  }

Q
Qiao Longfei 已提交
508
  std::vector<ir::Graph *> graphs;
C
chengduo 已提交
509
  if (member_->build_strategy_.async_mode_) {
510 511 512
    PADDLE_ENFORCE_EQ(member_->use_cuda_, false,
                      platform::errors::Unavailable(
                          "gpu mode does not support async_mode_ now!"));
Q
Qiao Longfei 已提交
513
    graphs.push_back(graph);
D
dongdaxiang 已提交
514
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
515 516 517 518
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
519
  }
Q
Qiao Longfei 已提交
520

Y
Yancey1989 已提交
521 522 523
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
C
chengduo 已提交
524 525 526 527
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
528 529 530 531
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
Y
Yancey1989 已提交
532

533
  if (member_->use_cuda_ && member_->nranks_ > 1) {
534
#if defined(PADDLE_WITH_NCCL)
535
    member_->InitOrGetNCCLCommunicator(scope, &member_->build_strategy_);
Q
qingqing01 已提交
536

W
Wu Yi 已提交
537 538 539
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
540
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
541 542 543
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
544 545
    auto *nccl_ctxs =
        member_->nccl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
546
    auto &pool = platform::DeviceContextPool::Instance();
Q
qingqing01 已提交
547 548 549
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
550
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
551
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
552
    }
Y
Yu Yang 已提交
553
#endif
C
chengduoZH 已提交
554
  }
Y
Yan Xu 已提交
555 556
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
557
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
558 559 560 561 562 563 564 565 566
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
567
  // Bcast Parameters to all GPUs
Y
Yan Xu 已提交
568
  if (need_broadcast()) {
C
chengduo 已提交
569
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
570
  }
571

Q
Qiao Longfei 已提交
572
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
573

Q
Qiao Longfei 已提交
574 575 576
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
577
#if defined(PADDLE_WITH_NCCL)
C
chengduo 已提交
578
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
579
    VLOG(3) << "use local async mode";
C
chengduo 已提交
580 581 582 583
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_,
        member_->nccl_ctxs_);
D
dongdaxiang 已提交
584
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
585 586 587 588
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_cuda_,
          member_->nccl_ctxs_);
589
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
590
    }
Q
Qiao Longfei 已提交
591
  } else {
C
chengduo 已提交
592 593 594
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_);
Q
Qiao Longfei 已提交
595
  }
C
chengduoZH 已提交
596
#else
C
chengduo 已提交
597
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
598
    VLOG(3) << "use local async mode";
C
chengduo 已提交
599 600 601
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_);
602
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
603
      graphs[i] = member_->build_strategy_.Apply(
604
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
605
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
606
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
607
    }
Q
can run  
Qiao Longfei 已提交
608
  } else {
C
chengduo 已提交
609 610 611
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
612
  }
Y
Yu Yang 已提交
613
#endif
614

615
  graph = member_->ApplyMemoryOptimizePass(graph);
Y
Yancey1989 已提交
616

Q
Qiao Longfei 已提交
617 618
  async_graphs[0] = graph;

619 620
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
621
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
622 623 624 625 626 627
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
628 629 630

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
Y
Yancey1989 已提交
631 632
    }
  }
Y
Yancey1989 已提交
633

634 635 636 637 638 639 640
  std::unordered_map<Scope *, Scope *> scope_map;
  for (auto *scope : member_->local_scopes_) {
    auto &local_exec_scope = scope->NewScope();
    member_->local_exec_scopes_.emplace_back(&local_exec_scope);
    scope_map.emplace(scope, &local_exec_scope);
  }

641 642 643 644 645 646
  PADDLE_ENFORCE_EQ(
      member_->local_scopes_.size(), member_->local_exec_scopes_.size(),
      platform::errors::PreconditionNotMet(
          "member_->local_scopes_.size() = %d is not equal to "
          "member_->local_exec_scopes_.size() = %d",
          member_->local_scopes_.size(), member_->local_exec_scopes_.size()));
647 648 649

  std::vector<ir::Graph *> final_graphs;

C
chengduo 已提交
650
  if (member_->build_strategy_.async_mode_) {
Q
can run  
Qiao Longfei 已提交
651 652
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
653 654 655
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, async_graphs));
    final_graphs = async_graphs;
C
chengduo 已提交
656
  } else if (member_->build_strategy_.enable_parallel_graph_) {
Q
can run  
Qiao Longfei 已提交
657
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
658
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
659 660
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
661 662 663
    bool is_inference = details::IsDataParallelInferenceGraph(*graph);
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);

664 665 666 667 668
    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);
669 670 671 672 673 674 675 676

    if (is_inference && member_->places_.size() > 1) {
      member_->inference_executor_ = pg_exe;
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
    }
Y
Yancey1989 已提交
677
#else
678 679
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Paddle should be compiled with CUDA for ParallelGraph Execution."));
Y
Yancey1989 已提交
680
#endif
Y
yuyang18 已提交
681
  } else {
682 683 684 685 686 687
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);
    auto possible_inference_graphs =
        details::TrySeparateToMultipleSingleDeviceGraphs(graph);
    if (!possible_inference_graphs.empty()) {
      VLOG(5) << "Use ParallelSSAGraphExecutor in inference phase";
      auto *pg_exe = new details::ParallelSSAGraphExecutor(
688
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
689 690 691 692 693 694 695 696
          member_->places_, std::move(possible_inference_graphs));
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
      final_graphs = pg_exe->Graphs();
      member_->executor_.reset(pg_exe);
      member_->inference_executor_ = pg_exe;
Y
Yancey1989 已提交
697
    } else {
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
      LOG_IF(WARNING, details::HasKeepLastReadOp(*graph))
          << "drop_last=False for DataLoader is not supported in training "
             "network. It is automatically turned to drop_last=True.";
      if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
        VLOG(3) << "use ThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      } else {
        VLOG(3) << "use FastThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      }
      final_graphs.emplace_back(graph);
Y
Yancey1989 已提交
713
    }
C
chengduoZH 已提交
714
  }
Y
yuyang18 已提交
715

Q
can run  
Qiao Longfei 已提交
716
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
C
chengduo 已提交
717
  if (!member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
718
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
719 720 721 722 723 724 725 726 727
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
  }

  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
    }
Q
Qiao Longfei 已提交
728
  }
729 730 731 732 733 734 735 736

  if (final_graphs.size() == 1) {
    ir::SetReaderOpDeviceInfo(final_graphs[0], member_->places_.size());
  } else {
    for (size_t i = 0; i < final_graphs.size(); ++i) {
      ir::SetReaderOpDeviceInfo(final_graphs[i], member_->places_.size(), i);
    }
  }
Y
Yu Yang 已提交
737 738
}

Y
Yancey1989 已提交
739
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
740
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
741
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
742
  // the initializing bcast, all vars would be bcast from device(0).
743
  for (auto &var : vars) {
X
Xin Pan 已提交
744
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
745
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
746 747 748 749
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
750
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
751
      VLOG(3) << "one in var not inited, return!";
752 753
      continue;
    }
754 755
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
756
#if defined(PADDLE_WITH_NCCL)
757
      std::vector<void *> buffers;
C
chengduo 已提交
758
      buffers.reserve(member_->places_.size());
759 760 761 762 763
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
764

Y
Yan Xu 已提交
765
        if (i == 0 && trainer_id == 0) {
766 767
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
768
          auto local_scope = member_->local_scopes_[i];
769
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
770
          t->Resize(dims);
771
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
772
        }
773
        buffers.push_back(buffer);
774
      }
775

776
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
777 778 779 780
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
                            buffers.size(), member_->places_.size()));
781
      {
782
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
783 784
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
785
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
786 787
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
788
        }
789
        nccl_ctxs->WaitAll();
790
      }
C
chengduoZH 已提交
791
#endif
792 793
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
794
      for (size_t i = 1; i < member_->places_.size(); ++i) {
795 796
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
797

Q
Qiao Longfei 已提交
798
        auto copy_memory = [&] {
799 800 801
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
802 803
        };

Q
Qiao Longfei 已提交
804
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
805 806 807 808 809 810 811

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
812
        } else {
Q
can run  
Qiao Longfei 已提交
813
          share_memory();
814
        }
Y
Yu Yang 已提交
815
      }
Y
Stash  
Yu Yang 已提交
816 817
    }
  }
Y
Yu Yang 已提交
818
}
Y
Yu Yang 已提交
819

Z
Zhen Wang 已提交
820 821
FetchResultType ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors, bool return_merged) {
822
  VLOG(3) << "enter ParallelExecutor Run";
Y
Yu Yang 已提交
823 824 825
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
826 827
  }
#endif
Y
Yu Yang 已提交
828

X
Xin Pan 已提交
829
  platform::RecordBlock b(0);
830

831 832
  ResetHasFeedGuard reset_has_feed_guard(member_);

833 834
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
835 836

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
Z
Zhen Wang 已提交
837
  auto fetch_data = member_->executor_->Run(fetch_tensors, return_merged);
838
  return fetch_data;
Y
Yu Yang 已提交
839
}
Y
Yu Yang 已提交
840

Y
Yu Yang 已提交
841 842
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(tensors.size(), member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          tensors.size(), member_->local_scopes_.size()));
  } else {
    PADDLE_ENFORCE_GE(member_->local_scopes_.size(), tensors.size(),
                      platform::errors::InvalidArgument(
                          "The feed tensor number exceeds the device number"));
  }
Y
Yu Yang 已提交
858

859
  size_t feed_num = 0;
Y
Yu Yang 已提交
860 861
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
862 863 864 865 866 867
    if (map.empty()) {
      continue;
    }

    member_->SetHasFeed(i);
    ++feed_num;
Y
Yu Yang 已提交
868
    for (auto &pair : map) {
869
      bool is_persistable = member_->IsPersistable(pair.first);
870 871 872
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
873 874 875 876 877
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
878 879 880 881
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
882 883 884 885 886 887 888 889 890 891 892 893

  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(feed_num, member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          feed_num, member_->local_scopes_.size()));
  }
Y
Yu Yang 已提交
894 895 896 897
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
898
  size_t num_places = member_->places_.size();
899 900 901 902 903
  bool allow_partial_feed = member_->AllowPartialFeed();

  size_t persistable_feed_len = -1UL;
  size_t non_persistable_feed_len = -1UL;

904
  for (auto &pair : tensors) {
905 906 907 908
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
Y
Yu Yang 已提交
909
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
910
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
911 912
    if (!is_persistable && num_places != lod_tensors.size() &&
        !allow_partial_feed) {
C
chengduo 已提交
913
      auto error_info = string::Sprintf(
914 915 916
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
          lod_tensors.size(), pair.first, num_places,
C
chengduo 已提交
917 918 919 920 921 922
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
923
      PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
924 925 926 927
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
928 929 930 931 932 933
        PADDLE_ENFORCE_EQ(
            tensor.dims(), pair.second.dims(),
            platform::errors::PreconditionNotMet("The dim doesn't match."));
        PADDLE_ENFORCE_EQ(
            tensor.place(), member_->places_.at(0),
            platform::errors::PreconditionNotMet("The place doesn't match."));
934 935 936 937 938 939
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
940
      if (lod_tensors.size() != num_places && !allow_partial_feed) {
941 942 943 944 945 946 947 948 949
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
            lod_tensors.size(), pair.first, num_places,
            (is_cpu_place ? "CPU" : "GPU"), pair.first, num_places, num_places);
950
        PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
951
      }
C
chengduo 已提交
952
    }
953

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
    if (allow_partial_feed) {
      if (is_persistable) {
        if (persistable_feed_len == -1UL) {
          persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different persistable variables "
                  "should be the same"));
        }
      } else {
        if (non_persistable_feed_len == -1UL) {
          non_persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              non_persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different non-persistable variables "
                  "should be the same"));
        }
      }
    }

    for (size_t j = 0; j < lod_tensors.size(); ++j) {
979 980 981 982 983
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
984 985
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
986 987
    }
  }
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

  if (allow_partial_feed && persistable_feed_len != -1UL &&
      non_persistable_feed_len != -1UL) {
    VLOG(10) << "Persistable len " << persistable_feed_len;
    VLOG(10) << "Non persistable len " << non_persistable_feed_len;
    PADDLE_ENFORCE_GE(persistable_feed_len, non_persistable_feed_len,
                      platform::errors::InvalidArgument(
                          "The feeded number of persistable variables should "
                          "not be less than non-persistable variables"));
  }

  if (non_persistable_feed_len != -1UL) {
    for (size_t i = 0; i < non_persistable_feed_len; ++i) {
      member_->SetHasFeed(i);
    }
  }
X
Xin Pan 已提交
1004 1005
}

X
Xin Pan 已提交
1006 1007 1008 1009 1010 1011 1012
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

1013
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
1014
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
1015
    const BuildStrategy &build_strategy) const {
1016 1017 1018
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
1019

Y
Yancey1989 已提交
1020
  bool enable_parallel_graph = true;
1021

X
Xin Pan 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
1035 1036 1037
    }
  }

1038
  if (!member_->use_all_reduce_ || !member_->use_cuda_) {
Y
Yancey1989 已提交
1039
    if (build_strategy.enable_sequential_execution_ ||
1040
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
1041
      enable_parallel_graph = false;
1042 1043 1044 1045 1046 1047 1048 1049 1050
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
1051
  return enable_parallel_graph;
1052 1053
}

1054 1055 1056 1057
const ir::Graph &ParallelExecutor::Graph() const {
  return member_->executor_->Graph();
}

Y
Yu Yang 已提交
1058
}  // namespace framework
Y
Yang Yang 已提交
1059
}  // namespace paddle
S
sneaxiy 已提交
1060

S
sneaxiy 已提交
1061
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
1062
USE_PASS(eager_deletion_pass);
1063
USE_PASS(buffer_shared_inplace_pass);
1064
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);