nn.py 199.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#   Copyright (c ) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
16
#
D
dzhwinter 已提交
17 18 19
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
20
#
D
dzhwinter 已提交
21
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
22
#
D
dzhwinter 已提交
23 24 25 26 27
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
28
"""
29
All layers just related to the neural network.
Y
Yu Yang 已提交
30 31 32 33 34
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
35
from ..param_attr import ParamAttr
36 37 38
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
Y
yuyang18 已提交
39
import random
F
fengjiayi 已提交
40
from .. import unique_name
41
from functools import reduce
Y
Yu Yang 已提交
42 43

__all__ = [
Y
ying 已提交
44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
47
    'dynamic_lstmp',
G
guosheng 已提交
48
    'dynamic_gru',
Y
ying 已提交
49 50 51 52 53 54 55 56 57
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
58
    'conv3d',
Y
ying 已提交
59
    'sequence_pool',
60 61
    'sequence_softmax',
    'softmax',
Y
ying 已提交
62
    'pool2d',
Y
yuyang18 已提交
63
    'pool3d',
Y
ying 已提交
64 65 66
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
67
    'conv3d_transpose',
Y
ying 已提交
68 69 70 71 72 73
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
74
    'reduce_prod',
Y
ying 已提交
75 76 77 78
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
79 80
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
81 82
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
83
    'topk',
Y
ying 已提交
84 85
    'warpctc',
    'sequence_reshape',
86
    'transpose',
87
    'im2sequence',
88
    'nce',
W
weixing02 已提交
89
    'hsigmoid',
Q
Qiao Longfei 已提交
90
    'beam_search',
91
    'row_conv',
92
    'multiplex',
G
guosheng 已提交
93
    'layer_norm',
94 95
    'softmax_with_cross_entropy',
    'smooth_l1',
96
    'one_hot',
Y
Yu Yang 已提交
97
    'autoincreased_step_counter',
C
caoying03 已提交
98
    'reshape',
Y
yangyaming 已提交
99
    'lod_reset',
D
dragonwarrior 已提交
100
    'lrn',
G
guosheng 已提交
101
    'pad',
102
    'label_smooth',
103
    'roi_pool',
W
whs 已提交
104
    'dice_loss',
F
fengjiayi 已提交
105 106
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
107
    'resize_bilinear',
W
whs 已提交
108
    'gather',
109
    'random_crop',
Y
yuyang18 已提交
110 111 112
    'mean_iou',
    'relu',
    'log',
113
    'crop',
114
    'rank_loss',
J
jerrywgz 已提交
115
    'prelu',
116
    'flatten',
Y
Yu Yang 已提交
117 118 119 120 121 122 123 124
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
125
       use_mkldnn=False,
Y
Yu Yang 已提交
126
       act=None,
J
Jacek Czaja 已提交
127
       is_test=False,
128
       name=None):
Y
Yu Yang 已提交
129
    """
130
    **Fully Connected Layer**
Y
Yu Yang 已提交
131

132 133 134 135 136 137 138 139
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
140
    to the output as well.
C
caoying03 已提交
141

C
caoying03 已提交
142
    This process can be formulated as follows:
143 144 145

    .. math::

146
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
147 148 149

    In the above equation:

C
caoying03 已提交
150 151 152 153
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
154
    * :math:`Act`: The activation function.
C
caoying03 已提交
155
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
156 157

    Args:
R
ranqiu 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
173 174
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
175
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
176
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
177 178
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
179
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
180

181
    Returns:
F
fengjiayi 已提交
182
        Variable: The transformation result.
183 184

    Raises:
C
caoying03 已提交
185
        ValueError: If rank of the input tensor is less than 2.
186 187 188 189

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
190
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
191
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
192
    """
C
caoying03 已提交
193

C
caoying03 已提交
194
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
195 196 197 198

    dtype = helper.input_dtype()

    mul_results = []
199 200
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
201 202 203
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
204

Y
Yu Yang 已提交
205
        w = helper.create_parameter(
206 207
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
208
        helper.append_op(
209 210 211
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
212
            outputs={"Out": tmp},
M
mozga-intel 已提交
213 214
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
215 216 217 218
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
219
    else:
220 221
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
222 223 224 225
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
226 227 228 229
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
230 231


232 233 234
def embedding(input,
              size,
              is_sparse=False,
235
              is_distributed=False,
236 237 238
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
239
    """
240 241
    **Embedding Layer**

242
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
243 244
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
245 246 247

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
248 249

    Args:
250 251 252 253 254
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
255
        is_distributed(bool): Whether to run lookup table from remote parameter server.
256 257
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
258
            with zeros whenever lookup encounters it in :attr:`input`. If
259
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
260 261
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
262
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
263

264 265 266
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
267

268 269
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
270

C
chengduoZH 已提交
271
          dict_size = len(dataset.ids)
272
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
273
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
274 275 276 277 278 279
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
280 281
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
282 283 284 285 286
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
287 288 289 290 291
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
292 293 294
    return tmp


Y
yi.wu 已提交
295
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
296 297
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
298 299
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
300 301 302 303 304 305 306
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
307 308
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
309
    """
Y
yi.wu 已提交
310
    ${comment}
Y
Yibing Liu 已提交
311 312

    Args:
Y
yi.wu 已提交
313 314
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
315 316 317 318 319 320 321
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

322
        param_attr(ParamAttr|None): The parameter attribute for the learnable
323
                               hidden-hidden weights.
Y
Yibing Liu 已提交
324 325 326

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
327 328
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
329
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
330 331 332
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
333

334
                              1. `use_peepholes = False`
Y
yi.wu 已提交
335 336
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
337
                              2. `use_peepholes = True`
Y
yi.wu 已提交
338
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
339
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
340
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
341 342 343 344 345 346 347 348
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
349 350

    Returns:
Y
Yibing Liu 已提交
351 352
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
353

Y
Yibing Liu 已提交
354
    Examples:
Y
Yibing Liu 已提交
355 356
        .. code-block:: python

Y
Yibing Liu 已提交
357 358
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
359
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
360 361
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
362
    """
363

Y
Yu Yang 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
378 379 380 381 382 383 384 385 386 387
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
388 389 390

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
391
        inputs=inputs,
Y
Yu Yang 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
408 409 410 411 412 413 414 415 416 417 418
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
419 420
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
421 422 423
    """
    **Dynamic LSTMP Layer**

424 425 426 427 428 429
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
430 431 432 433 434

    The formula is as follows:

    .. math::

435
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
436

437
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
438

439
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
440

441
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
442

443
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
444

445
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
446

447
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
448

Y
Yibing Liu 已提交
449 450 451 452 453 454
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
455
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
456
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
457
          bias vector).
Y
Yibing Liu 已提交
458 459 460
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
461
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
462
    * :math:`h`: The hidden state.
463
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
464 465
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
466
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
467
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
468
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
469 470
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
471 472 473 474

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
475

Y
Yibing Liu 已提交
476 477 478 479 480 481 482 483 484 485 486 487
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
488
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
489 490
                               hidden-hidden weight and projection weight.

491 492
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
493 494
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
495 496
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
497 498
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
499 500 501 502 503 504
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
505
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
506 507 508
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
509
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
510 511 512 513 514 515 516 517 518
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
519
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
520 521
                              default "tanh".
        proj_activation(str): The activation for projection output.
522
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
523 524
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
525 526
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
527 528

    Returns:
529 530 531 532
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
533 534

    Examples:
535

Y
Yibing Liu 已提交
536 537
        .. code-block:: python

538 539 540 541
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
542
            hidden_dim, proj_dim = 512, 256
543
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
544
                                     act=None, bias_attr=None)
545 546 547
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
548 549 550 551
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
552
    """
553

Y
Yibing Liu 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
600 601 602 603 604 605 606 607 608
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
609
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
610

611
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
612
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
613

G
guosheng 已提交
614 615 616 617 618 619 620 621 622
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
623

G
guosheng 已提交
624
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
625

G
guosheng 已提交
626
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
627 628
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
629 630 631 632
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
633
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
634 635

    Args:
636 637
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
638
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
639
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
640 641
            is the hidden size.
        size(int): The dimension of the gru cell.
642
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
643 644
            hidden-hidden weight matrix. Note:

645
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
646
              :math:`D` is the hidden size.
647
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
648
              The first part are weights of the update gate and reset gate with
649
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
650
              candidate hidden state with shape :math:`(D \\times D)`.
651
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
652
            hidden-hidden bias.
653
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
654 655 656
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
657
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
658
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
659 660 661 662
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
663 664

    Returns:
G
guosheng 已提交
665
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
666
            and sequence length is the same with the input.
667

G
guosheng 已提交
668
    Examples:
669

G
guosheng 已提交
670 671
        .. code-block:: python

672 673 674 675
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
676
            hidden_dim = 512
677
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
678 679 680 681 682 683 684 685 686 687
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
688
    batch_size = input.shape[0]
G
guosheng 已提交
689 690 691
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
692 693 694
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
718 719 720
def gru_unit(input,
             hidden,
             size,
721 722
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
723
             activation='tanh',
724
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
725
    """
726
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
727

728 729
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
730

731
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
732

733
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
734

735
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
736 737

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
738 739 740
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
741 742
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

743 744
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
745 746 747
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
748 749 750 751 752

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
753 754
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
755 756 757 758
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
759

760 761 762 763 764 765
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
766

767
             # assuming we have x_t_data and prev_hidden of size=10
768
             x_t = fluid.layers.fc(input=x_t_data, size=30)
769 770
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
786 787
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
788

789 790 791 792
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
793
    # create bias
794
    if helper.bias_attr:
Y
Yu Yang 已提交
795 796 797
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
798
        inputs['Bias'] = bias
Y
Yu Yang 已提交
799 800 801

    helper.append_op(
        type='gru_unit',
802
        inputs=inputs,
Y
Yu Yang 已提交
803 804 805 806 807 808
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
809 810
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
811 812 813 814 815
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
816
@templatedoc()
817
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
818 819 820 821 822 823 824
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
825
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
826 827 828 829
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
830 831 832
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
833 834

    """
Y
Yu Yang 已提交
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
860
@templatedoc()
861
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
862 863 864 865 866
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
867

Y
yuyang18 已提交
868
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
869

Y
yuyang18 已提交
870 871 872
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
873
        Variable: ${viterbi_path_comment}
874

Y
yi.wu 已提交
875 876 877 878 879
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
880
    """
Y
Yu Yang 已提交
881 882 883 884 885 886 887 888 889 890 891 892 893
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
894
@templatedoc()
F
fengjiayi 已提交
895
def cos_sim(X, Y):
Y
Yu Yang 已提交
896
    """
Y
yi.wu 已提交
897 898 899
    ${comment}

    Args:
900 901
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
902

Y
yi.wu 已提交
903
    Returns:
904
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
905
    """
F
fengjiayi 已提交
906
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


920
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
921 922 923 924 925
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
926
    training. The dropout operator randomly sets (according to the given dropout
927 928 929 930
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
931 932
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
933 934 935 936 937 938 939
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
940 941

    Returns:
942
        Variable: A tensor variable is the shape with `x`.
943 944

    Examples:
945

946 947
        .. code-block:: python

948 949
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
950 951
    """

F
fengjiayi 已提交
952
    helper = LayerHelper('dropout', **locals())
953 954
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
955 956 957 958

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

959 960 961 962 963
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
964 965 966 967 968 969
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
970 971 972
    return out


F
fengjiayi 已提交
973
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
974
    """
Y
Yibing Liu 已提交
975 976
    **Cross Entropy Layer**

977 978 979
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
980 981

    1) One-hot cross-entropy:
F
fengjiayi 已提交
982
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
983

Y
Yibing Liu 已提交
984
        .. math::
Y
yangyaming 已提交
985

Y
Yibing Liu 已提交
986 987 988
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
989 990
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
991 992 993 994 995

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
996
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
997 998 999
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1000 1001
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1002
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1003

Y
Yibing Liu 已提交
1004
    Args:
Y
yangyaming 已提交
1005
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1006 1007 1008 1009
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1010
        label (Variable|list): the ground truth which is a 2-D tensor. When
1011 1012 1013 1014
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1015
        soft_label (bool): a flag indicating whether to
1016 1017
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
1018 1019 1020 1021 1022

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1023 1024 1025 1026 1027
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1028 1029 1030 1031 1032 1033

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1034
    """
F
fengjiayi 已提交
1035
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1036 1037 1038 1039 1040 1041
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
1042
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
1043 1044 1045
    return out


F
fengjiayi 已提交
1046
def square_error_cost(input, label):
Y
Yu Yang 已提交
1047
    """
1048 1049
    **Square error cost layer**

1050 1051
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1052

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1066 1067
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1068 1069

    Returns:
G
guosheng 已提交
1070
        Variable: The tensor variable storing the element-wise squared error \
1071
                  difference of input and label.
1072 1073 1074 1075 1076 1077 1078 1079

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1080
    """
F
fengjiayi 已提交
1081
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1091 1092
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1093 1094 1095
    return square_out


Y
yi.wu 已提交
1096
@templatedoc()
Y
Yu Yang 已提交
1097 1098 1099 1100
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1101
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1102
    """
Y
yi.wu 已提交
1103
    **Chunk Evaluator**
Y
yi.wu 已提交
1104

Y
yangyaming 已提交
1105
    This function computes and outputs the precision, recall and
1106
    F1-score of chunk detection.
Y
yi.wu 已提交
1107

Y
yi.wu 已提交
1108 1109 1110 1111 1112 1113 1114 1115
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1116

Y
yi.wu 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1142

Y
yi.wu 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1167
    Args:
1168 1169 1170 1171 1172
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1173

Y
yi.wu 已提交
1174
    Returns:
Y
update  
yi.wu 已提交
1175 1176 1177
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1178

Y
yi.wu 已提交
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1191
    """
F
fengjiayi 已提交
1192
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1193 1194 1195 1196 1197

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1198 1199 1200
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1201 1202 1203 1204 1205 1206 1207 1208

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1209 1210 1211 1212
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1213 1214 1215
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1216 1217
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1218
        })
1219 1220
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1221 1222


1223
@templatedoc()
Y
Yu Yang 已提交
1224 1225 1226 1227 1228 1229 1230
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1231
                  act=None):
Y
Yu Yang 已提交
1232 1233 1234 1235
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1246

1247 1248
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1274
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1275 1276 1277
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1278
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1298

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1321
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1322
    """
F
fengjiayi 已提交
1323 1324
    The input of the softmax operator is a tensor of any rank. The output tensor 
    has the same shape as the input.
Q
qiaolongfei 已提交
1325

F
fengjiayi 已提交
1326 1327 1328 1329 1330 1331 1332
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's 
    second dimension(row length) is as same as the last dimension of the input 
    tensor, and the first dimension(column length) is the product of all other 
    dimensions of the input tensor. For each row of the matrix, the softmax operator 
    squashes the K-dimensional(K is the width of the matrix, which is also the size 
    of the input tensor's last dimension) vector of arbitrary real values to a 
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1333 1334 1335 1336 1337 1338 1339

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1340
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1375 1376 1377
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1378 1379
           stride=1,
           padding=0,
1380
           dilation=1,
Y
Yu Yang 已提交
1381 1382 1383
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1384
           use_cudnn=True,
1385
           use_mkldnn=False,
1386 1387
           act=None,
           name=None):
Y
Yu Yang 已提交
1388
    """
C
chengduoZH 已提交
1389
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1390 1391
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1392
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1393 1394 1395 1396 1397 1398 1399
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1400 1401 1402
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1403

1404
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1405

C
chengduoZH 已提交
1406 1407
    .. math::

C
refine  
chengduoZH 已提交
1408
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1409

T
tensor-tang 已提交
1410
    Where:
C
chengduoZH 已提交
1411

1412 1413 1414 1415 1416
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1417
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1418 1419 1420

    Example:

1421 1422
        - Input:

W
weixing02 已提交
1423
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1424

W
weixing02 已提交
1425
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1426

1427
        - Output:
T
tensor-tang 已提交
1428

W
weixing02 已提交
1429
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1430

C
chengduoZH 已提交
1431
        Where
1432 1433

        .. math::
C
chengduoZH 已提交
1434

W
weixing02 已提交
1435 1436
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1437 1438

    Args:
1439
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1440
        num_filters(int): The number of filter. It is as same as the output
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1463 1464
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1465 1466 1467
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1468 1469

    Returns:
G
guosheng 已提交
1470
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1471 1472
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1473
    Raises:
1474 1475
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1476

C
chengduoZH 已提交
1477 1478 1479
    Examples:
        .. code-block:: python

1480 1481
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1482 1483 1484
    """

    num_channels = input.shape[1]
1485 1486

    l_type = 'conv2d'
X
xzl 已提交
1487 1488
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1489
        l_type = 'depthwise_conv2d'
1490 1491 1492 1493

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1494 1495 1496 1497 1498 1499 1500
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1501 1502 1503
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1504
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1505

C
chengduoZH 已提交
1506 1507
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1525
        type=l_type,
Y
Yu Yang 已提交
1526 1527 1528 1529 1530
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1531 1532 1533
        attrs={
            'strides': stride,
            'paddings': padding,
1534
            'dilations': dilation,
C
chengduoZH 已提交
1535
            'groups': groups,
1536 1537
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1538
        })
Y
Yu Yang 已提交
1539 1540 1541 1542 1543 1544

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1563 1564 1565 1566 1567 1568
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1578 1579
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1580 1581 1582
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1583
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1609
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1610 1611
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1612
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1613 1614
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1615
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1616 1617
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1618
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1645 1646
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1702
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1703 1704 1705 1706

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1707
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1708
    """
Y
yangyaming 已提交
1709 1710 1711
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1723
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1724 1725 1726 1727 1728
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1729
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1730 1731 1732 1733 1734 1735 1736

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1737 1738
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1739

L
Luo Tao 已提交
1740 1741
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1742
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1743 1744 1745 1746 1747 1748 1749 1750
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1751

Y
yangyaming 已提交
1752
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1753 1754 1755 1756 1757
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1758 1759
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1760
    """
F
fengjiayi 已提交
1761
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1773 1774 1775 1776 1777
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1778 1779 1780
    return pool_out


F
fengjiayi 已提交
1781
def sequence_first_step(input):
L
Luo Tao 已提交
1782
    """
L
Luo Tao 已提交
1783
    This function gets the first step of sequence.
L
Luo Tao 已提交
1784 1785 1786 1787

    .. code-block:: text

       x is a 1-level LoDTensor:
1788
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1789 1790 1791 1792 1793
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1794
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1795
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1796

L
Luo Tao 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1806

Y
yangyaming 已提交
1807
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1808 1809 1810
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1811 1812 1813
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1814
def sequence_last_step(input):
L
Luo Tao 已提交
1815
    """
L
Luo Tao 已提交
1816
    This function gets the last step of sequence.
L
Luo Tao 已提交
1817 1818 1819 1820

    .. code-block:: text

       x is a 1-level LoDTensor:
1821
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1822 1823 1824 1825 1826
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1827
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1828
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1829

L
Luo Tao 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1839

Y
yangyaming 已提交
1840
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1841 1842 1843
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1844 1845 1846
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1847
@templatedoc()
Y
Yu Yang 已提交
1848
def pool2d(input,
C
chengduoZH 已提交
1849 1850
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1851 1852
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1853
           global_pooling=False,
C
chengduoZH 已提交
1854
           use_cudnn=True,
1855
           ceil_mode=False,
1856
           use_mkldnn=False,
C
caoying03 已提交
1857
           name=None):
Y
Yu Yang 已提交
1858
    """
F
fengjiayi 已提交
1859
    ${comment}
1860 1861

    Args:
1862 1863 1864
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1865
                          feature, and W is the width of the feature.
1866
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1867
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1868
        pool_type: ${pooling_type_comment}
1869 1870
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1871 1872 1873 1874
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1875
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1876 1877
                        layer will be named automatically.

1878
    Returns:
F
fengjiayi 已提交
1879
        Variable: The pooling result.
F
fengjiayi 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1893 1894 1895 1896
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1897
                            global_pooling=False)
Y
Yu Yang 已提交
1898 1899 1900 1901 1902
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1903

C
chengduoZH 已提交
1904 1905 1906 1907 1908
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1909 1910 1911 1912
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1913 1914
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1915

C
Add doc  
chengduoZH 已提交
1916
    l_type = 'pool2d'
1917 1918

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1919 1920 1921 1922
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1952
    pooling configurations mentioned in input parameters.
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1966

1967
    Returns:
1968
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1969 1970 1971 1972 1973
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1974

C
chengduoZH 已提交
1975 1976 1977 1978 1979
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1980 1981 1982
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1983

C
chengduoZH 已提交
1984 1985
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1986

1987 1988
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1989 1990 1991 1992
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1993
        type=l_type,
Y
Yu Yang 已提交
1994 1995 1996 1997 1998 1999 2000
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2001
            "paddings": pool_padding,
2002
            "use_cudnn": use_cudnn,
2003 2004
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2017
               data_layout='NCHW',
Y
Yang Yang 已提交
2018
               in_place=False,
2019
               use_mkldnn=False,
2020 2021
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2022
               moving_variance_name=None,
2023 2024
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2025
    """
Q
qiaolongfei 已提交
2026 2027 2028 2029
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2030

Q
qiaolongfei 已提交
2031
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2032

Q
qiaolongfei 已提交
2033 2034
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2035 2036 2037
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2050 2051

    Args:
Q
qiaolongfei 已提交
2052
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2053 2054 2055 2056
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2057 2058 2059
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
Q
qiaolongfei 已提交
2060
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2061 2062 2063 2064 2065
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2066
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2067
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2068 2069

    Returns:
Q
qiaolongfei 已提交
2070
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2071 2072 2073 2074 2075 2076 2077

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2101
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2102

2103 2104
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2105 2106 2107
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2108
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2109
        shape=param_shape,
2110 2111 2112 2113 2114 2115 2116
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2117
            trainable=False,
W
wanghaoshuang 已提交
2118
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2119
        shape=param_shape,
2120 2121
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2122 2123 2124 2125 2126 2127

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2128 2129
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2130

Y
Yang Yang 已提交
2131
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2149 2150 2151 2152
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2153 2154
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2155
        })
Y
Yu Yang 已提交
2156 2157 2158 2159

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2160
@templatedoc()
G
guosheng 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2171
    ${comment}
G
guosheng 已提交
2172 2173 2174

    The formula is as follows:

Y
yuyang18 已提交
2175
    ..  math::
G
guosheng 已提交
2176 2177 2178 2179 2180 2181 2182

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2183 2184 2185 2186 2187 2188 2189 2190
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2191

G
guosheng 已提交
2192 2193
    Args:
        input(Variable): The input tensor variable.
2194
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2195
            normalization.
2196
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2197
            normalization.
2198
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2199
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2200
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2201 2202 2203 2204 2205 2206
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2207
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2208 2209

    Returns:
Y
yuyang18 已提交
2210
        ${y_comment}
G
guosheng 已提交
2211 2212 2213

    Examples:

Y
yuyang18 已提交
2214 2215 2216
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2232
    if shift:
G
guosheng 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2257 2258 2259 2260
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2261 2262 2263
                     padding=0,
                     stride=1,
                     dilation=1,
2264
                     groups=None,
C
caoying03 已提交
2265
                     param_attr=None,
2266
                     bias_attr=None,
C
chengduoZH 已提交
2267
                     use_cudnn=True,
2268
                     act=None,
C
caoying03 已提交
2269
                     name=None):
Y
Yu Yang 已提交
2270
    """
2271 2272 2273 2274 2275 2276 2277 2278
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2279 2280
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2281 2282 2283
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2284 2285 2286 2287 2288

    For each input :math:`X`, the equation is:

    .. math::

2289
        Out = \sigma (W \\ast X + b)
2290

2291
    Where:
2292 2293 2294

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2295 2296 2297 2298
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2299

2300 2301 2302 2303
    Example:

        - Input:

2304
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2305

2306
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2307 2308 2309

        - Output:

2310
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2311 2312

        Where
Y
Yu Yang 已提交
2313

2314 2315 2316 2317
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2318 2319

    Args:
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2353 2354

    Returns:
2355
        Variable: The tensor variable storing the convolution transpose result.
2356 2357

    Raises:
2358 2359
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2360 2361 2362 2363

    Examples:
       .. code-block:: python

2364 2365
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2366
    """
2367 2368 2369 2370 2371 2372 2373 2374 2375

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2376 2377 2378
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2379 2380 2381
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2382

C
chengduoZH 已提交
2383 2384
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2385

Y
Yu Yang 已提交
2386 2387 2388 2389 2390
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2391

Y
Yu Yang 已提交
2392 2393
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2394

C
chengduoZH 已提交
2395 2396 2397 2398
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
2399
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2400 2401 2402
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2403

2404 2405
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2406 2407 2408
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2409
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2410
    helper.append_op(
2411
        type=op_type,
Y
Yu Yang 已提交
2412 2413
        inputs={'Input': [input],
                'Filter': [img_filter]},
2414
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2415
        attrs={
2416 2417 2418 2419 2420
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2421 2422
        })

2423 2424 2425
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2426 2427


2428
def conv3d_transpose(input,
Y
Yu Yang 已提交
2429 2430 2431
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2432 2433 2434
                     padding=0,
                     stride=1,
                     dilation=1,
2435
                     groups=None,
C
caoying03 已提交
2436
                     param_attr=None,
2437
                     bias_attr=None,
C
chengduoZH 已提交
2438
                     use_cudnn=True,
2439
                     act=None,
C
caoying03 已提交
2440
                     name=None):
Y
Yu Yang 已提交
2441
    """
2442
    **Convlution3D transpose layer**
2443

2444
    The convolution3D transpose layer calculates the output based on the input,
2445
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2446 2447 2448 2449 2450 2451
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2452 2453 2454
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2455 2456 2457 2458 2459

    For each input :math:`X`, the equation is:

    .. math::

2460
        Out = \sigma (W \\ast X + b)
2461 2462 2463

    In the above equation:

2464 2465
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2466 2467 2468 2469
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2470

2471 2472 2473 2474
    Example:

        - Input:

2475
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2476

2477
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2478 2479 2480

        - Output:

2481
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2482 2483

        Where
Y
Yu Yang 已提交
2484

2485 2486
        .. math::

2487 2488 2489
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2490 2491

    Args:
2492
        input(Variable): The input image with [N, C, D, H, W] format.
2493 2494 2495
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2496
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2497 2498
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2499
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2500 2501 2502
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2503 2504
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2505
        stride(int|tuple): The stride size. If stride is a tuple, it must
2506 2507
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2508
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2509 2510 2511
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2512 2513 2514 2515 2516
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2517 2518 2519
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2520 2521 2522 2523 2524
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2525 2526

    Returns:
2527
        Variable: The tensor variable storing the convolution transpose result.
2528 2529

    Raises:
2530 2531
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2532 2533 2534 2535

    Examples:
       .. code-block:: python

2536 2537
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2538
    """
2539 2540
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2541
    if not isinstance(input, Variable):
2542
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2543 2544
    input_channel = input.shape[1]

2545 2546 2547
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2548

C
chengduoZH 已提交
2549 2550 2551
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2552 2553 2554 2555 2556 2557
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2558 2559 2560
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2561

2562
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
C
chengduoZH 已提交
2563
                         padding[0] - 1) / dilation[0] + 1
2564
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
C
chengduoZH 已提交
2565
                         padding[1] - 1) / dilation[1] + 1
2566 2567 2568
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
                         padding[2] - 1) / dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2569
    else:
2570 2571
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2572

2573 2574
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2575 2576 2577
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2578
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2579
    helper.append_op(
2580
        type=l_type,
Y
Yu Yang 已提交
2581 2582
        inputs={'Input': [input],
                'Filter': [img_filter]},
2583
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2584 2585 2586 2587
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2588
            'groups': groups,
C
chengduoZH 已提交
2589 2590
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2591

2592 2593
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2594
    return out
Y
yangyaming 已提交
2595 2596


Y
yangyaming 已提交
2597
def sequence_expand(x, y, ref_level=-1, name=None):
2598
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2599 2600 2601 2602
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2603 2604 2605 2606 2607

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2608
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2609
                x.data = [[a], [b], [c], [d]]
2610 2611 2612
                x.dims = [4, 1]

            y is a LoDTensor:
2613 2614
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2615

Y
yangyaming 已提交
2616
            ref_level: 0
2617

Y
yangyaming 已提交
2618
            then output is a 1-level LoDTensor:
2619
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2620
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2621 2622 2623 2624
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2625
                x.data = [[a], [b], [c]]
2626 2627 2628
                x.dims = [3, 1]

            y is a LoDTensor:
2629
                y.lod = [[2, 0, 3]]
2630

Y
yangyaming 已提交
2631
            ref_level: -1
2632

Y
yangyaming 已提交
2633 2634 2635
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2636 2637 2638
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2639 2640
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2641
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2642
                        will be named automatically.
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2653
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2654
    """
Y
yangyaming 已提交
2655
    helper = LayerHelper('sequence_expand', input=x, **locals())
2656 2657 2658
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2659 2660 2661 2662 2663
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2664
    return tmp
2665 2666


2667 2668 2669 2670 2671 2672 2673 2674 2675
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2676 2677
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2678 2679 2680

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
2681 2682 2683 2684 2685 2686 2687 2688
    
    This layer does the search in beams for one time step. Specifically, it 
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
2689 2690 2691 2692 2693 2694 2695 2696 2697
 
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2698

2699
    Args:
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2725

2726
    Returns:
2727 2728
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2729 2730 2731 2732

    Examples:
        .. code-block:: python

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2761
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2779 2780 2781 2782 2783 2784 2785
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2786

2787 2788 2789 2790 2791 2792 2793 2794 2795
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2796

2797 2798 2799 2800 2801 2802
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2803

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2829 2830 2831 2832
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2833
              param_attr=None,
C
caoying03 已提交
2834 2835
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2836 2837 2838 2839
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2840
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2841

2842
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2843

2844
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2845

2846
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2847 2848 2849

            h_t & = o_t tanh(c_t)

2850 2851 2852 2853 2854 2855
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2856 2857 2858

        .. math::

2859
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2860 2861 2862 2863 2864 2865 2866 2867

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2868
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2869 2870

    Args:
Y
yangyaming 已提交
2871 2872 2873 2874 2875 2876
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2877
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2878 2879
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2880 2881
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2882 2883
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2884 2885

    Returns:
Y
yangyaming 已提交
2886
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2887 2888

    Raises:
2889 2890 2891 2892
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2893 2894 2895 2896 2897 2898

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2899
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2900
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2901
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2918
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2919 2920 2921 2922
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2923 2924
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2925 2926 2927
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2928
    size = cell_t_prev.shape[1]
2929
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2930 2931
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2932
                param_attr=param_attr,
2933
                bias_attr=bias_attr)
Y
yangyaming 已提交
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2946
    return h, c
G
guosheng 已提交
2947 2948


C
caoying03 已提交
2949
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2950
    """
Y
yangyaming 已提交
2951
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2952 2953 2954

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2955
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2956 2957
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2958 2959
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2960
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2961
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2962
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2963 2964
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2965 2966 2967

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2968

G
guosheng 已提交
2969 2970 2971 2972 2973 2974
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
2975
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
2976 2977 2978 2979
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2980 2981 2982 2983

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
2984
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
2985 2986 2987
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2988 2989 2990
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2991 2992
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2993 2994 2995 2996 2997
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2998
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2999 3000 3001 3002
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3003 3004


C
caoying03 已提交
3005
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3006
    """
Y
Yibing Liu 已提交
3007
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3008 3009 3010

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3011 3012 3013
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3014
            must be in the range :math:`[-rank(input), rank(input))`. If
3015
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3016
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3017 3018
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3019
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3020
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3021
                       will be named automatically.
G
guosheng 已提交
3022 3023

    Returns:
Y
Yibing Liu 已提交
3024
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3025

G
guosheng 已提交
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3036 3037
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3038 3039 3040 3041 3042 3043 3044

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3045 3046 3047
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3048 3049
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3050 3051 3052 3053 3054
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3055
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3056 3057 3058 3059
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3060 3061


C
caoying03 已提交
3062
def reduce_max(input, dim=None, keep_dim=False, name=None):
3063
    """
Y
yangyaming 已提交
3064
    Computes the maximum of tensor elements over the given dimension.
3065 3066 3067

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3068
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3069 3070 3071
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3072
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3073 3074
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3075
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3076 3077
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3078 3079 3080

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3081

3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3093 3094 3095 3096 3097 3098 3099

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3100 3101 3102
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3103 3104
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3105 3106 3107 3108 3109
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3110
            'dim': dim if dim != None else [0],
3111 3112 3113 3114 3115 3116
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3117
def reduce_min(input, dim=None, keep_dim=False, name=None):
3118
    """
Y
yangyaming 已提交
3119
    Computes the minimum of tensor elements over the given dimension.
3120 3121 3122

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3123
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3124 3125 3126
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3127
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3128 3129
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3130
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3131 3132
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3133 3134 3135

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3136

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3148 3149 3150 3151 3152 3153 3154

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3155 3156 3157
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3158 3159
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3160 3161 3162 3163 3164
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3165
            'dim': dim if dim != None else [0],
3166 3167 3168 3169
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3170 3171


3172 3173 3174 3175 3176 3177
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3178
        dim (list|int|None): The dimensions along which the product is performed. If
3179 3180
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3181 3182
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3183 3184 3185
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3186
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3187
            layer will be named automatically.
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3202
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3203
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3204 3205 3206 3207 3208 3209 3210

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3211 3212 3213
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3214 3215
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3216 3217 3218 3219 3220
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3221
            'dim': dim if dim != None else [0],
3222 3223 3224 3225 3226 3227
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3228
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3229
    """
C
caoying03 已提交
3230
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3231 3232 3233

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3234 3235 3236 3237 3238
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3239
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3240
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3241
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3242 3243
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3244 3245

    Returns:
D
dzhwinter 已提交
3246
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3247 3248 3249 3250 3251 3252 3253 3254 3255

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3256 3257
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3287 3288 3289 3290 3291 3292 3293 3294 3295


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3296
    .. math::
3297 3298

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3299 3300 3301 3302 3303

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3304
        x(Variable|list): The input tensor to l2_normalize layer.
3305
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3306 3307
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3308
        epsilon(float): The epsilon value is used to avoid division by zero, \
3309
            the defalut value is 1e-10.
3310
        name(str|None): A name for this layer(optional). If set None, the layer \
3311
            will be named automatically.
C
caoying03 已提交
3312 3313

    Returns:
3314
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3315 3316

    Examples:
3317

C
caoying03 已提交
3318 3319
        .. code-block:: python

3320 3321 3322 3323
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3324 3325
    """

F
fengjiayi 已提交
3326 3327
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3328 3329
    helper = LayerHelper("l2_normalize", **locals())

3330 3331
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3332
    helper.append_op(
3333 3334 3335 3336
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3337
        attrs={
3338 3339
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3340 3341
        })
    return out
3342 3343


3344
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3345
    """
Y
ying 已提交
3346 3347 3348 3349
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3350

C
chengduoZH 已提交
3351
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3352
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3353

3354 3355 3356 3357 3358
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3359
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3360

C
chengduoZH 已提交
3361
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3362
      performs in the following way.
G
guosheng 已提交
3363

3364
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3365
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3366
        last two dimensions and a batched matrix multiply supporting broadcast
3367
        applies on the two tensors.
G
guosheng 已提交
3368

Y
ying 已提交
3369 3370
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3371
    removed after matrix multiplication.
G
guosheng 已提交
3372 3373 3374

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3375 3376 3377
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3378
        name(str|None): A name for this layer(optional). If set None, the layer
3379
            will be named automatically.
G
guosheng 已提交
3380 3381

    Returns:
3382
        Variable: The product Tensor variable.
G
guosheng 已提交
3383

G
guosheng 已提交
3384 3385 3386
    Examples:
        .. code-block:: python

3387
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3388 3389
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3390

3391 3392
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3393

3394 3395
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3396

3397 3398
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3399 3400 3401 3402

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3403 3404
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3405

Y
ying 已提交
3406
            # x: [M], y: [N]
3407
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3408
    """
Y
ying 已提交
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3421
            y_shape = y_shape + [1]
Y
ying 已提交
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3438
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3439
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3440
    helper.append_op(
3441 3442 3443 3444 3445 3446 3447
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3448 3449


3450
def topk(input, k, name=None):
Q
qingqing01 已提交
3451 3452 3453 3454
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3455
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3456 3457 3458 3459 3460 3461
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3483 3484 3485
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3486
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3487
                 of input.
3488
        name(str|None): A name for this layer(optional). If set None, the layer
3489
                       will be named automatically.
F
fengjiayi 已提交
3490
                       Default: None
Q
qingqing01 已提交
3491 3492

    Returns:
3493 3494 3495
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3496
        within the last dimension of input.
Q
qingqing01 已提交
3497

F
fengjiayi 已提交
3498 3499
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3500 3501 3502 3503 3504 3505 3506

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
F
fengjiayi 已提交
3507
    if k < 1 or k >= shape[-1]:
Q
qingqing01 已提交
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3525
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3526
    """
Y
ying 已提交
3527 3528 3529 3530 3531 3532 3533 3534 3535
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3536

Y
ying 已提交
3537
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3538

3539
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3540 3541
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3542
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3543

3544
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3545 3546
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3547

3548 3549 3550
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3551
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3552
                          the length of reference string.
3553
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3554
                                     calculating edit distance.
3555
        name (str): The name of this layer. It is optional.
3556

W
wanghaoshuang 已提交
3557
    Returns:
W
wanghaoshuang 已提交
3558
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3559 3560 3561 3562 3563

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3564
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3565
            cost = fluid.layers.edit_distance(input=x,label=y)
3566
    """
3567
    helper = LayerHelper("edit_distance", **locals())
3568

3569
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3570
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3571 3572 3573 3574 3575 3576 3577
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3578
            attrs={"tokens": ignored_tokens})
3579 3580 3581 3582 3583
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3584
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3585
            attrs={"tokens": ignored_tokens})
3586 3587
        label = erased_label

3588 3589
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3590
    sequence_num = helper.create_tmp_variable(dtype="int64")
3591 3592 3593 3594
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3595 3596
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3597 3598
        attrs={"normalized": normalized})

3599
    return edit_distance_out, sequence_num
3600 3601 3602 3603 3604


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3605

Y
ying 已提交
3606 3607 3608 3609
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3627
        input.lod = [[4, 4]]
3628 3629 3630 3631 3632 3633 3634

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3635
        output.lod = [[2, 1]]
3636 3637 3638

    Args:

Y
ying 已提交
3639 3640 3641 3642 3643 3644 3645 3646 3647
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3648
        name (str): The name of this layer. It is optional.
3649 3650

    Returns:
3651
        Variable: CTC greedy decode result. If all the sequences in result were
3652
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3653 3654 3655 3656 3657

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3658

3659
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3660
    """
3661
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3662
    _, topk_indices = topk(input, k=1)
3663 3664 3665 3666 3667 3668

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3669
        outputs={"Output": [ctc_out]},
3670 3671
        attrs={"merge_repeated": True,
               "blank": blank})
3672
    return ctc_out
3673 3674


F
fengjiayi 已提交
3675
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3676
    """
3677 3678
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3679
    to compute Connectionist Temporal Classification (CTC) loss.
3680 3681
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3682 3683 3684
    input tensor.

    Args:
3685
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3686 3687 3688 3689
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3690
       label (Variable): The ground truth of variable-length sequence,
3691 3692 3693
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3694 3695
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3696 3697 3698
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3699
         follewed by a mean_op.
W
wanghaoshuang 已提交
3700 3701

    Returns:
3702 3703
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3704 3705

    Examples:
3706

W
wanghaoshuang 已提交
3707
        .. code-block:: python
3708

3709 3710 3711
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3712 3713

    """
F
fengjiayi 已提交
3714
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3741 3742 3743
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3744 3745 3746 3747 3748
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3749

3750
            out.lod  = [[0, 1, 3]]
3751 3752 3753 3754

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3755 3756 3757 3758 3759 3760 3761
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3762 3763 3764

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3765 3766

    Returns:
3767

3768 3769 3770 3771 3772
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3773
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3774
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3775 3776 3777 3778 3779 3780 3781 3782 3783
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3784 3785


3786 3787 3788 3789
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3790 3791 3792 3793 3794 3795 3796
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3797 3798 3799 3800 3801 3802 3803
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3804 3805
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3806
            sample is 1.0.
3807 3808 3809
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3810

3811
    Returns:
Y
Yibing Liu 已提交
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3839
    """
Y
Yang Yu 已提交
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3859 3860 3861 3862 3863 3864 3865 3866 3867
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3884
    return cost / (num_neg_samples + 1)
3885 3886


G
guosheng 已提交
3887
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
3888 3889 3890
    """
    The hierarchical sigmoid operator is used to accelerate the training
    process of language model. This operator organizes the classes into a 
G
guosheng 已提交
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
    
W
weixing02 已提交
3901
    Args:
G
guosheng 已提交
3902 3903 3904 3905 3906 3907
        input (Variable): The input tensor variable with shape 
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
3908 3909 3910
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter 
G
guosheng 已提交
3911 3912
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
3913 3914 3915 3916 3917 3918 3919 3920

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
3921 3922 3923
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
3924 3925 3926 3927 3928 3929 3930 3931
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
3932
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
3933 3934 3935 3936 3937
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
3938 3939 3940 3941 3942 3943 3944 3945
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
3946 3947
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
3948
        inputs=inputs,
W
weixing02 已提交
3949 3950 3951 3952 3953 3954
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
3955
def transpose(x, perm, name=None):
Y
ying 已提交
3956 3957 3958 3959 3960 3961 3962
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3963 3964 3965
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3966 3967 3968 3969 3970 3971 3972 3973

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3974
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3975 3976
    """

Y
fix ci.  
ying 已提交
3977
    if len(perm) != len(x.shape):
Y
ying 已提交
3978 3979 3980
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3981 3982 3983 3984 3985 3986
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3987 3988

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3989
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3990 3991
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3992
        inputs={'X': [x]},
Y
ying 已提交
3993 3994 3995
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3996 3997


3998 3999 4000 4001 4002 4003 4004
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4005
    """
4006 4007 4008 4009 4010 4011 4012
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4041 4042 4043 4044 4045 4046 4047 4048 4049
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4050 4051 4052
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4053 4054 4055 4056 4057
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4085 4086 4087
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4100
            output.dims = {8, 8}
4101

4102
            output.lod = [[4, 4]]
4103

D
dzhwinter 已提交
4104
     Examples:
4105 4106 4107

        .. code-block:: python

4108 4109
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4110 4111

    """
W
wanghaoshuang 已提交
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4122 4123 4124 4125 4126 4127 4128
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4129
    helper = LayerHelper('im2sequence', **locals())
4130 4131
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4132
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4133
    return out
4134 4135


Y
yuyang18 已提交
4136
@templatedoc()
4137
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4138 4139
    """
    ${comment}
4140 4141

    Args:
Y
yuyang18 已提交
4142
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4143 4144
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4145 4146 4147 4148 4149
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4150
        ${out_comment}.
4151 4152

    Examples:
Y
yuyang18 已提交
4153 4154 4155 4156
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4169
    return helper.append_activation(out)
4170 4171


Y
yuyang18 已提交
4172
@templatedoc()
4173 4174
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4175 4176 4177 4178 4179 4180 4181
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4182 4183

    Args:
Y
yuyang18 已提交
4184 4185
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4186 4187

    Returns:
Y
yuyang18 已提交
4188
        ${out_comment}.
4189 4190
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4191 4192 4193 4194 4195 4196

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4197 4198 4199 4200 4201 4202
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4203 4204 4205 4206 4207


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
4208

4209 4210 4211 4212
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4213

4214 4215 4216
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4217

4218 4219 4220
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4221

4222
    The equation is as follows:
4223

4224
    1) Hard label (one-hot label, so every sample has exactly one class)
4225

4226 4227 4228 4229
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4230

4231 4232 4233
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4234

4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4256 4257
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4274 4275
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4276
    For each instance, it computes the smooth L1 loss element by element first
4277
    and then sums all the losses. So the shape of ouput Variable is
4278
    [batch_size, 1].
4279

4280 4281
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4282
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4283
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4284
            L1 loss op with same shape as :attr:`x`.
4285
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4286 4287
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4288
            by this tensor element by element.
4289
        outside_weight (Variable|None): A tensor with rank at least 2. This
4290 4291
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4292
            element by element.
4293
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4294 4295
           scalar with default value 1.0.

4296
    Returns:
4297
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4298 4299 4300 4301 4302

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4303 4304
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4305
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4306
            out = fluid.layers.smooth_l1(x=fc, y=label)
4307
    """
4308

4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4324 4325 4326 4327


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4328
    This layer creates the one-hot representations for input indices.
4329 4330

    Args:
Y
Yibing Liu 已提交
4331 4332
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4333 4334

    Returns:
Y
Yibing Liu 已提交
4335
        Variable: The one-hot representations of input.
4336 4337

    Examples:
C
caoying03 已提交
4338
        .. code-block:: python
4339

Y
Yibing Liu 已提交
4340 4341
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4342 4343 4344 4345 4346 4347 4348 4349 4350
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4351 4352


Y
Yu Yang 已提交
4353
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4354
    """
Y
yi.wu 已提交
4355 4356 4357
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4358 4359 4360 4361 4362 4363

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4364 4365
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4366 4367 4368 4369 4370 4371

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4372 4373
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4374 4375
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4376 4377 4378 4379 4380
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4381
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4382
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4383 4384
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4385 4386
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4387 4388 4389
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4390 4391


4392
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4393
    """
C
caoying03 已提交
4394 4395
    Gives a new shape to the input Tensor without changing its data.

4396 4397 4398 4399 4400
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4401

4402
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4403

4404 4405 4406 4407
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4408
    2. 0 means the actual dimension value is going to be copied from the
4409 4410 4411 4412
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4413 4414

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4415
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4416
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4417

4418
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4419 4420
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4421 4422
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4423
    dimensions.
C
caoying03 已提交
4424

4425
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4426 4427 4428 4429
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4430 4431

    Args:
4432
        x(variable): The input tensor.
C
caoying03 已提交
4433 4434
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4435 4436 4437 4438 4439
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4440
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4441 4442 4443 4444
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4445
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4446

4447 4448
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4449

X
Xin Pan 已提交
4450 4451 4452
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4453 4454
    Examples:
        .. code-block:: python
G
guosheng 已提交
4455

4456
            data = fluid.layers.data(
4457
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4458
            reshaped = fluid.layers.reshape(
4459
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4460 4461 4462 4463
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")
X
Xin Pan 已提交
4464 4465 4466 4467 4468
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4469

4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
4485
    helper = LayerHelper("reshape", **locals())
D
dzhwinter 已提交
4486
    out = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4487 4488
    helper.append_op(
        type="reshape",
X
Xin Pan 已提交
4489
        inputs=inputs,
D
dzhwinter 已提交
4490 4491
        attrs={"shape": shape},
        outputs={"Out": out})
C
caoying03 已提交
4492

D
dzhwinter 已提交
4493
    return helper.append_activation(out)
4494 4495


Y
yangyaming 已提交
4496
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4497
    """
Y
Yibing Liu 已提交
4498
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4499 4500 4501 4502
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4503
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4504 4505 4506 4507 4508 4509

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4510
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4511 4512 4513
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4514
            target_lod: [4, 2]
Y
yangyaming 已提交
4515 4516

            then we get a 1-level LoDTensor:
4517
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4518 4519 4520 4521 4522 4523
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4524
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4525 4526 4527 4528
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4529
                y.data = [[2, 4]]
Y
yangyaming 已提交
4530 4531 4532
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4533
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4534 4535 4536 4537 4538 4539
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4540
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4541 4542 4543 4544
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4545
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4546 4547 4548 4549
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4550
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4551 4552 4553 4554 4555
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4556
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4557
                           from :attr:`y`.
Y
yangyaming 已提交
4558
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4559
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4560 4561

    Returns:
Y
Yibing Liu 已提交
4562
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4563 4564

    Raises:
Y
Yibing Liu 已提交
4565
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4601
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4630 4631
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4659 4660 4661 4662


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4663
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4664
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4665

G
guosheng 已提交
4666 4667 4668 4669
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4692
                         The length of :attr:paddings must be
G
guosheng 已提交
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4703

G
guosheng 已提交
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4718 4719 4720 4721 4722 4723 4724 4725 4726


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4727 4728
    called label-smoothing regularization (LSR).

4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4752
                              be :math:`(1, class\_num)`.
4753 4754
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4755
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4783 4784


Y
yi.wu 已提交
4785
@templatedoc()
4786 4787
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
4788
    ${comment}
4789 4790

    Args:
Y
yi.wu 已提交
4791 4792
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
4793 4794 4795
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
4796 4797

    Returns:
Y
update  
yi.wu 已提交
4798
        Variable: ${out_comment}.
4799 4800

    Examples:
4801 4802
        .. code-block:: python

4803
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4849 4850
        .. code-block:: python

W
whs 已提交
4851 4852 4853 4854
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
4855
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
4856 4857 4858 4859 4860 4861
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4862 4863


4864 4865 4866 4867 4868
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4869
    """
Q
qiaolongfei 已提交
4870
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
4871

4872
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
4873 4874 4875
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
4876

4877
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4878

4879
    Args:
4880
        input (Variable): The input tensor of image resize layer,
4881 4882
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4883
        out_shape(list|tuple|Variable|None): Output shape of image resize
4884 4885
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4886
        scale(float|None): The multiplier for the input height or width.
4887 4888 4889
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4890 4891
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4892 4893
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4894 4895

    Returns:
Q
update  
qiaolongfei 已提交
4896 4897
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4898

4899 4900 4901
    Examples:
        .. code-block:: python

4902
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4903
    """
4904 4905 4906 4907
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4908 4909
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4910 4911
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4912 4913 4914 4915

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4916 4917 4918
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4919
    if out_shape is not None:
B
baiyf 已提交
4920 4921 4922
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4923 4924 4925 4926 4927 4928
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4929 4930 4931 4932
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4933 4934
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4935
        type=resample_methods[resample],
4936
        inputs=inputs,
4937 4938 4939 4940
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4941 4942


Y
yuyang18 已提交
4943
@templatedoc(op_type="bilinear_interp")
4944 4945
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4946 4947 4948 4949 4950 4951
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4952

Y
yuyang18 已提交
4953 4954 4955 4956 4957 4958 4959 4960
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
4961 4962 4963 4964 4965 4966 4967
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
4968 4969 4970
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
4971 4972 4973 4974 4975 4976 4977
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
4978
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
4979

4980
    Returns:
Q
update  
qiaolongfei 已提交
4981
        Variable: The output is a 4-D tensor of the shape
4982
        (num_batches, channls, out_h, out_w).
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
4993 4994 4995
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
4996 4997 4998
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4999 5000
def gather(input, index):
    """
Q
qiaolongfei 已提交
5001 5002
    **Gather Layer**

5003
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5004 5005 5006 5007
    of X indexed by `index` and concatenate them together.

    .. math::

5008
        Out = X[Index]
W
whs 已提交
5009 5010 5011 5012 5013 5014 5015


    .. code-block:: text


                Given:

5016 5017
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5028
        input (Variable): The source input with rank>=1.
W
whs 已提交
5029 5030 5031 5032 5033 5034
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5035

W
whs 已提交
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5064

5065 5066 5067
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5068
    """
F
stash  
fengjiayi 已提交
5069
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5070
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5071
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5072 5073
    if seed is None:
        seed = random.randint(-65536, 65535)
F
fengjiayi 已提交
5074
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5075
    if isinstance(seed, int):
F
fengjiayi 已提交
5076 5077 5078 5079 5080
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5081 5082 5083 5084
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5085
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5086 5087
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5088 5089
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5090
    return out
W
whs 已提交
5091 5092


5093
def log(x):
W
wanghaoshuang 已提交
5094 5095 5096 5097 5098
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5099
        Out = \\ln(x)
W
wanghaoshuang 已提交
5100 5101

    Args:
5102
        x (Variable): Input tensor.
W
wanghaoshuang 已提交
5103 5104 5105 5106 5107 5108 5109 5110

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5111
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5112 5113
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5114
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5115
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5116
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5117 5118 5119
    return out


5120
def relu(x):
W
wanghaoshuang 已提交
5121 5122
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5123
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5124 5125 5126 5127
    the tensor elementwise.

    .. math::

5128
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5129 5130

    Args:
5131
        x (Variable): The input tensor.
W
wanghaoshuang 已提交
5132 5133 5134 5135 5136 5137 5138 5139

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5140
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5141 5142
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5143
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5144
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5145
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5146
    return out
5147 5148


W
whs 已提交
5149 5150 5151
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5152 5153 5154 5155
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5156
    .. math::
5157 5158

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5159

5160
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5161 5162 5163 5164 5165
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5166
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5167
                           Its shape should be the same as input.
5168
        num_classes (int): The possible number of labels.
W
whs 已提交
5169 5170 5171 5172

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5173
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5174 5175 5176 5177

    Examples:

        .. code-block:: python
5178

W
whs 已提交
5179 5180 5181 5182 5183 5184 5185 5186 5187
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5188 5189
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5190
        outputs={
W
whs 已提交
5191 5192 5193
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5194 5195 5196
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
        isinstance(shape, Variable)):
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
 
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
    
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
    
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
    
    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).   
 
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5366 5367


J
jerrywgz 已提交
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
	  name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
    
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
        axis (int): Indicate up to which input dimensions (exclusive) should 
                    be flattened to the outer dimension of the output. 
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
        ValueError: If axis is not in range [0, rank(x)]. 

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
    helper.append_op(
        type='flatten',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={"axis": axis})
    return out