nn.py 209.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
25 26 27
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
Y
ying 已提交
32 33 34
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
35
    'dynamic_lstmp',
G
guosheng 已提交
36
    'dynamic_gru',
Y
ying 已提交
37 38 39 40 41 42 43 44 45
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
46
    'conv3d',
Y
ying 已提交
47
    'sequence_pool',
48 49
    'sequence_softmax',
    'softmax',
Y
ying 已提交
50
    'pool2d',
Y
yuyang18 已提交
51
    'pool3d',
Y
ying 已提交
52 53 54
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
55
    'conv3d_transpose',
Y
ying 已提交
56
    'sequence_expand',
F
fengjiayi 已提交
57
    'sequence_pad',
Y
ying 已提交
58 59 60 61 62
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
63
    'reduce_prod',
Y
ying 已提交
64 65 66 67
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
68 69
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
70 71
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
72
    'topk',
Y
ying 已提交
73 74
    'warpctc',
    'sequence_reshape',
75
    'transpose',
76
    'im2sequence',
77
    'nce',
W
weixing02 已提交
78
    'hsigmoid',
Q
Qiao Longfei 已提交
79
    'beam_search',
80
    'row_conv',
81
    'multiplex',
G
guosheng 已提交
82
    'layer_norm',
83 84
    'softmax_with_cross_entropy',
    'smooth_l1',
85
    'one_hot',
Y
Yu Yang 已提交
86
    'autoincreased_step_counter',
C
caoying03 已提交
87
    'reshape',
Y
yangyaming 已提交
88
    'lod_reset',
D
dragonwarrior 已提交
89
    'lrn',
G
guosheng 已提交
90
    'pad',
C
chengduo 已提交
91
    'pad_constant_like',
92
    'label_smooth',
93
    'roi_pool',
W
whs 已提交
94
    'dice_loss',
F
fengjiayi 已提交
95 96
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
97
    'resize_bilinear',
W
whs 已提交
98
    'gather',
99
    'scatter',
100
    'random_crop',
Y
yuyang18 已提交
101 102 103
    'mean_iou',
    'relu',
    'log',
104
    'crop',
105
    'rank_loss',
J
jerrywgz 已提交
106
    'prelu',
107
    'flatten',
Q
qingqing01 已提交
108
    'sequence_mask',
S
sneaxiy 已提交
109
    'stack',
D
dzhwinter 已提交
110
    'unstack',
111
    'sequence_enumerate',
Y
Yu Yang 已提交
112 113 114 115 116 117 118 119
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
120
       use_mkldnn=False,
Y
Yu Yang 已提交
121
       act=None,
J
Jacek Czaja 已提交
122
       is_test=False,
123
       name=None):
Y
Yu Yang 已提交
124
    """
125
    **Fully Connected Layer**
Y
Yu Yang 已提交
126

127 128 129 130 131 132 133 134
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
135
    to the output as well.
C
caoying03 已提交
136

C
caoying03 已提交
137
    This process can be formulated as follows:
138 139 140

    .. math::

141
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
142 143 144

    In the above equation:

C
caoying03 已提交
145 146 147 148
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
149
    * :math:`Act`: The activation function.
C
caoying03 已提交
150
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
151 152

    Args:
R
ranqiu 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
168 169
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
170
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
171
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
172 173
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
174
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
175

176
    Returns:
F
fengjiayi 已提交
177
        Variable: The transformation result.
178 179

    Raises:
C
caoying03 已提交
180
        ValueError: If rank of the input tensor is less than 2.
181 182 183 184

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
185
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
186
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
187
    """
C
caoying03 已提交
188

C
caoying03 已提交
189
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
190 191 192 193

    dtype = helper.input_dtype()

    mul_results = []
194 195
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
196 197 198
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
199

Y
Yu Yang 已提交
200
        w = helper.create_parameter(
201 202
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
203
        helper.append_op(
204 205 206
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
207
            outputs={"Out": tmp},
M
mozga-intel 已提交
208 209
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
210 211 212 213
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
214
    else:
215 216
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
217 218 219 220
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
221 222 223 224
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
225 226


227 228 229
def embedding(input,
              size,
              is_sparse=False,
230
              is_distributed=False,
231 232 233
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
234
    """
235 236
    **Embedding Layer**

237
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
238 239
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
240 241 242

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
243 244

    Args:
245 246 247 248 249
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
250
        is_distributed(bool): Whether to run lookup table from remote parameter server.
251 252
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
253
            with zeros whenever lookup encounters it in :attr:`input`. If
254
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
255 256
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
257
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
258

259 260 261
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
262

263 264
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
265

C
chengduoZH 已提交
266
          dict_size = len(dataset.ids)
267
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
268
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
269 270 271 272 273 274
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
275 276
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
277 278 279 280 281
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
282 283 284 285 286
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
287 288 289
    return tmp


Y
yi.wu 已提交
290
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
291 292
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
293 294
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
295 296 297 298 299 300 301
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
302 303
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
304
    """
Y
yi.wu 已提交
305
    ${comment}
Y
Yibing Liu 已提交
306 307

    Args:
Y
yi.wu 已提交
308 309
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
310 311 312 313 314 315 316
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

317
        param_attr(ParamAttr|None): The parameter attribute for the learnable
318
                               hidden-hidden weights.
Y
Yibing Liu 已提交
319 320 321

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
322 323
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
324
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
325 326 327
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
328

329
                              1. `use_peepholes = False`
Y
yi.wu 已提交
330 331
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
332
                              2. `use_peepholes = True`
Y
yi.wu 已提交
333
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
334
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
335
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
336 337 338 339 340 341 342 343
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
344 345

    Returns:
Y
Yibing Liu 已提交
346 347
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
348

Y
Yibing Liu 已提交
349
    Examples:
Y
Yibing Liu 已提交
350 351
        .. code-block:: python

Y
Yibing Liu 已提交
352 353
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
354
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
355 356
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
357
    """
358

Y
Yu Yang 已提交
359
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
360
    size = size // 4
Y
Yu Yang 已提交
361 362 363 364 365 366 367 368 369 370 371 372
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
373 374 375 376 377 378 379 380 381 382
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
383 384 385

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
386
        inputs=inputs,
Y
Yu Yang 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
403 404 405 406 407 408 409 410 411 412 413
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
414 415
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
416 417 418
    """
    **Dynamic LSTMP Layer**

419 420 421 422 423 424
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
425 426 427 428 429

    The formula is as follows:

    .. math::

430
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
431

432
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
433

434
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
435

436
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
437

438
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
439

440
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
441

442
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
443

Y
Yibing Liu 已提交
444 445 446 447 448 449
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
450
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
451
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
452
          bias vector).
Y
Yibing Liu 已提交
453 454 455
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
456
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
457
    * :math:`h`: The hidden state.
458
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
459 460
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
461
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
462
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
463
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
464 465
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
466 467 468 469

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
470

Y
Yibing Liu 已提交
471 472 473 474 475 476 477 478 479 480 481 482
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
483
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
484 485
                               hidden-hidden weight and projection weight.

486 487
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
488 489
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
490 491
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
492 493
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
494 495 496 497 498 499
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
500
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
501 502 503
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
504
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
505 506 507 508 509 510 511 512 513
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
514
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
515 516
                              default "tanh".
        proj_activation(str): The activation for projection output.
517
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
518 519
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
520 521
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
522 523

    Returns:
524 525 526 527
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
528 529

    Examples:
530

Y
Yibing Liu 已提交
531 532
        .. code-block:: python

533 534 535 536
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
537
            hidden_dim, proj_dim = 512, 256
538
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
539
                                     act=None, bias_attr=None)
540 541 542
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
543 544 545 546
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
547
    """
548

Y
Yibing Liu 已提交
549
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
550
    size = size // 4
Y
Yibing Liu 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
595 596 597 598 599 600 601 602 603
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
604
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
605

606
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
607
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
608

G
guosheng 已提交
609 610 611 612 613 614 615 616 617
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
618

G
guosheng 已提交
619
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
620

G
guosheng 已提交
621
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
622 623
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
624 625 626 627
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
628
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
629 630

    Args:
631 632
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
633
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
634
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
635 636
            is the hidden size.
        size(int): The dimension of the gru cell.
637
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
638 639
            hidden-hidden weight matrix. Note:

640
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
641
              :math:`D` is the hidden size.
642
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
643
              The first part are weights of the update gate and reset gate with
644
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
645
              candidate hidden state with shape :math:`(D \\times D)`.
646
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
647
            hidden-hidden bias.
648
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
649 650 651
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
652
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
653
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
654 655 656 657
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
658 659

    Returns:
G
guosheng 已提交
660
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
661
            and sequence length is the same with the input.
662

G
guosheng 已提交
663
    Examples:
664

G
guosheng 已提交
665 666
        .. code-block:: python

667 668 669 670
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
671
            hidden_dim = 512
672
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
673 674 675 676 677 678 679 680 681 682
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
683
    batch_size = input.shape[0]
G
guosheng 已提交
684 685 686
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
687 688 689
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
713 714 715
def gru_unit(input,
             hidden,
             size,
716 717
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
718
             activation='tanh',
719
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
720
    """
721
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
722

723 724
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
725

726
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
727

728
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
729

730
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
731 732

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
733 734 735
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
736 737
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

738 739
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
740 741 742
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
743 744 745 746 747

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
748 749
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
750 751 752 753
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
754

755 756 757 758 759 760
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
761

762
             # assuming we have x_t_data and prev_hidden of size=10
763
             x_t = fluid.layers.fc(input=x_t_data, size=30)
764 765
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
766 767 768 769 770 771 772 773 774 775 776 777

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
778
    size = size // 3
Y
Yu Yang 已提交
779 780

    # create weight
781 782
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
783

784 785 786 787
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
788
    # create bias
789
    if helper.bias_attr:
Y
Yu Yang 已提交
790 791 792
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
793
        inputs['Bias'] = bias
Y
Yu Yang 已提交
794 795 796

    helper.append_op(
        type='gru_unit',
797
        inputs=inputs,
Y
Yu Yang 已提交
798 799 800 801 802 803
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
804 805
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
806 807 808 809 810
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
811
@templatedoc()
812
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
813 814 815 816 817 818 819
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
820
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
821 822 823 824
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
825 826 827
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
828 829

    """
Y
Yu Yang 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
855
@templatedoc()
856
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
857 858 859 860 861
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
862

Y
yuyang18 已提交
863
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
864

Y
yuyang18 已提交
865 866 867
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
868
        Variable: ${viterbi_path_comment}
869

Y
yi.wu 已提交
870 871 872 873 874
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
875
    """
Y
Yu Yang 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
889
@templatedoc()
F
fengjiayi 已提交
890
def cos_sim(X, Y):
Y
Yu Yang 已提交
891
    """
Y
yi.wu 已提交
892 893 894
    ${comment}

    Args:
895 896
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
897

Y
yi.wu 已提交
898
    Returns:
899
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
900
    """
F
fengjiayi 已提交
901
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
902 903 904 905 906 907 908 909 910 911 912 913 914
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


915
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
916 917 918 919 920
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
921
    training. The dropout operator randomly sets (according to the given dropout
922 923 924 925
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
926 927
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
928 929 930 931 932 933 934
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
935 936

    Returns:
937
        Variable: A tensor variable is the shape with `x`.
938 939

    Examples:
940

941 942
        .. code-block:: python

943 944
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
945 946
    """

F
fengjiayi 已提交
947
    helper = LayerHelper('dropout', **locals())
948 949
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
950 951 952 953

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

954 955 956 957 958
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
959 960 961 962 963 964
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
965 966 967
    return out


F
fengjiayi 已提交
968
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
969
    """
Y
Yibing Liu 已提交
970 971
    **Cross Entropy Layer**

972 973 974
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
975 976

    1) One-hot cross-entropy:
F
fengjiayi 已提交
977
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
978

Y
Yibing Liu 已提交
979
        .. math::
Y
yangyaming 已提交
980

Y
Yibing Liu 已提交
981 982 983
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
984 985
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
986 987 988 989 990

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
991
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
992 993 994
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
995 996
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
997
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
998

Y
Yibing Liu 已提交
999
    Args:
Y
yangyaming 已提交
1000
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1001 1002 1003 1004
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1005
        label (Variable|list): the ground truth which is a 2-D tensor. When
1006 1007 1008 1009
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1010
        soft_label (bool): a flag indicating whether to
1011 1012
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
1013 1014 1015 1016 1017

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1018 1019 1020 1021 1022
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1023 1024 1025 1026 1027 1028

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1029
    """
F
fengjiayi 已提交
1030
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1031 1032 1033 1034 1035 1036
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
1037
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
1038 1039 1040
    return out


F
fengjiayi 已提交
1041
def square_error_cost(input, label):
Y
Yu Yang 已提交
1042
    """
1043 1044
    **Square error cost layer**

1045 1046
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1061 1062
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1063 1064

    Returns:
G
guosheng 已提交
1065
        Variable: The tensor variable storing the element-wise squared error \
1066
                  difference of input and label.
1067 1068 1069 1070 1071 1072 1073 1074

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1075
    """
F
fengjiayi 已提交
1076
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1086 1087
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1088 1089 1090
    return square_out


Y
yi.wu 已提交
1091
@templatedoc()
Y
Yu Yang 已提交
1092 1093 1094 1095
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1096
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1097
    """
Y
yi.wu 已提交
1098
    **Chunk Evaluator**
Y
yi.wu 已提交
1099

Y
yangyaming 已提交
1100
    This function computes and outputs the precision, recall and
1101
    F1-score of chunk detection.
Y
yi.wu 已提交
1102

Y
yi.wu 已提交
1103 1104 1105 1106 1107 1108 1109 1110
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1111

Y
yi.wu 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1137

Y
yi.wu 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1162
    Args:
1163 1164 1165 1166 1167
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1168

Y
yi.wu 已提交
1169
    Returns:
Y
update  
yi.wu 已提交
1170 1171 1172
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1173

Y
yi.wu 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1186
    """
F
fengjiayi 已提交
1187
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1188 1189 1190 1191 1192

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1193 1194 1195
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1196 1197 1198 1199 1200 1201 1202 1203

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1204 1205 1206 1207
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1208 1209 1210
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1211 1212
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1213
        })
1214 1215
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1216 1217


1218
@templatedoc()
Y
Yu Yang 已提交
1219 1220 1221 1222 1223 1224 1225
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1226
                  act=None):
Y
Yu Yang 已提交
1227 1228 1229 1230
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1241

1242 1243
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1262
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1263 1264 1265 1266 1267 1268
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1269
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1270 1271 1272
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1273
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1316
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1317
    """
1318
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1319
    has the same shape as the input.
Q
qiaolongfei 已提交
1320

1321 1322 1323 1324 1325 1326
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1327
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1328 1329 1330 1331 1332 1333 1334

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1335
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1370 1371 1372
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1373 1374
           stride=1,
           padding=0,
1375
           dilation=1,
Y
Yu Yang 已提交
1376 1377 1378
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1379
           use_cudnn=True,
1380
           use_mkldnn=False,
1381 1382
           act=None,
           name=None):
Y
Yu Yang 已提交
1383
    """
C
chengduoZH 已提交
1384
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1385 1386
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1387
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1388 1389 1390 1391 1392 1393 1394
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1395 1396 1397
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1398

1399
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1400

C
chengduoZH 已提交
1401 1402
    .. math::

C
refine  
chengduoZH 已提交
1403
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1404

T
tensor-tang 已提交
1405
    Where:
C
chengduoZH 已提交
1406

1407 1408 1409 1410 1411
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1412
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1413 1414 1415

    Example:

1416 1417
        - Input:

W
weixing02 已提交
1418
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1419

W
weixing02 已提交
1420
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1421

1422
        - Output:
T
tensor-tang 已提交
1423

W
weixing02 已提交
1424
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1425

C
chengduoZH 已提交
1426
        Where
1427 1428

        .. math::
C
chengduoZH 已提交
1429

W
weixing02 已提交
1430 1431
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1432 1433

    Args:
1434
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1435
        num_filters(int): The number of filter. It is as same as the output
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1458 1459
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1460 1461 1462
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1463 1464

    Returns:
G
guosheng 已提交
1465
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1466 1467
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1468
    Raises:
1469 1470
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1471

C
chengduoZH 已提交
1472 1473 1474
    Examples:
        .. code-block:: python

1475 1476
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1477 1478 1479
    """

    num_channels = input.shape[1]
1480 1481

    l_type = 'conv2d'
X
xzl 已提交
1482 1483
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1484
        l_type = 'depthwise_conv2d'
1485 1486 1487 1488

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1489 1490 1491 1492 1493
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1494
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1495

C
chengduoZH 已提交
1496 1497 1498
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1499
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1500

C
chengduoZH 已提交
1501 1502
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1503 1504

    input_shape = input.shape
M
minqiyang 已提交
1505
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1520
        type=l_type,
Y
Yu Yang 已提交
1521 1522 1523 1524 1525
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1526 1527 1528
        attrs={
            'strides': stride,
            'paddings': padding,
1529
            'dilations': dilation,
C
chengduoZH 已提交
1530
            'groups': groups,
1531 1532
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1533
        })
Y
Yu Yang 已提交
1534 1535 1536 1537 1538 1539

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1558 1559 1560 1561 1562 1563
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1573 1574
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1575 1576 1577
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1578
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1604
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1605 1606
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1607
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1608 1609
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1610
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1611 1612
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1613
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1640 1641
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1656
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1697
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1698 1699 1700 1701

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1702
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1703
    """
Y
yangyaming 已提交
1704 1705 1706
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1718
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1719 1720 1721 1722 1723
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1724
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1725 1726 1727 1728 1729 1730 1731

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1732 1733
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1734

L
Luo Tao 已提交
1735 1736
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1737
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1738 1739 1740 1741 1742 1743 1744 1745
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1746

Y
yangyaming 已提交
1747
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1748 1749 1750 1751 1752
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1753 1754
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1755
    """
F
fengjiayi 已提交
1756
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1768 1769 1770 1771 1772
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1773 1774 1775
    return pool_out


F
fengjiayi 已提交
1776
def sequence_first_step(input):
L
Luo Tao 已提交
1777
    """
L
Luo Tao 已提交
1778
    This function gets the first step of sequence.
L
Luo Tao 已提交
1779 1780 1781 1782

    .. code-block:: text

       x is a 1-level LoDTensor:
1783
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1784 1785 1786 1787 1788
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1789
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1790
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1791

L
Luo Tao 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1801

Y
yangyaming 已提交
1802
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1803 1804 1805
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1806 1807 1808
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1809
def sequence_last_step(input):
L
Luo Tao 已提交
1810
    """
L
Luo Tao 已提交
1811
    This function gets the last step of sequence.
L
Luo Tao 已提交
1812 1813 1814 1815

    .. code-block:: text

       x is a 1-level LoDTensor:
1816
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1817 1818 1819 1820 1821
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1822
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1823
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1824

L
Luo Tao 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1834

Y
yangyaming 已提交
1835
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1836 1837 1838
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1839 1840 1841
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1842
@templatedoc()
Y
Yu Yang 已提交
1843
def pool2d(input,
C
chengduoZH 已提交
1844 1845
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1846 1847
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1848
           global_pooling=False,
C
chengduoZH 已提交
1849
           use_cudnn=True,
1850
           ceil_mode=False,
1851
           use_mkldnn=False,
C
caoying03 已提交
1852
           name=None):
Y
Yu Yang 已提交
1853
    """
F
fengjiayi 已提交
1854
    ${comment}
1855 1856

    Args:
1857 1858 1859
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1860
                          feature, and W is the width of the feature.
1861
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1862
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1863
        pool_type: ${pooling_type_comment}
1864 1865
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1866 1867 1868 1869
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1870
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1871 1872
                        layer will be named automatically.

1873
    Returns:
F
fengjiayi 已提交
1874
        Variable: The pooling result.
F
fengjiayi 已提交
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1888 1889 1890 1891
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1892
                            global_pooling=False)
Y
Yu Yang 已提交
1893 1894 1895 1896 1897
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1898

C
chengduoZH 已提交
1899 1900 1901 1902 1903
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1904 1905 1906 1907
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1908 1909
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1910

C
Add doc  
chengduoZH 已提交
1911
    l_type = 'pool2d'
1912 1913

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1914 1915 1916 1917
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1947
    pooling configurations mentioned in input parameters.
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1961

1962
    Returns:
1963
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1964 1965 1966 1967 1968
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1969

C
chengduoZH 已提交
1970 1971 1972 1973 1974
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1975 1976 1977
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1978

C
chengduoZH 已提交
1979 1980
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1981

1982 1983
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1984 1985 1986 1987
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1988
        type=l_type,
Y
Yu Yang 已提交
1989 1990 1991 1992 1993 1994 1995
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1996
            "paddings": pool_padding,
1997
            "use_cudnn": use_cudnn,
1998 1999
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2012
               data_layout='NCHW',
Y
Yang Yang 已提交
2013
               in_place=False,
2014
               use_mkldnn=False,
2015 2016
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2017
               moving_variance_name=None,
2018 2019
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2020
    """
Q
qiaolongfei 已提交
2021 2022 2023 2024
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2025

Q
qiaolongfei 已提交
2026
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2027

Q
qiaolongfei 已提交
2028 2029
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2030 2031 2032
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2045 2046

    Args:
Q
qiaolongfei 已提交
2047
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2048 2049 2050 2051
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2052 2053 2054
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2055
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2056 2057 2058 2059 2060
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2061
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2062
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2063 2064

    Returns:
Q
qiaolongfei 已提交
2065
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2066 2067 2068 2069 2070 2071 2072

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2096
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2097

2098 2099
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2100 2101 2102
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2103
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2104
        shape=param_shape,
2105 2106 2107 2108 2109 2110 2111
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2112
            trainable=False,
W
wanghaoshuang 已提交
2113
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2114
        shape=param_shape,
2115 2116
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2117 2118 2119 2120 2121 2122

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2123 2124
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2125

2126
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2144 2145 2146 2147
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2148 2149
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2150
        })
Y
Yu Yang 已提交
2151 2152 2153 2154

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2155
@templatedoc()
G
guosheng 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2166
    ${comment}
G
guosheng 已提交
2167 2168 2169

    The formula is as follows:

Y
yuyang18 已提交
2170
    ..  math::
G
guosheng 已提交
2171 2172 2173 2174 2175 2176 2177

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2178 2179 2180 2181 2182 2183 2184 2185
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2186

G
guosheng 已提交
2187 2188
    Args:
        input(Variable): The input tensor variable.
2189
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2190
            normalization.
2191
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2192
            normalization.
2193
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2194
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2195
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2196 2197 2198 2199 2200 2201
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2202
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2203 2204

    Returns:
Y
yuyang18 已提交
2205
        ${y_comment}
G
guosheng 已提交
2206 2207 2208

    Examples:

Y
yuyang18 已提交
2209 2210 2211
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2227
    if shift:
G
guosheng 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2252 2253 2254 2255
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2256 2257 2258
                     padding=0,
                     stride=1,
                     dilation=1,
2259
                     groups=None,
C
caoying03 已提交
2260
                     param_attr=None,
2261
                     bias_attr=None,
C
chengduoZH 已提交
2262
                     use_cudnn=True,
2263
                     act=None,
C
caoying03 已提交
2264
                     name=None):
Y
Yu Yang 已提交
2265
    """
2266 2267 2268 2269 2270 2271 2272 2273
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2274 2275
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2276 2277 2278
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2279 2280 2281 2282 2283

    For each input :math:`X`, the equation is:

    .. math::

2284
        Out = \sigma (W \\ast X + b)
2285

2286
    Where:
2287 2288 2289

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2290 2291 2292 2293
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2294

2295 2296 2297 2298
    Example:

        - Input:

2299
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2300

2301
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2302 2303 2304

        - Output:

2305
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2306 2307

        Where
Y
Yu Yang 已提交
2308

2309 2310 2311 2312
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2313 2314

    Args:
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2348 2349

    Returns:
2350
        Variable: The tensor variable storing the convolution transpose result.
2351 2352

    Raises:
2353 2354
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2355 2356 2357 2358

    Examples:
       .. code-block:: python

2359 2360
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2361
    """
2362 2363 2364 2365 2366 2367 2368 2369 2370

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2371 2372 2373
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2374 2375 2376
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2377

C
chengduoZH 已提交
2378 2379
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2380

Y
Yu Yang 已提交
2381 2382 2383 2384 2385
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2386

Y
Yu Yang 已提交
2387 2388
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2389

C
chengduoZH 已提交
2390
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2391
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2392
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2393
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2394
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2395 2396 2397
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2398

2399
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2400
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2401 2402 2403
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2404
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2405
    helper.append_op(
2406
        type=op_type,
Y
Yu Yang 已提交
2407 2408
        inputs={'Input': [input],
                'Filter': [img_filter]},
2409
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2410
        attrs={
2411 2412 2413 2414 2415
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2416 2417
        })

2418 2419 2420
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2421 2422


2423
def conv3d_transpose(input,
Y
Yu Yang 已提交
2424 2425 2426
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2427 2428 2429
                     padding=0,
                     stride=1,
                     dilation=1,
2430
                     groups=None,
C
caoying03 已提交
2431
                     param_attr=None,
2432
                     bias_attr=None,
C
chengduoZH 已提交
2433
                     use_cudnn=True,
2434
                     act=None,
C
caoying03 已提交
2435
                     name=None):
Y
Yu Yang 已提交
2436
    """
2437
    **Convlution3D transpose layer**
2438

2439
    The convolution3D transpose layer calculates the output based on the input,
2440
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2441 2442 2443 2444 2445 2446
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2447 2448 2449
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2450 2451 2452 2453 2454

    For each input :math:`X`, the equation is:

    .. math::

2455
        Out = \sigma (W \\ast X + b)
2456 2457 2458

    In the above equation:

2459 2460
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2461 2462 2463 2464
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2465

2466 2467 2468 2469
    Example:

        - Input:

2470
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2471

2472
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2473 2474 2475

        - Output:

2476
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2477 2478

        Where
Y
Yu Yang 已提交
2479

2480 2481
        .. math::

2482 2483 2484
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2485 2486

    Args:
2487
        input(Variable): The input image with [N, C, D, H, W] format.
2488 2489 2490
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2491
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2492 2493
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2494
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2495 2496 2497
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2498 2499
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2500
        stride(int|tuple): The stride size. If stride is a tuple, it must
2501 2502
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2503
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2504 2505 2506
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2507 2508 2509 2510 2511
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2512 2513 2514
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2515 2516 2517 2518 2519
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2520 2521

    Returns:
2522
        Variable: The tensor variable storing the convolution transpose result.
2523 2524

    Raises:
2525 2526
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2527 2528 2529 2530

    Examples:
       .. code-block:: python

2531 2532
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2533
    """
2534 2535
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2536
    if not isinstance(input, Variable):
2537
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2538 2539
    input_channel = input.shape[1]

2540 2541 2542
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2543

C
chengduoZH 已提交
2544 2545 2546
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2547 2548 2549 2550 2551 2552
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2553 2554 2555
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2556

2557
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2558
                         padding[0] - 1) // dilation[0] + 1
2559
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2560
                         padding[1] - 1) // dilation[1] + 1
2561
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2562
                         padding[2] - 1) // dilation[2] + 1
2563
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2564
    else:
2565 2566
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2567

2568
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2569
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2570 2571 2572
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2573
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2574
    helper.append_op(
2575
        type=l_type,
Y
Yu Yang 已提交
2576 2577
        inputs={'Input': [input],
                'Filter': [img_filter]},
2578
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2579 2580 2581 2582
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2583
            'groups': groups,
C
chengduoZH 已提交
2584 2585
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2586

2587 2588
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2589
    return out
Y
yangyaming 已提交
2590 2591


Y
yangyaming 已提交
2592
def sequence_expand(x, y, ref_level=-1, name=None):
2593
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2594 2595 2596 2597
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2598 2599 2600 2601 2602

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2603
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2604
                x.data = [[a], [b], [c], [d]]
2605 2606 2607
                x.dims = [4, 1]

            y is a LoDTensor:
2608 2609
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2610

Y
yangyaming 已提交
2611
            ref_level: 0
2612

Y
yangyaming 已提交
2613
            then output is a 1-level LoDTensor:
2614
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2615
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2616 2617 2618 2619
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2620
                x.data = [[a], [b], [c]]
2621 2622 2623
                x.dims = [3, 1]

            y is a LoDTensor:
2624
                y.lod = [[2, 0, 3]]
2625

Y
yangyaming 已提交
2626
            ref_level: -1
2627

Y
yangyaming 已提交
2628 2629 2630
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2631 2632 2633
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2634 2635
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2636
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2637
                        will be named automatically.
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2648
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2649
    """
Y
yangyaming 已提交
2650
    helper = LayerHelper('sequence_expand', input=x, **locals())
2651 2652 2653
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2654 2655 2656 2657 2658
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2659
    return tmp
2660 2661


F
fengjiayi 已提交
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
        pad_value(Variable): The Variable that holds values that will be fill 
            into padded steps. It can be a scalar or a tensor whose shape 
            equals to time steps in sequences. If it's a scalar, it will be 
            automatically broadcasted to the shape of time step.
        maxlen(int, default None): The length of padded sequences. It can be 
            None or any positive int. When it is None, all sequences will be 
            padded up to the length of the longest one among them; when it a 
            certain positive value, it must be greater than the length of the 
            longest original sequence."
    
    Returns:
        Variable: The padded sequence batch. All sequences has the same length.
    
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
        outputs={'Out': out},
        attrs={'padded_length': maxlen})
    return out


2707 2708 2709 2710 2711 2712 2713 2714 2715
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2716 2717
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2718 2719 2720

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2721 2722

    This layer does the search in beams for one time step. Specifically, it
2723 2724 2725 2726 2727 2728
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2729

2730 2731 2732 2733 2734 2735 2736 2737
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2738

2739
    Args:
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2765

2766
    Returns:
2767 2768
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2769 2770 2771 2772

    Examples:
        .. code-block:: python

2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2801
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2819 2820 2821 2822 2823 2824 2825
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2826

2827 2828 2829 2830 2831 2832 2833 2834 2835
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2836

2837 2838 2839 2840 2841 2842
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2843

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2869 2870 2871 2872
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2873
              param_attr=None,
C
caoying03 已提交
2874 2875
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2876 2877 2878 2879
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2880
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2881

2882
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2883

2884
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2885

2886
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2887 2888 2889

            h_t & = o_t tanh(c_t)

2890 2891 2892 2893 2894 2895
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2896 2897 2898

        .. math::

2899
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2900 2901 2902 2903 2904 2905 2906 2907

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2908
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2909 2910

    Args:
Y
yangyaming 已提交
2911 2912 2913 2914 2915 2916
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2917
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2918 2919
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2920 2921
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2922 2923
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2924 2925

    Returns:
Y
yangyaming 已提交
2926
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2927 2928

    Raises:
2929 2930 2931 2932
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2933 2934 2935 2936 2937 2938

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2939
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2940
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2941
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2958
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2959 2960 2961 2962
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2963 2964
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2965 2966 2967
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2968
    size = cell_t_prev.shape[1]
2969
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2970 2971
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2972
                param_attr=param_attr,
2973
                bias_attr=bias_attr)
Y
yangyaming 已提交
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2986
    return h, c
G
guosheng 已提交
2987 2988


C
caoying03 已提交
2989
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2990
    """
Y
yangyaming 已提交
2991
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2992 2993 2994

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2995
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2996 2997
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2998 2999
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3000
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3001
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3002
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3003 3004
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3005 3006 3007

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3008

G
guosheng 已提交
3009 3010 3011 3012 3013 3014
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3015
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3016 3017 3018 3019
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3020 3021 3022 3023

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3024
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3025 3026 3027
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3028 3029 3030
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3031 3032
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3033 3034 3035 3036 3037
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3038
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3039 3040 3041 3042
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3043 3044


C
caoying03 已提交
3045
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3046
    """
Y
Yibing Liu 已提交
3047
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3048 3049 3050

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3051 3052 3053
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3054
            must be in the range :math:`[-rank(input), rank(input))`. If
3055
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3056
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3057 3058
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3059
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3060
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3061
                       will be named automatically.
G
guosheng 已提交
3062 3063

    Returns:
Y
Yibing Liu 已提交
3064
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3065

G
guosheng 已提交
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3076 3077
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3078 3079 3080 3081 3082 3083 3084

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3085 3086 3087
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3088 3089
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3090 3091 3092 3093 3094
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3095
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3096 3097 3098 3099
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3100 3101


C
caoying03 已提交
3102
def reduce_max(input, dim=None, keep_dim=False, name=None):
3103
    """
Y
yangyaming 已提交
3104
    Computes the maximum of tensor elements over the given dimension.
3105 3106 3107

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3108
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3109 3110 3111
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3112
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3113 3114
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3115
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3116 3117
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3118 3119 3120

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3121

3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3133 3134 3135 3136 3137 3138 3139

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3140 3141 3142
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3143 3144
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3145 3146 3147 3148 3149
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3150
            'dim': dim if dim != None else [0],
3151 3152 3153 3154 3155 3156
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3157
def reduce_min(input, dim=None, keep_dim=False, name=None):
3158
    """
Y
yangyaming 已提交
3159
    Computes the minimum of tensor elements over the given dimension.
3160 3161 3162

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3163
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3164 3165 3166
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3167
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3168 3169
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3170
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3171 3172
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3173 3174 3175

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3176

3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3188 3189 3190 3191 3192 3193 3194

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3195 3196 3197
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3198 3199
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3200 3201 3202 3203 3204
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3205
            'dim': dim if dim != None else [0],
3206 3207 3208 3209
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3210 3211


3212 3213 3214 3215 3216 3217
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3218
        dim (list|int|None): The dimensions along which the product is performed. If
3219 3220
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3221 3222
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3223 3224 3225
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3226
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3227
            layer will be named automatically.
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3242
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3243
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3244 3245 3246 3247 3248 3249 3250

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3251 3252 3253
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3254 3255
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3256 3257 3258 3259 3260
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3261
            'dim': dim if dim != None else [0],
3262 3263 3264 3265 3266 3267
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3268
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3269
    """
C
caoying03 已提交
3270
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3271 3272 3273

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3274 3275 3276 3277 3278
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3279
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3280
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3281
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3282 3283
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3284 3285

    Returns:
D
dzhwinter 已提交
3286
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3287 3288 3289 3290 3291 3292 3293 3294 3295

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3296 3297
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3327 3328 3329 3330 3331 3332 3333 3334 3335


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3336
    .. math::
3337 3338

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3339 3340 3341 3342 3343

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3344
        x(Variable|list): The input tensor to l2_normalize layer.
3345
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3346 3347
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3348
        epsilon(float): The epsilon value is used to avoid division by zero, \
3349
            the defalut value is 1e-10.
3350
        name(str|None): A name for this layer(optional). If set None, the layer \
3351
            will be named automatically.
C
caoying03 已提交
3352 3353

    Returns:
3354
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3355 3356

    Examples:
3357

C
caoying03 已提交
3358 3359
        .. code-block:: python

3360 3361 3362 3363
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3364 3365
    """

F
fengjiayi 已提交
3366 3367
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3368 3369
    helper = LayerHelper("l2_normalize", **locals())

3370 3371
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3372
    helper.append_op(
3373 3374 3375 3376
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3377
        attrs={
3378 3379
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3380 3381
        })
    return out
3382 3383


3384
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3385
    """
Y
ying 已提交
3386 3387 3388 3389
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3390

C
chengduoZH 已提交
3391
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3392
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3393

3394 3395 3396 3397 3398
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3399
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3400

C
chengduoZH 已提交
3401
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3402
      performs in the following way.
G
guosheng 已提交
3403

3404
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3405
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3406
        last two dimensions and a batched matrix multiply supporting broadcast
3407
        applies on the two tensors.
G
guosheng 已提交
3408

Y
ying 已提交
3409 3410
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3411
    removed after matrix multiplication.
G
guosheng 已提交
3412 3413 3414

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3415 3416 3417
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3418
        name(str|None): A name for this layer(optional). If set None, the layer
3419
            will be named automatically.
G
guosheng 已提交
3420 3421

    Returns:
3422
        Variable: The product Tensor variable.
G
guosheng 已提交
3423

G
guosheng 已提交
3424 3425 3426
    Examples:
        .. code-block:: python

3427
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3428 3429
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3430

3431 3432
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3433

3434 3435
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3436

3437 3438
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3439 3440 3441 3442

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3443 3444
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3445

Y
ying 已提交
3446
            # x: [M], y: [N]
3447
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3448
    """
Y
ying 已提交
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3461
            y_shape = y_shape + [1]
Y
ying 已提交
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3478
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3479
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3480
    helper.append_op(
3481 3482 3483 3484 3485 3486 3487
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3488 3489


3490
def topk(input, k, name=None):
Q
qingqing01 已提交
3491 3492 3493 3494
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3495
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3496 3497 3498 3499 3500 3501
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3523 3524 3525
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3526
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3527
                 of input.
3528
        name(str|None): A name for this layer(optional). If set None, the layer
3529
                       will be named automatically.
F
fengjiayi 已提交
3530
                       Default: None
Q
qingqing01 已提交
3531 3532

    Returns:
3533 3534 3535
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3536
        within the last dimension of input.
Q
qingqing01 已提交
3537

F
fengjiayi 已提交
3538 3539
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3540 3541 3542 3543 3544 3545 3546

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
F
fengjiayi 已提交
3547
    if k < 1 or k >= shape[-1]:
Q
qingqing01 已提交
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3565
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3566
    """
Y
ying 已提交
3567 3568 3569 3570 3571 3572 3573 3574 3575
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3576

Y
ying 已提交
3577
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3578

3579
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3580 3581
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3582
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3583

3584
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3585 3586
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3587

3588 3589 3590
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3591
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3592
                          the length of reference string.
3593
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3594
                                     calculating edit distance.
3595
        name (str): The name of this layer. It is optional.
3596

W
wanghaoshuang 已提交
3597
    Returns:
W
wanghaoshuang 已提交
3598
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3599 3600 3601 3602 3603

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3604
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3605
            cost = fluid.layers.edit_distance(input=x,label=y)
3606
    """
3607
    helper = LayerHelper("edit_distance", **locals())
3608

3609
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3610
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3611 3612 3613 3614 3615 3616 3617
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3618
            attrs={"tokens": ignored_tokens})
3619 3620 3621 3622 3623
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3624
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3625
            attrs={"tokens": ignored_tokens})
3626 3627
        label = erased_label

3628 3629
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3630
    sequence_num = helper.create_tmp_variable(dtype="int64")
3631 3632 3633 3634
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3635 3636
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3637 3638
        attrs={"normalized": normalized})

3639
    return edit_distance_out, sequence_num
3640 3641 3642 3643 3644


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3645

Y
ying 已提交
3646 3647 3648 3649
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3667
        input.lod = [[4, 4]]
3668 3669 3670 3671 3672 3673 3674

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3675
        output.lod = [[2, 1]]
3676 3677 3678

    Args:

Y
ying 已提交
3679 3680 3681 3682 3683 3684 3685 3686 3687
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3688
        name (str): The name of this layer. It is optional.
3689 3690

    Returns:
3691
        Variable: CTC greedy decode result. If all the sequences in result were
3692
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3693 3694 3695 3696 3697

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3698

3699
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3700
    """
3701
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3702
    _, topk_indices = topk(input, k=1)
3703 3704 3705 3706 3707 3708

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3709
        outputs={"Output": [ctc_out]},
3710 3711
        attrs={"merge_repeated": True,
               "blank": blank})
3712
    return ctc_out
3713 3714


F
fengjiayi 已提交
3715
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3716
    """
3717 3718
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3719
    to compute Connectionist Temporal Classification (CTC) loss.
3720 3721
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3722 3723 3724
    input tensor.

    Args:
3725
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3726 3727 3728 3729
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3730
       label (Variable): The ground truth of variable-length sequence,
3731 3732 3733
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3734 3735
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3736 3737 3738
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3739
         follewed by a mean_op.
W
wanghaoshuang 已提交
3740 3741

    Returns:
3742 3743
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3744 3745

    Examples:
3746

W
wanghaoshuang 已提交
3747
        .. code-block:: python
3748

3749 3750 3751
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3752 3753

    """
F
fengjiayi 已提交
3754
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3781 3782 3783
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3784 3785 3786 3787 3788
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3789

3790
            out.lod  = [[0, 1, 3]]
3791 3792 3793 3794

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3795 3796 3797 3798 3799 3800 3801
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3802 3803 3804

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3805 3806

    Returns:
3807

3808 3809 3810 3811 3812
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3813
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3814
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3815 3816 3817 3818 3819 3820 3821 3822 3823
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3824 3825


3826 3827 3828 3829
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3830 3831 3832 3833 3834 3835 3836
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3837 3838 3839 3840 3841 3842 3843
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3844 3845
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3846
            sample is 1.0.
3847 3848 3849
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3850

3851
    Returns:
Y
Yibing Liu 已提交
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3879
    """
Y
Yang Yu 已提交
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3899 3900 3901 3902 3903 3904 3905 3906 3907
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3924
    return cost / (num_neg_samples + 1)
3925 3926


G
guosheng 已提交
3927
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
3928 3929
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
3930
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
3931 3932 3933 3934 3935 3936 3937 3938 3939
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
3940

W
weixing02 已提交
3941
    Args:
M
minqiyang 已提交
3942
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
3943 3944 3945 3946 3947
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
3948 3949
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
3950
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
3951 3952
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
3953 3954 3955 3956 3957 3958 3959 3960

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
3961 3962 3963
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
3964 3965 3966 3967 3968 3969 3970 3971
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
3972
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
3973 3974 3975 3976 3977
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
3978 3979 3980 3981 3982 3983 3984 3985
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
3986 3987
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
3988
        inputs=inputs,
W
weixing02 已提交
3989 3990 3991 3992 3993 3994
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
3995
def transpose(x, perm, name=None):
Y
ying 已提交
3996 3997 3998 3999 4000 4001 4002
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4003 4004 4005
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4006 4007 4008 4009 4010 4011 4012 4013

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4014
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4015 4016
    """

Y
fix ci.  
ying 已提交
4017
    if len(perm) != len(x.shape):
Y
ying 已提交
4018 4019 4020
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4021 4022 4023 4024 4025 4026
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4027 4028

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4029
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4030 4031
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
4032
        inputs={'X': [x]},
Y
ying 已提交
4033 4034 4035
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
4036 4037


4038 4039 4040 4041 4042 4043 4044
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4045
    """
4046 4047 4048 4049 4050 4051 4052
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4081 4082 4083 4084 4085 4086 4087 4088 4089
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4090 4091 4092
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4093 4094 4095 4096 4097
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4125 4126 4127
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4140
            output.dims = {8, 8}
4141

4142
            output.lod = [[4, 4]]
4143

D
dzhwinter 已提交
4144
     Examples:
4145 4146 4147

        .. code-block:: python

4148 4149
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4150 4151

    """
W
wanghaoshuang 已提交
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4162 4163 4164 4165 4166 4167 4168
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4169
    helper = LayerHelper('im2sequence', **locals())
4170 4171
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4172
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4173
    return out
4174 4175


Y
yuyang18 已提交
4176
@templatedoc()
4177
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4178 4179
    """
    ${comment}
4180 4181

    Args:
Y
yuyang18 已提交
4182
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4183 4184
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4185 4186 4187 4188 4189
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4190
        ${out_comment}.
4191 4192

    Examples:
Y
yuyang18 已提交
4193 4194 4195 4196
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4209
    return helper.append_activation(out)
4210 4211


Y
yuyang18 已提交
4212
@templatedoc()
4213 4214
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4215 4216 4217 4218 4219 4220 4221
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4222 4223

    Args:
Y
yuyang18 已提交
4224 4225
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4226 4227

    Returns:
Y
yuyang18 已提交
4228
        ${out_comment}.
4229 4230
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4231 4232 4233 4234 4235 4236

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4237 4238 4239 4240 4241 4242
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4243 4244 4245 4246 4247


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
4248

4249 4250 4251 4252
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4253

4254 4255 4256
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4257

4258 4259 4260
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4261

4262
    The equation is as follows:
4263

4264
    1) Hard label (one-hot label, so every sample has exactly one class)
4265

4266 4267 4268 4269
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4270

4271 4272 4273
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4274

4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4296 4297
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4314 4315
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4316
    For each instance, it computes the smooth L1 loss element by element first
4317
    and then sums all the losses. So the shape of ouput Variable is
4318
    [batch_size, 1].
4319

4320 4321
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4322
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4323
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4324
            L1 loss op with same shape as :attr:`x`.
4325
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4326 4327
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4328
            by this tensor element by element.
4329
        outside_weight (Variable|None): A tensor with rank at least 2. This
4330 4331
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4332
            element by element.
4333
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4334 4335
           scalar with default value 1.0.

4336
    Returns:
4337
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4338 4339 4340 4341 4342

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4343 4344
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4345
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4346
            out = fluid.layers.smooth_l1(x=fc, y=label)
4347
    """
4348

4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4364 4365 4366 4367


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4368
    This layer creates the one-hot representations for input indices.
4369 4370

    Args:
Y
Yibing Liu 已提交
4371 4372
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4373 4374

    Returns:
Y
Yibing Liu 已提交
4375
        Variable: The one-hot representations of input.
4376 4377

    Examples:
C
caoying03 已提交
4378
        .. code-block:: python
4379

Y
Yibing Liu 已提交
4380 4381
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4382 4383 4384 4385 4386 4387 4388 4389 4390
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4391 4392


Y
Yu Yang 已提交
4393
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4394
    """
Y
yi.wu 已提交
4395 4396 4397
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4398 4399 4400 4401 4402 4403

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4404 4405
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4406 4407 4408 4409 4410 4411

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4412 4413
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4414 4415
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4416 4417 4418 4419 4420
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4421
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4422
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4423 4424
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4425 4426
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4427 4428 4429
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4430 4431


4432
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4433
    """
C
caoying03 已提交
4434 4435
    Gives a new shape to the input Tensor without changing its data.

4436 4437 4438 4439 4440
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4441

4442
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4443

4444 4445 4446 4447
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4448
    2. 0 means the actual dimension value is going to be copied from the
4449 4450 4451 4452
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4453 4454

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4455
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4456
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4457

4458
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4459 4460
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4461 4462
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4463
    dimensions.
C
caoying03 已提交
4464

4465
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4466 4467 4468 4469
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4470 4471

    Args:
4472
        x(variable): The input tensor.
C
caoying03 已提交
4473 4474
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4475 4476 4477 4478 4479
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4480
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4481 4482 4483 4484
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4485
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4486

4487 4488
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4489

X
Xin Pan 已提交
4490 4491 4492
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4493 4494
    Examples:
        .. code-block:: python
G
guosheng 已提交
4495

4496
            data = fluid.layers.data(
4497
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4498
            reshaped = fluid.layers.reshape(
4499
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4500 4501 4502 4503
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")
X
Xin Pan 已提交
4504 4505 4506 4507 4508
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4509

4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
4525
    helper = LayerHelper("reshape", **locals())
D
dzhwinter 已提交
4526
    out = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4527 4528
    helper.append_op(
        type="reshape",
X
Xin Pan 已提交
4529
        inputs=inputs,
D
dzhwinter 已提交
4530 4531
        attrs={"shape": shape},
        outputs={"Out": out})
C
caoying03 已提交
4532

D
dzhwinter 已提交
4533
    return helper.append_activation(out)
4534 4535


Y
yangyaming 已提交
4536
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4537
    """
Y
Yibing Liu 已提交
4538
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4539 4540 4541 4542
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4543
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4544 4545 4546 4547 4548 4549

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4550
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4551 4552 4553
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4554
            target_lod: [4, 2]
Y
yangyaming 已提交
4555 4556

            then we get a 1-level LoDTensor:
4557
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4558 4559 4560 4561 4562 4563
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4564
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4565 4566 4567 4568
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4569
                y.data = [[2, 4]]
Y
yangyaming 已提交
4570 4571 4572
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4573
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4574 4575 4576 4577 4578 4579
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4580
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4581 4582 4583 4584
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4585
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4586 4587 4588 4589
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4590
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4591 4592 4593 4594 4595
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4596
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4597
                           from :attr:`y`.
Y
yangyaming 已提交
4598
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4599
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4600 4601

    Returns:
Y
Yibing Liu 已提交
4602
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4603 4604

    Raises:
Y
Yibing Liu 已提交
4605
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4641
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4670 4671
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4699 4700 4701 4702


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4703
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4704
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4705

G
guosheng 已提交
4706 4707 4708 4709
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4732
                         The length of :attr:paddings must be
G
guosheng 已提交
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4743

G
guosheng 已提交
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4758 4759


C
chengduo 已提交
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


4840 4841 4842 4843 4844 4845 4846
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4847 4848
    called label-smoothing regularization (LSR).

4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4872
                              be :math:`(1, class\_num)`.
4873 4874
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4875
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4903 4904


Y
yi.wu 已提交
4905
@templatedoc()
4906 4907
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
4908
    ${comment}
4909 4910

    Args:
Y
yi.wu 已提交
4911 4912
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
4913 4914 4915
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
4916 4917

    Returns:
Y
update  
yi.wu 已提交
4918
        Variable: ${out_comment}.
4919 4920

    Examples:
4921 4922
        .. code-block:: python

4923
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4969 4970
        .. code-block:: python

W
whs 已提交
4971 4972 4973 4974
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
4975
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
4976 4977 4978 4979 4980 4981
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4982 4983


4984 4985 4986 4987 4988
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4989
    """
Q
qiaolongfei 已提交
4990
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
4991

4992
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
4993 4994 4995
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
4996

4997
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4998

4999
    Args:
5000
        input (Variable): The input tensor of image resize layer,
5001 5002
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5003
        out_shape(list|tuple|Variable|None): Output shape of image resize
5004 5005
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5006
        scale(float|None): The multiplier for the input height or width.
5007 5008 5009
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5010 5011
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5012 5013
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5014 5015

    Returns:
Q
update  
qiaolongfei 已提交
5016 5017
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5018

5019 5020 5021
    Examples:
        .. code-block:: python

5022
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5023
    """
5024 5025 5026 5027
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5028 5029
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5030 5031
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5032 5033 5034 5035

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5036 5037 5038
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5039
    if out_shape is not None:
B
baiyf 已提交
5040 5041 5042
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5043 5044 5045 5046 5047 5048
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5049 5050 5051 5052
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5053 5054
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5055
        type=resample_methods[resample],
5056
        inputs=inputs,
5057 5058 5059 5060
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5061 5062


Y
yuyang18 已提交
5063
@templatedoc(op_type="bilinear_interp")
5064 5065
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5066 5067 5068 5069 5070 5071
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5072

Y
yuyang18 已提交
5073 5074 5075 5076 5077 5078 5079 5080
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5081 5082 5083 5084 5085 5086 5087
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5088 5089 5090
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5091 5092 5093 5094 5095 5096 5097
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5098
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5099

5100
    Returns:
Q
update  
qiaolongfei 已提交
5101
        Variable: The output is a 4-D tensor of the shape
5102
        (num_batches, channls, out_h, out_w).
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5113 5114 5115
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5116 5117 5118
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5119 5120
def gather(input, index):
    """
Q
qiaolongfei 已提交
5121 5122
    **Gather Layer**

5123
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5124 5125 5126 5127
    of X indexed by `index` and concatenate them together.

    .. math::

5128
        Out = X[Index]
W
whs 已提交
5129 5130 5131 5132 5133 5134 5135


    .. code-block:: text


                Given:

5136 5137
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5148
        input (Variable): The source input with rank>=1.
W
whs 已提交
5149 5150 5151 5152 5153 5154
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5155

W
whs 已提交
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5225

5226 5227 5228
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5229
    """
F
stash  
fengjiayi 已提交
5230
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5231
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5232
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5233
    if seed is None:
5234
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5235
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5236
    if isinstance(seed, int):
F
fengjiayi 已提交
5237 5238 5239 5240 5241
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5242 5243 5244 5245
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5246
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5247 5248
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5249 5250
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5251
    return out
W
whs 已提交
5252 5253


5254
def log(x, name=None):
W
wanghaoshuang 已提交
5255 5256 5257 5258 5259
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5260
        Out = \\ln(x)
W
wanghaoshuang 已提交
5261 5262

    Args:
5263
        x (Variable): Input tensor.
5264 5265
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5266 5267 5268 5269 5270 5271 5272 5273

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5274
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5275 5276
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5277
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5278
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5279
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5280 5281 5282
    return out


5283
def relu(x, name=None):
W
wanghaoshuang 已提交
5284 5285
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5286
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5287 5288 5289 5290
    the tensor elementwise.

    .. math::

5291
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5292 5293

    Args:
5294
        x (Variable): The input tensor.
5295 5296
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5297 5298 5299 5300 5301 5302 5303 5304

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5305
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5306 5307
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5308
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5309
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5310
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5311
    return out
5312 5313


W
whs 已提交
5314 5315 5316
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5317 5318 5319 5320
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5321
    .. math::
5322 5323

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5324

5325
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5326 5327 5328 5329 5330
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5331
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5332
                           Its shape should be the same as input.
5333
        num_classes (int): The possible number of labels.
W
whs 已提交
5334 5335 5336 5337

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5338
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5339 5340 5341 5342

    Examples:

        .. code-block:: python
5343

W
whs 已提交
5344 5345 5346 5347 5348 5349 5350 5351 5352
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5353 5354
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5355
        outputs={
W
whs 已提交
5356 5357 5358
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5359 5360 5361
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5436
                    isinstance(shape, Variable)):
5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5470

5471 5472
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5473

5474 5475 5476 5477
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5478

5479 5480 5481 5482 5483
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5484 5485 5486

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5531 5532


J
jerrywgz 已提交
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
	  name(str|None): A name for this layer(optional). If set None, the layer
5548
                        will be named automatically.
J
jerrywgz 已提交
5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
5599

5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
5610 5611
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
5627
        ValueError: If axis is not in range [0, rank(x)].
5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
    helper.append_op(
        type='flatten',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={"axis": axis})
    return out
C
chenweihang 已提交
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664


def sequence_enumerate(input, win_size, pad_value, name=None):
    """
    Generate a new LoDTensor 
    with the same 1st dimension length as the original LoDTensor, 
    and with the 2nd dimension equal to the input window length, 
    the new sub-sequence on 2nd dimension is enumerated one by one on the original sequence.
    The values of the last insufficient part areall filled with the input pad_value.
    
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
5665
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
5666 5667 5668 5669 5670 5671
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
5672
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689
        Out.dims = [5, 2]

    Args:
        input (Variable): The input variable which is a LoDTensor
        win_size (int): The enumerate sequence window size.
        pad_value (int): The enumerate sequence padding value.

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
5690
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
5691 5692 5693 5694 5695 5696
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
5697

5698

S
sneaxiy 已提交
5699 5700 5701 5702 5703 5704 5705 5706 5707
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
5708

S
sneaxiy 已提交
5709
    .. math::
5710

S
sneaxiy 已提交
5711 5712 5713
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
5714
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
5715 5716 5717 5718
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
5719 5720 5721
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
5722 5723
    Returns:
        Variable: The output sequence mask.
5724

S
sneaxiy 已提交
5725 5726
    """

Q
qingqing01 已提交
5727
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
5728 5729 5730 5731 5732
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
5733 5734 5735
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
5736 5737 5738 5739 5740 5741
        outputs={'Y': out},
        attrs={
            'max_len': maxlen if maxlen is not None else -1,
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
5742

C
chenweihang 已提交
5743

X
Xin Pan 已提交
5744
def stack(x, axis=0):
S
sneaxiy 已提交
5745 5746 5747 5748
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
5749 5750 5751 5752 5753 5754 5755

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
5756
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
5757
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
5758 5759

    Args:
5760
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
5761
        axis (int|None): The axis along which all inputs are stacked.
5762

S
sneaxiy 已提交
5763 5764
    Returns:
        Variable: The stacked variable.
5765

S
sneaxiy 已提交
5766 5767
    """

X
Xin Pan 已提交
5768 5769 5770 5771 5772 5773 5774 5775
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
5776 5777
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
5778

C
chenweihang 已提交
5779
    return out
D
dzhwinter 已提交
5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
   
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised. 

    Args:
        x (Variable): Input variable. 
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
    
    Returns:
        list(Variable): The unstacked variables.
    
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs