pybind.cc 56.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
39
#include "paddle/fluid/imperative/profiler.h"
Y
Refine  
Yu Yang 已提交
40
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
41
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
42
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
44
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
45
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
46
#include "paddle/fluid/platform/enforce.h"
47
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
48 49
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
50
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
51 52
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
53
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
54
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
55
#include "paddle/fluid/pybind/ir.h"
56 57
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
58
#include "paddle/fluid/pybind/reader_py.h"
Y
Yu Yang 已提交
59
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
60
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
61

62
#include "paddle/fluid/string/to_string.h"
63

D
Dong Zhihong 已提交
64
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
65
#ifndef _WIN32
Y
Yi Wang 已提交
66
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
67
#endif
Y
Yi Wang 已提交
68 69
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
70 71
#endif

M
minqiyang 已提交
72 73
#include "pybind11/stl.h"

74 75 76 77
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
78 79 80
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

81
namespace paddle {
82
namespace pybind {
83
bool IsCompiledWithCUDA() {
84
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
85 86 87 88 89 90
  return false;
#else
  return true;
#endif
}

91 92 93 94 95 96 97 98
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

99 100 101 102 103 104 105 106
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

107
bool IsCompiledWithBrpc() {
108
#ifndef PADDLE_WITH_DISTRIBUTE
109 110
  return false;
#endif
111 112 113 114 115 116

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
117 118
}

Y
update  
Yancey1989 已提交
119
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
120
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
121 122 123 124 125 126
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
127 128 129 130 131 132 133 134 135 136
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

137
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
138 139 140
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
141
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
142
  m.doc() = "C++ core of PaddlePaddle";
143

144 145 146 147
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

148
  BindException(&m);
Y
Yu Yang 已提交
149

S
sneaxiy 已提交
150
  m.def(
S
sneaxiy 已提交
151
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
152 153 154 155
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
156 157 158
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

159 160 161 162 163 164 165
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
166
  m.def("start_imperative_gperf_profiler",
M
minqiyang 已提交
167 168
        []() { imperative::StartProfile(); });

M
minqiyang 已提交
169
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
M
minqiyang 已提交
170

M
minqiyang 已提交
171
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
172 173 174 175 176 177 178 179
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
180
      .def("_run_backward",
X
Xin Pan 已提交
181
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
182
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
183
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
184
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
185
      .def("_grad_ivar",
M
minqiyang 已提交
186
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
187
           py::return_value_policy::reference)
M
minqiyang 已提交
188
      .def("_copy_to",
P
Paddle CI 已提交
189
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
190 191 192 193 194
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
195
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
196
      .def("_copy_to",
P
Paddle CI 已提交
197
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
198 199 200 201 202
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
203
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
204
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
205
           py::return_value_policy::reference)
206 207 208
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
M
minqiyang 已提交
209
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
210 211 212 213
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
214

215
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
216
      .def(py::init<const std::string &>())
217 218 219 220
      .def("register_backward_hooks",
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
M
minqiyang 已提交
221 222 223 224 225 226 227 228 229 230
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
231 232 233 234 235 236
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
237
          py::return_value_policy::reference)
X
polish  
Xin Pan 已提交
238
      .def_property_readonly("type", &imperative::OpBase::Type)
X
Xin Pan 已提交
239 240 241 242 243 244
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
245 246
          py::return_value_policy::reference);

X
Xin Pan 已提交
247
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
248
  layer.def(py::init<>())
X
Xin Pan 已提交
249 250 251
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
252
      });
X
Xin Pan 已提交
253

X
polish  
Xin Pan 已提交
254
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
255
      .def(py::init<>())
X
Xin Pan 已提交
256 257
      .def_static(
          "apply",
X
Xin Pan 已提交
258
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
259
              -> std::vector<imperative::VarBase *> {
260 261 262 263 264 265 266 267 268 269 270
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  framework::Variable *v = ret_vars[i];
                  // TODO(minqiyang): use unique_name generator to set a name
                  outputs.emplace_back(
                      new imperative::VarBase("", v, nullptr, true));
                }

                return outputs;
X
Xin Pan 已提交
271 272
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
273 274 275 276 277
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
278

279 280
  BindTracer(&m);

281 282 283
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
284
      .def("_get_dims",
285
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
286
      .def("_set_dims",
Q
qijun 已提交
287
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
288
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
289
           })
Y
yuyang18 已提交
290
      .def("_set_layout",
D
dzhwinter 已提交
291 292 293
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
294
      .def("_alloc_float",
D
dzhwinter 已提交
295
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
296
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
297
           })
Y
yuyang18 已提交
298
      .def("_alloc_float",
Y
Yu Yang 已提交
299
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
300
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
301
           })
Y
yuyang18 已提交
302
      .def("_alloc_int",
Y
Yu Yang 已提交
303
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
304
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
305
           })
Y
yuyang18 已提交
306
      .def("_alloc_int",
D
dzhwinter 已提交
307
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
308
             self.mutable_data<int>(place);
Q
qijun 已提交
309
           })
Y
yuyang18 已提交
310
      .def("_alloc_int",
C
chengduoZH 已提交
311 312 313
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
314
      .def("_alloc_float",
C
chengduoZH 已提交
315 316 317
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
318 319
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
320
      .def("set", PyCPUTensorSetFromArray<double>)
321
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
322
      .def("set", PyCPUTensorSetFromArray<bool>)
323
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
324
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
325
      .def("set", PyCPUTensorSetFromArray<int8_t>)
326
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
327 328
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
329
      .def("set", PyCUDATensorSetFromArray<double>)
330
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
331
      .def("set", PyCUDATensorSetFromArray<bool>)
332
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
333
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
334
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
335 336 337 338 339 340
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
341
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
342
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
343
#endif
344
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
345 346 347 348
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
349
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
350 351
      .def("_dtype", [](Tensor &self) { return self.type(); })
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference);
Y
Yu Yang 已提交
352

X
Xin Pan 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
366
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
367
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
368
     columns, hence [5, 2].
X
Xin Pan 已提交
369 370 371

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
372 373
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
397 398
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
399 400 401 402 403 404 405 406 407 408 409 410 411 412
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
413
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
414 415 416 417 418
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
419
      .def("set_lod",
420
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
421
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
422
             LoD new_lod;
423 424
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
425 426
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
427
             self.set_lod(new_lod);
S
sneaxiy 已提交
428 429 430 431 432 433 434
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
450 451 452 453
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
454
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
455 456
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
457 458

           Args:
459
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
S
sneaxiy 已提交
460
           )DOC")
461 462 463 464 465 466 467 468
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
469 470 471 472 473 474 475
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
476
      // Set above comments of set_lod.
477 478 479 480 481 482 483 484
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
485 486 487 488 489
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
490
               out (List[List[int]): the sequence lengths.
S
sneaxiy 已提交
491 492 493 494 495 496 497 498 499 500 501 502
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
W
wopeizl 已提交
503 504 505 506 507 508 509
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
S
sneaxiy 已提交
510
           )DOC");
D
dangqingqing 已提交
511

Q
qijun 已提交
512 513 514 515 516 517 518 519 520 521 522
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
523 524
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
525 526
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
527 528 529 530 531 532 533 534 535
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
536
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
537
      .def("rows", [](SelectedRows &self) {
538 539 540 541 542
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
543
      });
Q
qijun 已提交
544

545
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
546 547 548

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
549
      .def(py::init<>())
550
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
551
      .def("set_int",
552 553
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
554 555 556 557 558 559 560
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
561
      .def("get_tensor",
562 563
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
564 565
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
566 567 568
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
569 570 571 572 573
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
574 575 576
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
577
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
578 579 580 581 582
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
583
#endif
Y
Refine  
Yu Yang 已提交
584 585 586 587 588
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
589
           py::return_value_policy::reference);
590

S
sneaxiy 已提交
591
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
592

S
sneaxiy 已提交
593 594 595 596
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
597

S
sneaxiy 已提交
598 599
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
600
      .def("push",
S
sneaxiy 已提交
601
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
602
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
603
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
604
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
605
           })
S
sneaxiy 已提交
606 607 608 609
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
610

S
sneaxiy 已提交
611
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
612 613 614 615 616 617
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
618
        py::return_value_policy::copy);
S
sneaxiy 已提交
619

S
sneaxiy 已提交
620
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
640 641
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
642
      .def("var",
643
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
644
             return self.Var(name);
Y
Yu Yang 已提交
645
           },
S
sneaxiy 已提交
646 647
           py::arg("name"),
           R"DOC(
648
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
649

650
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
651
           current scope, the variable would be created. Otherwise,
652
           return the existing variable.
S
sneaxiy 已提交
653 654

           Args:
655 656
               name (str): the variable name.

S
sneaxiy 已提交
657
           Returns:
658
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
659 660 661 662
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
663
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
664
           its parent scope. Return None if not found.
665

S
sneaxiy 已提交
666 667
           Args:
               name (str): the variable name.
668

S
sneaxiy 已提交
669
           Returns:
670
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
671
           )DOC",
672
           py::return_value_policy::reference)
673
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
674 675 676 677 678 679
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
680
           py::return_value_policy::reference)
S
sneaxiy 已提交
681 682 683 684
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
           )DOC");
685

S
sneaxiy 已提交
686 687 688 689 690 691
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
692 693
        R"DOC(
        Create a new scope.
694

S
sneaxiy 已提交
695 696 697
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
698 699
        py::return_value_policy::reference);

Y
Yu Yang 已提交
700 701
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
702 703
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
704 705 706 707 708 709 710 711 712 713
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
714 715
    return ret_values;
  });
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
732
  m.def("prune", [](const ProgramDesc &origin,
733
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
734
    ProgramDesc prog_with_targets(origin);
735
    for (const auto &t : targets) {
736
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
737
    }
738
    proto::ProgramDesc pruned_desc;
739
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
740
    return new ProgramDesc(pruned_desc);
741
  });
742 743 744 745
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
746 747 748
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
749 750
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
751
  // clang-format off
Y
Yu Yang 已提交
752
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
753 754
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
755
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
756 757 758
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
759
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
760
                      -> paddle::platform::DeviceContext* {
761
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
762
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
763
#else
Q
qijun 已提交
764
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
765
#endif
C
chengduoZH 已提交
766 767 768 769 770 771 772 773 774 775 776
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
777
// clang-format on
P
peizhilin 已提交
778
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
779 780
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
781 782 783 784 785
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
        )DOC")
S
sneaxiy 已提交
786 787 788 789 790 791 792 793 794 795 796 797
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
798 799 800 801 802 803
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
804
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
805

806 807 808 809
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
        )DOC")
810
      .def(py::init<>())
S
sneaxiy 已提交
811 812 813 814 815 816
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
817
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
818

819 820 821 822
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
        )DOC")
S
sneaxiy 已提交
823
      .def("__init__",
S
sneaxiy 已提交
824
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
825 826 827
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
828
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
829
           })
S
sneaxiy 已提交
830 831 832 833 834 835 836 837
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
838 839
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
840 841
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
842 843 844 845 846
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
847 848
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
849 850 851 852 853 854
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
855 856 857 858
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
859 860
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
861 862 863 864 865
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
866
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
867
             self = gpu_place;
C
chengduoZH 已提交
868 869
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
870 871
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
872
      });
Y
Yu Yang 已提交
873

Y
Yu Yang 已提交
874 875 876
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
877
                    proto::OpDesc desc;
Y
Yu Yang 已提交
878 879 880 881 882
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
883
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
884
                  })
885
      .def("run",
886
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
887 888 889
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
890
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
891 892 893 894 895
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
896 897 898 899 900 901 902
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
903 904
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
905
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
906
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
907 908 909 910
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
911

F
fengjiayi 已提交
912
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
913
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
914
      .def("close", &Executor::Close)
S
sneaxiy 已提交
915
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
916 917
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
918
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
919 920
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
921
      });
S
sneaxiy 已提交
922

D
dzhwinter 已提交
923
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
924
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
925 926
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
927

928
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
929
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
930
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
931
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
932
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
933 934 935 936 937 938
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
939

940
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
941
  m.def("get_fetch_variable", framework::GetFetchVariable);
942
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
943

X
Xin Pan 已提交
944 945
  m.def("_is_program_version_supported", IsProgramVersionSupported);

946 947 948 949 950
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
951

Y
Yu Yang 已提交
952 953 954 955 956 957 958 959 960
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
961
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
962 963
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
964 965 966 967 968 969 970 971 972 973
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
974 975 976 977 978 979 980
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
981

D
dzhwinter 已提交
982 983 984
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
985
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
986
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
987
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
988

P
peizhilin 已提交
989
#ifndef _WIN32
D
dangqingqing 已提交
990 991 992
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
993
#endif
P
peizhilin 已提交
994
#endif
Y
Yu Yang 已提交
995

996 997 998 999
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1000
      .value("kAll", platform::ProfilerState::kAll)
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1014
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1015
  m.def("reset_profiler", platform::ResetProfiler);
1016
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1017 1018 1019
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1020

1021 1022
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1023
      .def("has", &ir::Pass::Has)
1024 1025 1026
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1027
           })
1028
      .def(
1029
          "set",
1030 1031 1032
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1033 1034
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1035 1036 1037 1038
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
1039
        optim_graph.release();
F
flame 已提交
1040
      });
1041

X
fix  
Xin Pan 已提交
1042 1043
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1058
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1059

Y
yuyang18 已提交
1060
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1061 1062 1063 1064
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1076 1077 1078

        )DOC");

Y
yuyang18 已提交
1079
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1080 1081 1082 1083 1084
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1095
      .def_property(
1096 1097 1098 1099
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1100 1101 1102 1103
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1104 1105 1106 1107 1108
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1109 1110 1111 1112
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1113 1114 1115 1116 1117 1118 1119
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1131 1132 1133 1134 1135 1136
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1137

Y
yuyang18 已提交
1138
  exec_strategy.def_property(
Y
yuyang18 已提交
1139 1140 1141 1142 1143 1144 1145
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1146 1147
      });

C
chengduo 已提交
1148 1149 1150 1151
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1163
)DOC");
Y
yuyang18 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1180
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1181
            self.reduce_ = strategy;
C
chengduo 已提交
1182 1183 1184 1185 1186 1187 1188
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1189 1190 1191 1192 1193
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1194
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1195
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1196 1197 1198 1199 1200 1201
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1202 1203 1204 1205
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1206
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1207
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1208 1209 1210 1211
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1212 1213 1214 1215 1216 1217
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1218
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1228
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1229 1230
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1231
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1232 1233 1234 1235 1236 1237
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1250 1251 1252 1253 1254 1255
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1256
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1257 1258 1259 1260 1261
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
Q
qingqing01 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

                Default False)DOC")
D
dzhwinter 已提交
1291 1292 1293 1294
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1295 1296 1297 1298
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1299
      .def_property(
D
dzhwinter 已提交
1300 1301 1302
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1303 1304 1305 1306
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1307
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1308
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1309 1310 1311 1312 1313
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1314 1315

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1316
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1317
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1318
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1319 1320 1321 1322
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1323 1324 1325 1326 1327
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1328 1329 1330 1331
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1332 1333 1334 1335 1336 1337
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1338

1339
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1340
  BindAsyncExecutor(&m);
F
flame 已提交
1341 1342
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1343
  BindInferenceApi(&m);
L
Luo Tao 已提交
1344
}
1345
}  // namespace pybind
1346
}  // namespace paddle