nn.py 242.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
G
fix  
gongweibao 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    'fc', 'embedding', 'dynamic_lstm', 'dynamic_lstmp', 'dynamic_gru',
    'gru_unit', 'linear_chain_crf', 'crf_decoding', 'cos_sim', 'cross_entropy',
    'square_error_cost', 'chunk_eval', 'sequence_conv', 'conv2d', 'conv3d',
    'sequence_pool', 'sequence_softmax', 'softmax', 'pool2d', 'pool3d',
    'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'conv3d_transpose',
    'sequence_expand', 'sequence_expand_as', 'sequence_pad', 'lstm_unit',
    'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min', 'reduce_prod',
    'sequence_first_step', 'sequence_last_step', 'dropout', 'split',
    'ctc_greedy_decoder', 'edit_distance', 'l2_normalize', 'matmul', 'topk',
    'warpctc', 'sequence_reshape', 'transpose', 'im2sequence', 'nce',
    'hsigmoid', 'beam_search', 'row_conv', 'multiplex', 'layer_norm',
    'softmax_with_cross_entropy', 'smooth_l1', 'one_hot',
    'autoincreased_step_counter', 'reshape', 'squeeze', 'unsqueeze',
    'lod_reset', 'lrn', 'pad', 'pad_constant_like', 'label_smooth', 'roi_pool',
    'dice_loss', 'image_resize', 'image_resize_short', 'resize_bilinear',
    'gather', 'scatter', 'sequence_scatter', 'random_crop', 'mean_iou', 'relu',
G
gongweibao 已提交
48
    'log', 'crop', 'rank_loss', 'elu', 'relu6', 'pow', 'stanh', 'hard_sigmoid',
G
merge  
gongweibao 已提交
49 50 51 52 53
    'swish', 'prelu', 'brelu', 'leaky_relu', 'soft_relu', 'flatten',
    'sequence_mask', 'stack', 'pad2d', 'unstack', 'sequence_enumerate',
    'expand', 'sequence_concat', 'scale', 'elementwise_add', 'elementwise_div',
    'elementwise_sub', 'elementwise_mul', 'elementwise_max', 'elementwise_min',
    'elementwise_pow', 'uniform_random_batch_size_like', 'gaussian_random',
M
minqiyang 已提交
54 55 56
    'sampling_id', 'gaussian_random_batch_size_like', 'sum', 'slice', 'shape',
    'logical_and', 'logical_or', 'logical_xor', 'logical_not', 'clip',
    'clip_by_norm'
Y
Yu Yang 已提交
57 58 59 60 61 62 63 64
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
65
       use_mkldnn=False,
Y
Yu Yang 已提交
66
       act=None,
J
Jacek Czaja 已提交
67
       is_test=False,
68
       name=None):
Y
Yu Yang 已提交
69
    """
70
    **Fully Connected Layer**
Y
Yu Yang 已提交
71

72 73 74 75 76 77 78 79
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
80
    to the output as well.
C
caoying03 已提交
81

C
caoying03 已提交
82
    This process can be formulated as follows:
83 84 85

    .. math::

86
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
87 88 89

    In the above equation:

C
caoying03 已提交
90 91 92 93
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
94
    * :math:`Act`: The activation function.
C
caoying03 已提交
95
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
96 97

    Args:
R
ranqiu 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
113 114
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
115
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
116
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
117 118
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
119
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
120

121
    Returns:
F
fengjiayi 已提交
122
        Variable: The transformation result.
123 124

    Raises:
C
caoying03 已提交
125
        ValueError: If rank of the input tensor is less than 2.
126 127 128 129

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
130
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
131
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
132
    """
C
caoying03 已提交
133

C
caoying03 已提交
134
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
135 136 137 138

    dtype = helper.input_dtype()

    mul_results = []
139 140
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
141 142 143
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
144

Y
Yu Yang 已提交
145
        w = helper.create_parameter(
146 147
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
148
        helper.append_op(
149 150 151
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
152
            outputs={"Out": tmp},
M
mozga-intel 已提交
153 154
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
155 156 157 158
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
159
    else:
160 161
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
162 163 164 165
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
166 167 168 169
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
170 171


172 173 174
def embedding(input,
              size,
              is_sparse=False,
175
              is_distributed=False,
176 177 178
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
179
    """
180 181
    **Embedding Layer**

182
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
183 184
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
185 186 187

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
188 189

    Args:
190 191 192 193 194
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
195
        is_distributed(bool): Whether to run lookup table from remote parameter server.
196 197
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
198
            with zeros whenever lookup encounters it in :attr:`input`. If
199
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
200 201
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
202
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
203

204 205 206
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
207

208 209
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
210

C
chengduoZH 已提交
211
          dict_size = len(dataset.ids)
212
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
213
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
214 215 216 217 218 219
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
220 221
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
222 223 224 225 226
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
227 228 229 230 231
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
232 233 234
    return tmp


Y
yi.wu 已提交
235
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
236 237
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
238 239
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
240 241 242 243 244 245 246
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
247 248
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
249
    """
Y
yi.wu 已提交
250
    ${comment}
Y
Yibing Liu 已提交
251 252

    Args:
Y
yi.wu 已提交
253 254
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
255 256 257 258 259 260 261
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

262
        param_attr(ParamAttr|None): The parameter attribute for the learnable
263
                               hidden-hidden weights.
Y
Yibing Liu 已提交
264 265 266

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
267 268
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
269
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
270 271 272
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
273

274
                              1. `use_peepholes = False`
Y
yi.wu 已提交
275 276
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
277
                              2. `use_peepholes = True`
Y
yi.wu 已提交
278
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
279
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
280
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
281 282 283 284 285 286 287 288
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
289 290

    Returns:
Y
Yibing Liu 已提交
291 292
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
293

Y
Yibing Liu 已提交
294
    Examples:
Y
Yibing Liu 已提交
295 296
        .. code-block:: python

Y
Yibing Liu 已提交
297 298
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
299
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
300 301
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
302
    """
303

Y
Yu Yang 已提交
304
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
305
    size = size // 4
Y
Yu Yang 已提交
306 307 308 309 310 311 312 313 314 315 316 317
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
318 319 320 321 322 323 324 325 326 327
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
328 329 330

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
331
        inputs=inputs,
Y
Yu Yang 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
348 349 350 351 352 353 354 355 356 357 358
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
359 360
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
361 362 363
    """
    **Dynamic LSTMP Layer**

364 365 366 367 368 369
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
370 371 372 373 374

    The formula is as follows:

    .. math::

375
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
376

377
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
378

379
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
380

381
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
382

383
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
384

385
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
386

387
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
388

Y
Yibing Liu 已提交
389 390 391 392 393 394
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
395
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
396
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
397
          bias vector).
Y
Yibing Liu 已提交
398 399 400
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
401
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
402
    * :math:`h`: The hidden state.
403
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
404 405
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
406
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
407
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
408
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
409 410
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
411 412 413 414

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
415

Y
Yibing Liu 已提交
416 417 418 419 420 421 422 423 424 425 426 427
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
428
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
429 430
                               hidden-hidden weight and projection weight.

431 432
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
433 434
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
435 436
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
437 438
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
439 440 441 442 443 444
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
445
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
446 447 448
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
449
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
450 451 452 453 454 455 456 457 458
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
459
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
460 461
                              default "tanh".
        proj_activation(str): The activation for projection output.
462
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
463 464
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
465 466
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
467 468

    Returns:
469 470 471 472
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
473 474

    Examples:
475

Y
Yibing Liu 已提交
476 477
        .. code-block:: python

478 479 480 481
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
482
            hidden_dim, proj_dim = 512, 256
483
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
484
                                     act=None, bias_attr=None)
485 486 487
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
488 489 490 491
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
492
    """
493

Y
Yibing Liu 已提交
494
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
495
    size = size // 4
Y
Yibing Liu 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
540 541 542 543 544 545 546 547 548
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
549
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
550

551
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
552
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
553

G
guosheng 已提交
554 555 556 557 558 559 560 561 562
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
563

G
guosheng 已提交
564
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
565

G
guosheng 已提交
566
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
567 568
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
569 570 571 572
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
573
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
574 575

    Args:
576 577
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
578
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
579
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
580 581
            is the hidden size.
        size(int): The dimension of the gru cell.
582
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
583 584
            hidden-hidden weight matrix. Note:

585
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
586
              :math:`D` is the hidden size.
587
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
588
              The first part are weights of the update gate and reset gate with
589
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
590
              candidate hidden state with shape :math:`(D \\times D)`.
591
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
592
            hidden-hidden bias.
593
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
594 595 596
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
597
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
598
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
599 600 601 602
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
603 604

    Returns:
G
guosheng 已提交
605
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
606
            and sequence length is the same with the input.
607

G
guosheng 已提交
608
    Examples:
609

G
guosheng 已提交
610 611
        .. code-block:: python

612 613 614 615
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
616
            hidden_dim = 512
617
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
618 619 620 621 622 623 624 625 626 627
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
628
    batch_size = input.shape[0]
G
guosheng 已提交
629 630 631
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
632 633 634
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
658 659 660
def gru_unit(input,
             hidden,
             size,
661 662
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
663
             activation='tanh',
664
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
665
    """
666
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
667

668 669
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
670

671
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
672

673
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
674

675
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
676 677

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
678 679 680
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
681 682
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

683 684
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
685 686 687
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
688 689 690 691 692

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
693 694
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
695 696 697 698
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
699

700 701 702 703 704 705
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
706

707
             # assuming we have x_t_data and prev_hidden of size=10
708
             x_t = fluid.layers.fc(input=x_t_data, size=30)
709 710
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
711 712 713 714 715 716 717 718 719 720 721 722

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
723
    size = size // 3
Y
Yu Yang 已提交
724 725

    # create weight
726 727
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
728

729 730 731 732
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
733
    # create bias
734
    if helper.bias_attr:
Y
Yu Yang 已提交
735 736 737
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
738
        inputs['Bias'] = bias
Y
Yu Yang 已提交
739 740 741

    helper.append_op(
        type='gru_unit',
742
        inputs=inputs,
Y
Yu Yang 已提交
743 744 745 746 747 748
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
749 750
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
751 752 753 754 755
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
756
@templatedoc()
757
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
758 759 760 761 762 763 764
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
765
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
766 767 768 769
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
770 771 772
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
773 774

    """
Y
Yu Yang 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
800
@templatedoc()
801
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
802 803 804 805 806
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
807

Y
yuyang18 已提交
808
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
809

Y
yuyang18 已提交
810 811 812
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
813
        Variable: ${viterbi_path_comment}
814

Y
yi.wu 已提交
815 816 817 818 819
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
820
    """
Y
Yu Yang 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
834
@templatedoc()
F
fengjiayi 已提交
835
def cos_sim(X, Y):
Y
Yu Yang 已提交
836
    """
Y
yi.wu 已提交
837 838 839
    ${comment}

    Args:
840 841
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
842

Y
yi.wu 已提交
843
    Returns:
844
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
845
    """
F
fengjiayi 已提交
846
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
847 848 849 850 851 852 853 854 855 856 857 858 859
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


860
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
861 862 863 864 865
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
866
    training. The dropout operator randomly sets (according to the given dropout
867 868 869 870
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
871 872
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
873 874 875 876 877 878 879
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
880 881

    Returns:
882
        Variable: A tensor variable is the shape with `x`.
883 884

    Examples:
885

886 887
        .. code-block:: python

888 889
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
890 891
    """

F
fengjiayi 已提交
892
    helper = LayerHelper('dropout', **locals())
893 894
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
895 896 897 898

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

899 900 901 902 903
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
904 905 906 907 908 909
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
910 911 912
    return out


913
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
914
    """
Y
Yibing Liu 已提交
915 916
    **Cross Entropy Layer**

917 918 919
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
920 921

    1) One-hot cross-entropy:
F
fengjiayi 已提交
922
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
923

Y
Yibing Liu 已提交
924
        .. math::
Y
yangyaming 已提交
925

Y
Yibing Liu 已提交
926 927 928
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
929 930
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
931 932 933 934 935

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
936
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
937 938 939
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
940 941
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
942
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
943

Y
Yibing Liu 已提交
944
    Args:
Y
yangyaming 已提交
945
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
946 947 948 949
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
950
        label (Variable|list): the ground truth which is a 2-D tensor. When
951 952 953 954
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
955
        soft_label (bool): a flag indicating whether to
956
                                           interpretate the given labels as soft
957
                                           labels. Default: `False`.
M
minqiyang 已提交
958 959
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
960
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
961 962 963 964 965

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
966 967 968 969 970
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
971 972 973 974 975 976

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
977
    """
F
fengjiayi 已提交
978
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
979 980 981 982 983 984
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
985 986
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
987 988 989
    return out


F
fengjiayi 已提交
990
def square_error_cost(input, label):
Y
Yu Yang 已提交
991
    """
992 993
    **Square error cost layer**

994 995
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
996

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1010 1011
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1012 1013

    Returns:
G
guosheng 已提交
1014
        Variable: The tensor variable storing the element-wise squared error \
1015
                  difference of input and label.
1016 1017 1018 1019 1020 1021 1022 1023

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1024
    """
F
fengjiayi 已提交
1025
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1035 1036
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1037 1038 1039
    return square_out


Y
yi.wu 已提交
1040
@templatedoc()
Y
Yu Yang 已提交
1041 1042 1043 1044
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1045
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1046
    """
Y
yi.wu 已提交
1047
    **Chunk Evaluator**
Y
yi.wu 已提交
1048

Y
yangyaming 已提交
1049
    This function computes and outputs the precision, recall and
1050
    F1-score of chunk detection.
Y
yi.wu 已提交
1051

Y
yi.wu 已提交
1052 1053 1054 1055 1056 1057 1058 1059
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1060

Y
yi.wu 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1086

Y
yi.wu 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1111
    Args:
1112 1113 1114 1115 1116
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1117

Y
yi.wu 已提交
1118
    Returns:
Y
update  
yi.wu 已提交
1119 1120 1121
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1122

Y
yi.wu 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1135
    """
F
fengjiayi 已提交
1136
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1137 1138 1139 1140 1141

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1142 1143 1144
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1145 1146 1147 1148 1149 1150 1151 1152

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1153 1154 1155 1156
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1157 1158 1159
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1160 1161
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1162
        })
1163 1164
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1165 1166


1167
@templatedoc()
Y
Yu Yang 已提交
1168 1169 1170 1171 1172 1173 1174
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1175
                  act=None):
Y
Yu Yang 已提交
1176 1177 1178 1179
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1190

1191 1192
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1211
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1212 1213 1214 1215 1216 1217
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1218
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False):
1219 1220 1221
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1222
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1241
        library is installed. Default: False
1242

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1265
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1266
    """
1267
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1268
    has the same shape as the input.
Q
qiaolongfei 已提交
1269

1270 1271 1272 1273 1274 1275
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1276
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1277 1278 1279 1280 1281 1282 1283

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1284
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1319 1320 1321
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1322 1323
           stride=1,
           padding=0,
1324
           dilation=1,
Y
Yu Yang 已提交
1325 1326 1327
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1328
           use_cudnn=True,
1329
           use_mkldnn=False,
1330 1331
           act=None,
           name=None):
Y
Yu Yang 已提交
1332
    """
C
chengduoZH 已提交
1333
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1334 1335
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1336
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1337 1338 1339 1340 1341 1342 1343
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1344 1345 1346
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1347

1348
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1349

C
chengduoZH 已提交
1350 1351
    .. math::

C
refine  
chengduoZH 已提交
1352
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1353

T
tensor-tang 已提交
1354
    Where:
C
chengduoZH 已提交
1355

1356 1357 1358 1359 1360
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1361
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1362 1363 1364

    Example:

1365 1366
        - Input:

W
weixing02 已提交
1367
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1368

W
weixing02 已提交
1369
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1370

1371
        - Output:
T
tensor-tang 已提交
1372

W
weixing02 已提交
1373
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1374

C
chengduoZH 已提交
1375
        Where
1376 1377

        .. math::
C
chengduoZH 已提交
1378

W
weixing02 已提交
1379 1380
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1381 1382

    Args:
1383
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1384
        num_filters(int): The number of filter. It is as same as the output
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1407 1408
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1409 1410 1411
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1412 1413

    Returns:
G
guosheng 已提交
1414
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1415 1416
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1417
    Raises:
1418 1419
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1420

C
chengduoZH 已提交
1421 1422 1423
    Examples:
        .. code-block:: python

1424 1425
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1426 1427 1428
    """

    num_channels = input.shape[1]
1429 1430

    l_type = 'conv2d'
X
xzl 已提交
1431 1432
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1433
        l_type = 'depthwise_conv2d'
1434 1435 1436 1437

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1438 1439 1440 1441 1442
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1443
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1444

C
chengduoZH 已提交
1445 1446 1447
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1448
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1449

C
chengduoZH 已提交
1450 1451
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1452 1453

    input_shape = input.shape
M
minqiyang 已提交
1454
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1469
        type=l_type,
Y
Yu Yang 已提交
1470 1471 1472 1473 1474
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1475 1476 1477
        attrs={
            'strides': stride,
            'paddings': padding,
1478
            'dilations': dilation,
C
chengduoZH 已提交
1479
            'groups': groups,
1480 1481
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1482
        })
Y
Yu Yang 已提交
1483 1484 1485 1486 1487 1488

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1507 1508 1509 1510 1511 1512
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1522 1523
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1524 1525 1526
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1527
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1553
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1554 1555
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1556
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1557 1558
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1559
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1560 1561
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1562
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1589 1590
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1605
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1646
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1647 1648 1649 1650

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1651
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1652
    """
Y
yangyaming 已提交
1653 1654 1655
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1667
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1668 1669 1670 1671 1672
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1673
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1674 1675 1676 1677 1678 1679 1680

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1681 1682
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1683

L
Luo Tao 已提交
1684 1685
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1686
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1687 1688 1689 1690 1691 1692 1693 1694
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1695

Y
yangyaming 已提交
1696
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1697 1698 1699 1700 1701
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1702 1703
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1704
    """
F
fengjiayi 已提交
1705
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1717 1718 1719 1720 1721
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1722 1723 1724
    return pool_out


C
add doc  
chengduoZH 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1750
def sequence_first_step(input):
L
Luo Tao 已提交
1751
    """
L
Luo Tao 已提交
1752
    This function gets the first step of sequence.
L
Luo Tao 已提交
1753 1754 1755 1756

    .. code-block:: text

       x is a 1-level LoDTensor:
1757
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1758 1759 1760 1761 1762
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1763
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1764
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1765

L
Luo Tao 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1775

Y
yangyaming 已提交
1776
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1777 1778 1779
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1780 1781 1782
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1783
def sequence_last_step(input):
L
Luo Tao 已提交
1784
    """
L
Luo Tao 已提交
1785
    This function gets the last step of sequence.
L
Luo Tao 已提交
1786 1787 1788 1789

    .. code-block:: text

       x is a 1-level LoDTensor:
1790
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1791 1792 1793 1794 1795
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1796
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1797
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1798

L
Luo Tao 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1808

Y
yangyaming 已提交
1809
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1810 1811 1812
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1813 1814 1815
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1816
@templatedoc()
Y
Yu Yang 已提交
1817
def pool2d(input,
C
chengduoZH 已提交
1818 1819
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1820 1821
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1822
           global_pooling=False,
C
chengduoZH 已提交
1823
           use_cudnn=True,
1824
           ceil_mode=False,
1825
           use_mkldnn=False,
C
caoying03 已提交
1826
           name=None):
Y
Yu Yang 已提交
1827
    """
F
fengjiayi 已提交
1828
    ${comment}
1829 1830

    Args:
1831 1832 1833
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1834
                          feature, and W is the width of the feature.
1835
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1836
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1837
        pool_type: ${pooling_type_comment}
1838 1839
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1840 1841 1842 1843
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1844
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1845 1846
                        layer will be named automatically.

1847
    Returns:
F
fengjiayi 已提交
1848
        Variable: The pooling result.
F
fengjiayi 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1862 1863 1864 1865
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1866
                            global_pooling=False)
Y
Yu Yang 已提交
1867 1868 1869 1870 1871
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1872

C
chengduoZH 已提交
1873 1874 1875 1876 1877
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1878 1879 1880 1881
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1882 1883
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1884

C
Add doc  
chengduoZH 已提交
1885
    l_type = 'pool2d'
1886 1887

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1888 1889 1890 1891
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1921
    pooling configurations mentioned in input parameters.
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1935

1936
    Returns:
1937
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1938 1939 1940 1941 1942
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1943

C
chengduoZH 已提交
1944 1945 1946 1947 1948
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1949 1950 1951
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1952

C
chengduoZH 已提交
1953 1954
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1955

1956 1957
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1958 1959 1960 1961
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1962
        type=l_type,
Y
Yu Yang 已提交
1963 1964 1965 1966 1967 1968 1969
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1970
            "paddings": pool_padding,
1971
            "use_cudnn": use_cudnn,
1972 1973
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1986
               data_layout='NCHW',
Y
Yang Yang 已提交
1987
               in_place=False,
1988
               use_mkldnn=False,
1989 1990
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
1991
               moving_variance_name=None,
1992 1993
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
1994
    """
Q
qiaolongfei 已提交
1995 1996 1997 1998
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
1999

Q
qiaolongfei 已提交
2000
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2001

Q
qiaolongfei 已提交
2002 2003
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2004 2005 2006
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2019 2020

    Args:
Q
qiaolongfei 已提交
2021
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2022 2023 2024 2025
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2026 2027 2028
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2029
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2030 2031 2032 2033 2034
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2035
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2036
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2037 2038

    Returns:
Q
qiaolongfei 已提交
2039
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2040 2041 2042 2043 2044 2045 2046

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2070
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2071

2072 2073
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2074 2075 2076
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2077
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2078
        shape=param_shape,
2079 2080 2081 2082 2083 2084 2085
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2086
            trainable=False,
W
wanghaoshuang 已提交
2087
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2088
        shape=param_shape,
2089 2090
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2091 2092 2093 2094 2095 2096

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2097 2098
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2099

2100
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2118 2119 2120 2121
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2122 2123
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2124
        })
Y
Yu Yang 已提交
2125 2126 2127 2128

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2129
@templatedoc()
G
guosheng 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2140
    ${comment}
G
guosheng 已提交
2141 2142 2143

    The formula is as follows:

Y
yuyang18 已提交
2144
    ..  math::
G
guosheng 已提交
2145 2146 2147 2148 2149 2150 2151

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2152 2153 2154 2155 2156 2157 2158 2159
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2160

G
guosheng 已提交
2161 2162
    Args:
        input(Variable): The input tensor variable.
2163
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2164
            normalization.
2165
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2166
            normalization.
2167
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2168
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2169
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2170 2171 2172 2173 2174 2175
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2176
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2177 2178

    Returns:
Y
yuyang18 已提交
2179
        ${y_comment}
G
guosheng 已提交
2180 2181 2182

    Examples:

Y
yuyang18 已提交
2183 2184 2185
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2201
    if shift:
G
guosheng 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2226 2227 2228 2229
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2230 2231 2232
                     padding=0,
                     stride=1,
                     dilation=1,
2233
                     groups=None,
C
caoying03 已提交
2234
                     param_attr=None,
2235
                     bias_attr=None,
C
chengduoZH 已提交
2236
                     use_cudnn=True,
2237
                     act=None,
C
caoying03 已提交
2238
                     name=None):
Y
Yu Yang 已提交
2239
    """
2240 2241 2242 2243 2244 2245 2246 2247
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2248 2249
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2250 2251 2252
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2253 2254 2255 2256 2257

    For each input :math:`X`, the equation is:

    .. math::

2258
        Out = \sigma (W \\ast X + b)
2259

2260
    Where:
2261 2262 2263

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2264 2265 2266 2267
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2268

2269 2270 2271 2272
    Example:

        - Input:

2273
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2274

2275
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2276 2277 2278

        - Output:

2279
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2280 2281

        Where
Y
Yu Yang 已提交
2282

2283 2284
        .. math::

2285 2286 2287 2288
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2289 2290

    Args:
2291 2292 2293 2294
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2295 2296 2297 2298
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2326 2327

    Returns:
2328
        Variable: The tensor variable storing the convolution transpose result.
2329 2330

    Raises:
2331 2332
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2333 2334 2335 2336

    Examples:
       .. code-block:: python

2337 2338
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2339
    """
2340 2341 2342 2343 2344 2345 2346 2347 2348

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2349 2350 2351
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2352 2353 2354
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2355

C
chengduoZH 已提交
2356 2357
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2358

Y
Yu Yang 已提交
2359 2360 2361 2362 2363
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2364

Y
Yu Yang 已提交
2365 2366
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2367

C
chengduoZH 已提交
2368
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2369
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2370
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2371
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2372
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2373 2374 2375
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2376 2377 2378 2379 2380 2381 2382
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2383
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2384
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2385 2386 2387
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2388
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2389
    helper.append_op(
2390
        type=op_type,
Y
Yu Yang 已提交
2391 2392
        inputs={'Input': [input],
                'Filter': [img_filter]},
2393
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2394
        attrs={
2395
            'output_size': output_size,
2396 2397 2398 2399 2400
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2401 2402
        })

2403 2404 2405
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2406 2407


2408
def conv3d_transpose(input,
Y
Yu Yang 已提交
2409 2410 2411
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2412 2413 2414
                     padding=0,
                     stride=1,
                     dilation=1,
2415
                     groups=None,
C
caoying03 已提交
2416
                     param_attr=None,
2417
                     bias_attr=None,
C
chengduoZH 已提交
2418
                     use_cudnn=True,
2419
                     act=None,
C
caoying03 已提交
2420
                     name=None):
Y
Yu Yang 已提交
2421
    """
2422
    **Convlution3D transpose layer**
2423

2424
    The convolution3D transpose layer calculates the output based on the input,
2425
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2426 2427 2428 2429 2430 2431
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2432 2433 2434
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2435 2436 2437 2438 2439

    For each input :math:`X`, the equation is:

    .. math::

2440
        Out = \sigma (W \\ast X + b)
2441 2442 2443

    In the above equation:

2444 2445
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2446 2447 2448 2449
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2450

2451 2452 2453 2454
    Example:

        - Input:

2455
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2456

2457
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2458 2459 2460

        - Output:

2461
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2462 2463

        Where
Y
Yu Yang 已提交
2464

2465 2466
        .. math::

2467 2468 2469
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2470 2471

    Args:
2472
        input(Variable): The input image with [N, C, D, H, W] format.
2473 2474 2475
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2476
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2477 2478
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2479
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2480 2481 2482
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2483 2484
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2485
        stride(int|tuple): The stride size. If stride is a tuple, it must
2486 2487
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2488
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2489 2490 2491
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2492 2493 2494 2495 2496
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2497 2498 2499
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2500 2501 2502 2503 2504
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2505 2506

    Returns:
2507
        Variable: The tensor variable storing the convolution transpose result.
2508 2509

    Raises:
2510 2511
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2512 2513 2514 2515

    Examples:
       .. code-block:: python

2516 2517
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2518
    """
2519 2520
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2521
    if not isinstance(input, Variable):
2522
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2523 2524
    input_channel = input.shape[1]

2525 2526 2527
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2528

C
chengduoZH 已提交
2529 2530 2531
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2532 2533 2534 2535 2536 2537
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2538 2539 2540
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2541

2542
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2543
                         padding[0] - 1) // dilation[0] + 1
2544
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2545
                         padding[1] - 1) // dilation[1] + 1
2546
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2547
                         padding[2] - 1) // dilation[2] + 1
2548
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2549
    else:
2550 2551
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2552

2553
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2554
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2555 2556 2557
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2558
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2559
    helper.append_op(
2560
        type=l_type,
Y
Yu Yang 已提交
2561 2562
        inputs={'Input': [input],
                'Filter': [img_filter]},
2563
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2564 2565 2566 2567
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2568
            'groups': groups,
C
chengduoZH 已提交
2569 2570
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2571

2572 2573
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2574
    return out
Y
yangyaming 已提交
2575 2576


Y
yangyaming 已提交
2577
def sequence_expand(x, y, ref_level=-1, name=None):
2578
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2579 2580 2581 2582
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2583 2584 2585 2586 2587

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2588
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2589
                x.data = [[a], [b], [c], [d]]
2590 2591 2592
                x.dims = [4, 1]

            y is a LoDTensor:
2593 2594
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2595

Y
yangyaming 已提交
2596
            ref_level: 0
2597

Y
yangyaming 已提交
2598
            then output is a 1-level LoDTensor:
2599
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2600
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2601 2602 2603 2604
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2605
                x.data = [[a], [b], [c]]
2606 2607 2608
                x.dims = [3, 1]

            y is a LoDTensor:
2609
                y.lod = [[2, 0, 3]]
2610

Y
yangyaming 已提交
2611
            ref_level: -1
2612

Y
yangyaming 已提交
2613 2614 2615
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2616 2617 2618
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2619 2620
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2621
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2622
                        will be named automatically.
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2633
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2634
    """
Y
yangyaming 已提交
2635
    helper = LayerHelper('sequence_expand', input=x, **locals())
2636 2637 2638
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2639 2640 2641 2642 2643
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2644
    return tmp
2645 2646


C
chengduo 已提交
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2712 2713 2714 2715 2716 2717 2718
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2719 2720 2721
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2722
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
2723 2724 2725 2726
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
F
fengjiayi 已提交
2727
            longest original sequence."
M
minqiyang 已提交
2728

F
fengjiayi 已提交
2729
    Returns:
M
minqiyang 已提交
2730
        Variable: The padded sequence batch and the original lengths before
2731
                  padding. All sequences has the same length.
M
minqiyang 已提交
2732

F
fengjiayi 已提交
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2747 2748 2749 2750 2751
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2752 2753 2754 2755 2756 2757
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2758 2759
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2760
        attrs={'padded_length': maxlen})
2761
    return out, length
F
fengjiayi 已提交
2762 2763


2764 2765 2766 2767 2768 2769 2770 2771 2772
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2773 2774
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2775 2776 2777

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2778 2779

    This layer does the search in beams for one time step. Specifically, it
2780 2781 2782 2783 2784 2785
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2786

2787 2788 2789 2790 2791 2792 2793 2794
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2795

2796
    Args:
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2822

2823
    Returns:
2824 2825
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2826 2827 2828 2829

    Examples:
        .. code-block:: python

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2858
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2876 2877 2878 2879 2880 2881 2882
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2883

2884 2885 2886 2887 2888 2889 2890 2891 2892
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2893

2894 2895 2896 2897 2898 2899
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2900

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2926 2927 2928 2929
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2930
              param_attr=None,
C
caoying03 已提交
2931 2932
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2933 2934 2935 2936
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2937
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2938

2939
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2940

2941
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2942

2943
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2944 2945 2946

            h_t & = o_t tanh(c_t)

2947 2948 2949 2950 2951 2952
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2953 2954 2955

        .. math::

2956
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2957 2958 2959 2960 2961 2962 2963 2964

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2965
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2966 2967

    Args:
Y
yangyaming 已提交
2968 2969 2970 2971 2972 2973
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2974
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2975 2976
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2977 2978
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2979 2980
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2981 2982

    Returns:
Y
yangyaming 已提交
2983
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2984 2985

    Raises:
2986 2987 2988 2989
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2990 2991 2992 2993 2994 2995

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2996
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2997
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2998
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3015
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3016 3017 3018 3019
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3020 3021
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3022 3023 3024
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3025
    size = cell_t_prev.shape[1]
3026
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3027 3028
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3029
                param_attr=param_attr,
3030
                bias_attr=bias_attr)
Y
yangyaming 已提交
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3043
    return h, c
G
guosheng 已提交
3044 3045


C
caoying03 已提交
3046
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3047
    """
Y
yangyaming 已提交
3048
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3049 3050 3051

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3052
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3053 3054
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3055 3056
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3057
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3058
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3059
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3060 3061
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3062 3063 3064

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3065

G
guosheng 已提交
3066 3067 3068 3069 3070 3071
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3072
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3073 3074 3075 3076
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3077 3078 3079 3080

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3081
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3082 3083 3084
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3085 3086 3087
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3088 3089
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3090 3091 3092 3093 3094
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3095
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3096 3097 3098 3099
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3100 3101


C
caoying03 已提交
3102
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3103
    """
Y
Yibing Liu 已提交
3104
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3105 3106 3107

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3108 3109 3110
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3111
            must be in the range :math:`[-rank(input), rank(input))`. If
3112
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3113
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3114 3115
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3116
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3117
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3118
                       will be named automatically.
G
guosheng 已提交
3119 3120

    Returns:
Y
Yibing Liu 已提交
3121
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3122

G
guosheng 已提交
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3133 3134
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3135 3136 3137 3138 3139 3140 3141

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3142 3143 3144
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3145 3146
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3147 3148 3149 3150 3151
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3152
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3153 3154 3155 3156
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3157 3158


C
caoying03 已提交
3159
def reduce_max(input, dim=None, keep_dim=False, name=None):
3160
    """
Y
yangyaming 已提交
3161
    Computes the maximum of tensor elements over the given dimension.
3162 3163 3164

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3165
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3166 3167 3168
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3169
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3170 3171
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3172
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3173 3174
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3175 3176 3177

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3178

3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3190 3191 3192 3193 3194 3195 3196

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3197 3198 3199
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3200 3201
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3202 3203 3204 3205 3206
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3207
            'dim': dim if dim != None else [0],
3208 3209 3210 3211 3212 3213
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3214
def reduce_min(input, dim=None, keep_dim=False, name=None):
3215
    """
Y
yangyaming 已提交
3216
    Computes the minimum of tensor elements over the given dimension.
3217 3218 3219

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3220
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3221 3222 3223
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3224
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3225 3226
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3227
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3228 3229
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3230 3231 3232

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3233

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3245 3246 3247 3248 3249 3250 3251

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3252 3253 3254
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3255 3256
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3257 3258 3259 3260 3261
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3262
            'dim': dim if dim != None else [0],
3263 3264 3265 3266
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3267 3268


3269 3270 3271 3272 3273 3274
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3275
        dim (list|int|None): The dimensions along which the product is performed. If
3276 3277
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3278 3279
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3280 3281 3282
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3283
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3284
            layer will be named automatically.
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3299
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3300
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3301 3302 3303 3304 3305 3306 3307

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3308 3309 3310
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3311 3312
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3313 3314 3315 3316 3317
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3318
            'dim': dim if dim != None else [0],
3319 3320 3321 3322 3323 3324
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3325
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3326
    """
C
caoying03 已提交
3327
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3328 3329 3330

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3331 3332 3333 3334 3335
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3336
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3337
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3338
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3339 3340
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3341 3342

    Returns:
D
dzhwinter 已提交
3343
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3344 3345 3346 3347 3348 3349 3350 3351 3352

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3353 3354
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3384 3385 3386 3387 3388 3389 3390 3391 3392


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3393
    .. math::
3394 3395

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3396 3397 3398 3399 3400

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3401
        x(Variable|list): The input tensor to l2_normalize layer.
3402
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3403 3404
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3405
        epsilon(float): The epsilon value is used to avoid division by zero, \
3406
            the defalut value is 1e-10.
3407
        name(str|None): A name for this layer(optional). If set None, the layer \
3408
            will be named automatically.
C
caoying03 已提交
3409 3410

    Returns:
3411
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3412 3413

    Examples:
3414

C
caoying03 已提交
3415 3416
        .. code-block:: python

3417 3418 3419 3420
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3421 3422
    """

F
fengjiayi 已提交
3423 3424
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3425 3426
    helper = LayerHelper("l2_normalize", **locals())

3427 3428
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3429
    helper.append_op(
3430 3431 3432 3433
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3434
        attrs={
3435 3436
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3437 3438
        })
    return out
3439 3440


S
sneaxiy 已提交
3441
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3442
    """
Y
ying 已提交
3443 3444 3445 3446
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3447

C
chengduoZH 已提交
3448
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3449
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3450

3451 3452 3453 3454 3455
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3456
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3457

C
chengduoZH 已提交
3458
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3459
      performs in the following way.
G
guosheng 已提交
3460

3461
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3462
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3463
        last two dimensions and a batched matrix multiply supporting broadcast
3464
        applies on the two tensors.
G
guosheng 已提交
3465

Y
ying 已提交
3466 3467
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3468
    removed after matrix multiplication.
G
guosheng 已提交
3469 3470 3471

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3472 3473 3474
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3475
        alpha (float): The scale of output. Default 1.0.
3476
        name(str|None): A name for this layer(optional). If set None, the layer
3477
            will be named automatically.
G
guosheng 已提交
3478 3479

    Returns:
3480
        Variable: The product Tensor variable.
G
guosheng 已提交
3481

G
guosheng 已提交
3482 3483 3484
    Examples:
        .. code-block:: python

3485
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3486 3487
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3488

3489 3490
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3491

3492 3493
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3494

3495 3496
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3497 3498 3499 3500

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3501 3502
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3503

Y
ying 已提交
3504
            # x: [M], y: [N]
3505
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3506
    """
Y
ying 已提交
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3519
            y_shape = y_shape + [1]
Y
ying 已提交
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3536
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3537
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3538
    helper.append_op(
3539 3540 3541 3542
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3543 3544 3545
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3546
            'alpha': float(alpha),
S
sneaxiy 已提交
3547
        })
3548
    return out
3549 3550


3551
def topk(input, k, name=None):
Q
qingqing01 已提交
3552 3553 3554 3555
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3556
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3557 3558 3559 3560 3561 3562
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3584 3585 3586
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3587
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3588
                 of input.
3589
        name(str|None): A name for this layer(optional). If set None, the layer
3590
                       will be named automatically.
F
fengjiayi 已提交
3591
                       Default: None
Q
qingqing01 已提交
3592 3593

    Returns:
3594 3595 3596
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3597
        within the last dimension of input.
Q
qingqing01 已提交
3598

F
fengjiayi 已提交
3599 3600
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3621
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3622
    """
Y
ying 已提交
3623 3624 3625 3626 3627 3628 3629 3630 3631
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3632

Y
ying 已提交
3633
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3634

3635
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3636 3637
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3638
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3639

3640
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3641 3642
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3643

3644 3645 3646
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3647
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3648
                          the length of reference string.
3649
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3650
                                     calculating edit distance.
3651
        name (str): The name of this layer. It is optional.
3652

W
wanghaoshuang 已提交
3653
    Returns:
W
wanghaoshuang 已提交
3654
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3655 3656 3657 3658 3659

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3660
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3661
            cost = fluid.layers.edit_distance(input=x,label=y)
3662
    """
3663
    helper = LayerHelper("edit_distance", **locals())
3664

3665
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3666
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3667 3668 3669 3670 3671 3672 3673
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3674
            attrs={"tokens": ignored_tokens})
3675 3676 3677 3678 3679
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3680
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3681
            attrs={"tokens": ignored_tokens})
3682 3683
        label = erased_label

3684 3685
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3686
    sequence_num = helper.create_tmp_variable(dtype="int64")
3687 3688 3689 3690
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3691 3692
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3693 3694
        attrs={"normalized": normalized})

3695
    return edit_distance_out, sequence_num
3696 3697 3698 3699 3700


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3701

Y
ying 已提交
3702 3703 3704 3705
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3723
        input.lod = [[4, 4]]
3724 3725 3726 3727 3728 3729 3730

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3731
        output.lod = [[2, 1]]
3732 3733 3734

    Args:

Y
ying 已提交
3735 3736 3737 3738 3739 3740 3741 3742 3743
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3744
        name (str): The name of this layer. It is optional.
3745 3746

    Returns:
3747
        Variable: CTC greedy decode result. If all the sequences in result were
3748
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3749 3750 3751 3752 3753

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3754

3755
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3756
    """
3757
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3758
    _, topk_indices = topk(input, k=1)
3759 3760 3761 3762 3763 3764

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3765
        outputs={"Output": [ctc_out]},
3766 3767
        attrs={"merge_repeated": True,
               "blank": blank})
3768
    return ctc_out
3769 3770


F
fengjiayi 已提交
3771
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3772
    """
3773 3774
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3775
    to compute Connectionist Temporal Classification (CTC) loss.
3776 3777
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3778 3779 3780
    input tensor.

    Args:
3781
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3782 3783 3784 3785
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3786
       label (Variable): The ground truth of variable-length sequence,
3787 3788 3789
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3790 3791
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3792 3793 3794
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3795
         follewed by a mean_op.
W
wanghaoshuang 已提交
3796 3797

    Returns:
3798 3799
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3800 3801

    Examples:
3802

W
wanghaoshuang 已提交
3803
        .. code-block:: python
3804

3805 3806 3807
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3808 3809

    """
F
fengjiayi 已提交
3810
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3837 3838 3839
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3840 3841 3842 3843 3844
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3845

3846
            out.lod  = [[0, 1, 3]]
3847 3848 3849 3850

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3851 3852 3853 3854 3855 3856 3857
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3858 3859 3860

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3861 3862

    Returns:
3863

3864 3865 3866 3867 3868
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3869
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3870
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3871 3872 3873 3874 3875 3876 3877 3878 3879
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3880 3881


3882 3883 3884 3885
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3886 3887 3888 3889 3890 3891 3892
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3893 3894 3895 3896 3897 3898 3899
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3900 3901
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3902
            sample is 1.0.
3903 3904 3905
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3906

3907
    Returns:
Y
Yibing Liu 已提交
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3935
    """
Y
Yang Yu 已提交
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3955 3956 3957 3958 3959 3960 3961 3962 3963
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3980
    return cost / (num_neg_samples + 1)
3981 3982


G
guosheng 已提交
3983
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
3984 3985
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
3986
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
3987 3988 3989 3990 3991 3992 3993 3994 3995
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
3996

W
weixing02 已提交
3997
    Args:
M
minqiyang 已提交
3998
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
3999 4000 4001 4002 4003
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
4004 4005
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4006
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4007 4008
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4009 4010 4011 4012 4013 4014 4015 4016

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4017 4018 4019
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4020 4021 4022 4023 4024 4025 4026 4027
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4028
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4029 4030 4031 4032 4033
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4034 4035 4036 4037 4038 4039 4040 4041
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4042 4043
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4044
        inputs=inputs,
W
weixing02 已提交
4045 4046 4047 4048 4049 4050
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4051
def transpose(x, perm, name=None):
Y
ying 已提交
4052 4053 4054 4055 4056 4057 4058
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4059 4060 4061
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4062 4063 4064 4065 4066 4067 4068 4069

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4070
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4071 4072
    """

Y
fix ci.  
ying 已提交
4073
    if len(perm) != len(x.shape):
Y
ying 已提交
4074 4075 4076
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4077 4078 4079 4080 4081 4082
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4083 4084

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4085
    out = helper.create_tmp_variable(x.dtype)
4086
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4087
    helper.append_op(
4088
        type='transpose2',
Y
fix ci.  
ying 已提交
4089
        inputs={'X': [x]},
4090 4091
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4092 4093
        attrs={'axis': perm})
    return out
4094 4095


4096 4097 4098 4099 4100 4101 4102
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4103
    """
4104 4105 4106 4107 4108 4109 4110
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4139 4140 4141 4142 4143 4144 4145 4146 4147
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4148 4149 4150
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4151 4152 4153 4154 4155
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4183 4184 4185
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4198
            output.dims = {8, 8}
4199

4200
            output.lod = [[4, 4]]
4201

D
dzhwinter 已提交
4202
     Examples:
4203 4204 4205

        .. code-block:: python

4206 4207
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4208 4209

    """
W
wanghaoshuang 已提交
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4220 4221 4222 4223 4224 4225 4226
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4227
    helper = LayerHelper('im2sequence', **locals())
4228 4229
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4230
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4231
    return out
4232 4233


Y
yuyang18 已提交
4234
@templatedoc()
4235
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4236 4237
    """
    ${comment}
4238 4239

    Args:
Y
yuyang18 已提交
4240
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4241 4242
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4243 4244 4245 4246 4247
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4248
        ${out_comment}.
4249 4250

    Examples:
Y
yuyang18 已提交
4251 4252 4253 4254
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4267
    return helper.append_activation(out)
4268 4269


Y
yuyang18 已提交
4270
@templatedoc()
4271 4272
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4273 4274 4275 4276 4277 4278 4279
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4280 4281

    Args:
Y
yuyang18 已提交
4282 4283
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4284 4285

    Returns:
Y
yuyang18 已提交
4286
        ${out_comment}.
4287 4288
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4289 4290 4291 4292 4293 4294

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4295 4296 4297 4298 4299 4300
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4301 4302


4303 4304 4305 4306
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4307 4308
    """
    **Softmax With Cross Entropy Operator.**
4309

4310 4311 4312 4313
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4314

4315 4316 4317
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4318

4319 4320 4321
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4322

4323
    The equation is as follows:
4324

4325
    1) Hard label (one-hot label, so every sample has exactly one class)
4326

4327 4328 4329 4330
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4331

4332 4333 4334
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4335

4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4348 4349
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4350 4351
                            if soft_label is set to False. Default: -100

4352 4353 4354 4355 4356 4357 4358 4359 4360
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4361 4362
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4373 4374
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4375 4376 4377 4378 4379
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4380 4381
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4382
    For each instance, it computes the smooth L1 loss element by element first
4383
    and then sums all the losses. So the shape of ouput Variable is
4384
    [batch_size, 1].
4385

4386 4387
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4388
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4389
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4390
            L1 loss op with same shape as :attr:`x`.
4391
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4392 4393
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4394
            by this tensor element by element.
4395
        outside_weight (Variable|None): A tensor with rank at least 2. This
4396 4397
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4398
            element by element.
4399
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4400 4401
           scalar with default value 1.0.

4402
    Returns:
4403
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4404 4405 4406 4407 4408

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4409 4410
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4411
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4412
            out = fluid.layers.smooth_l1(x=fc, y=label)
4413
    """
4414

4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4430 4431 4432 4433


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4434
    This layer creates the one-hot representations for input indices.
4435 4436

    Args:
Y
Yibing Liu 已提交
4437 4438
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4439 4440

    Returns:
Y
Yibing Liu 已提交
4441
        Variable: The one-hot representations of input.
4442 4443

    Examples:
C
caoying03 已提交
4444
        .. code-block:: python
4445

Y
Yibing Liu 已提交
4446 4447
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4448 4449 4450 4451 4452 4453 4454 4455 4456
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4457 4458


Y
Yu Yang 已提交
4459
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4460
    """
Y
yi.wu 已提交
4461 4462 4463
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4464 4465 4466 4467 4468 4469

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4470 4471
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4472 4473 4474 4475 4476 4477

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4478 4479
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4480 4481
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4482 4483 4484 4485 4486
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4487
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4488
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4489 4490
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4491 4492
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4493 4494 4495
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4496 4497


4498
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4499
    """
C
caoying03 已提交
4500 4501
    Gives a new shape to the input Tensor without changing its data.

4502 4503 4504 4505 4506
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4507

4508
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4509

4510 4511 4512 4513
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4514
    2. 0 means the actual dimension value is going to be copied from the
4515 4516 4517 4518
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4519 4520

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4521
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4522
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4523

4524
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4525 4526
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4527 4528
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4529
    dimensions.
C
caoying03 已提交
4530

4531
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4532 4533 4534 4535
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4536 4537

    Args:
4538
        x(variable): The input tensor.
C
caoying03 已提交
4539 4540
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4541 4542 4543 4544 4545
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4546
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4547 4548 4549 4550
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4551
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4552

4553 4554
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4555

X
Xin Pan 已提交
4556 4557 4558
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4559 4560
    Examples:
        .. code-block:: python
G
guosheng 已提交
4561

4562
            data = fluid.layers.data(
4563
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4564
            reshaped = fluid.layers.reshape(
4565
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4566 4567 4568
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4569
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4570 4571 4572 4573 4574
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4575

4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4591
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4592
    out = helper.create_tmp_variable(dtype=x.dtype)
4593
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4594
    helper.append_op(
4595
        type="reshape2",
X
Xin Pan 已提交
4596
        inputs=inputs,
D
dzhwinter 已提交
4597
        attrs={"shape": shape},
4598 4599
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4600

D
dzhwinter 已提交
4601
    return helper.append_activation(out)
4602

4603

4604
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4605
    """
M
minqiyang 已提交
4606 4607 4608
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4609
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4610

Y
Yibing Liu 已提交
4611 4612
    Examples:
    Case 1:
M
minqiyang 已提交
4613
      Given
Y
Yibing Liu 已提交
4614 4615 4616 4617 4618 4619 4620 4621
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
4622
        and
Y
Yibing Liu 已提交
4623 4624 4625
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
4626

Y
Yibing Liu 已提交
4627
    Args:
4628
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4629
        axes (list): List of integers, indicating the dimensions to be squeezed.
4630
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4631 4632 4633 4634 4635 4636 4637 4638

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4639
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4640 4641
    """
    helper = LayerHelper("squeeze", **locals())
4642
    out = helper.create_tmp_variable(dtype=input.dtype)
4643
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4644
    helper.append_op(
4645
        type="squeeze2",
4646
        inputs={"X": input},
Y
Yibing Liu 已提交
4647
        attrs={"axes": axes},
4648 4649
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4650

4651 4652 4653
    return out


4654
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4655
    """
M
minqiyang 已提交
4656 4657 4658
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
4659

M
minqiyang 已提交
4660 4661
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
4662
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
4663

Y
Yibing Liu 已提交
4664
    Args:
4665
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4666
        axes (list): List of integers, indicating the dimensions to be inserted.
4667
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4668 4669 4670 4671 4672 4673 4674 4675

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4676
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4677 4678
    """
    helper = LayerHelper("unsqueeze", **locals())
4679
    out = helper.create_tmp_variable(dtype=input.dtype)
4680
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4681
    helper.append_op(
4682
        type="unsqueeze2",
4683
        inputs={"X": input},
Y
Yibing Liu 已提交
4684
        attrs={"axes": axes},
4685 4686
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4687

4688 4689
    return out

4690

Y
yangyaming 已提交
4691
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4692
    """
Y
Yibing Liu 已提交
4693
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4694 4695 4696 4697
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4698
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4699 4700 4701 4702 4703 4704

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4705
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4706 4707 4708
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4709
            target_lod: [4, 2]
Y
yangyaming 已提交
4710 4711

            then we get a 1-level LoDTensor:
4712
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4713 4714 4715 4716 4717 4718
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4719
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4720 4721 4722 4723
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4724
                y.data = [[2, 4]]
Y
yangyaming 已提交
4725 4726 4727
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4728
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4729 4730 4731 4732 4733 4734
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4735
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4736 4737 4738 4739
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4740
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4741 4742 4743 4744
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4745
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4746 4747 4748 4749 4750
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4751
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4752
                           from :attr:`y`.
Y
yangyaming 已提交
4753
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4754
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4755 4756

    Returns:
Y
Yibing Liu 已提交
4757
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4758 4759

    Raises:
Y
Yibing Liu 已提交
4760
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4796
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4825 4826
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4854 4855 4856 4857


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4858
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4859
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4860

G
guosheng 已提交
4861 4862 4863 4864
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4887
                         The length of :attr:paddings must be
G
guosheng 已提交
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4898

G
guosheng 已提交
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4913 4914


C
chengduo 已提交
4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


4995 4996 4997 4998 4999 5000 5001
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5002 5003
    called label-smoothing regularization (LSR).

5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5027
                              be :math:`(1, class\_num)`.
5028 5029
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5030
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5058 5059


Y
yi.wu 已提交
5060
@templatedoc()
5061 5062
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5063
    ${comment}
5064 5065

    Args:
Y
yi.wu 已提交
5066 5067
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5068 5069 5070
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5071 5072

    Returns:
Y
update  
yi.wu 已提交
5073
        Variable: ${out_comment}.
5074 5075

    Examples:
5076 5077
        .. code-block:: python

5078
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5124 5125
        .. code-block:: python

W
whs 已提交
5126 5127 5128 5129
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5130
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5131 5132 5133 5134 5135 5136
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5137 5138


5139 5140 5141 5142 5143
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5144
    """
Q
qiaolongfei 已提交
5145
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5146

5147
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5148 5149 5150
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5151

5152
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5153

5154
    Args:
5155
        input (Variable): The input tensor of image resize layer,
5156 5157
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5158
        out_shape(list|tuple|Variable|None): Output shape of image resize
5159 5160
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5161
        scale(float|None): The multiplier for the input height or width.
5162 5163 5164
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5165 5166
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5167 5168
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5169 5170

    Returns:
Q
update  
qiaolongfei 已提交
5171 5172
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5173

5174 5175 5176
    Examples:
        .. code-block:: python

5177
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5178
    """
5179 5180 5181 5182
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5183 5184
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5185 5186
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5187 5188 5189 5190

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5191 5192 5193
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5194
    if out_shape is not None:
B
baiyf 已提交
5195 5196 5197
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5198 5199 5200 5201 5202 5203
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5204 5205 5206 5207
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5208 5209
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5210
        type=resample_methods[resample],
5211
        inputs=inputs,
5212 5213 5214 5215
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5216 5217


Y
yuyang18 已提交
5218
@templatedoc(op_type="bilinear_interp")
5219 5220
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5221 5222 5223 5224 5225 5226
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5227

Y
yuyang18 已提交
5228 5229 5230 5231 5232 5233 5234 5235
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5236 5237 5238 5239 5240 5241 5242
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5243 5244 5245
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5246 5247 5248 5249 5250 5251 5252
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5253
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5254

5255
    Returns:
Q
update  
qiaolongfei 已提交
5256
        Variable: The output is a 4-D tensor of the shape
5257
        (num_batches, channls, out_h, out_w).
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5268 5269 5270
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5271 5272 5273
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5274 5275
def gather(input, index):
    """
Q
qiaolongfei 已提交
5276 5277
    **Gather Layer**

5278
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5279 5280 5281 5282
    of X indexed by `index` and concatenate them together.

    .. math::

5283
        Out = X[Index]
W
whs 已提交
5284 5285 5286 5287 5288 5289 5290


    .. code-block:: text


                Given:

5291 5292
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5303
        input (Variable): The source input with rank>=1.
W
whs 已提交
5304 5305 5306 5307 5308 5309
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5310

W
whs 已提交
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5440

5441 5442 5443
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5444
    """
F
stash  
fengjiayi 已提交
5445
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5446
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5447
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5448
    if seed is None:
5449
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5450
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5451
    if isinstance(seed, int):
F
fengjiayi 已提交
5452 5453 5454 5455 5456
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5457 5458 5459 5460
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5461
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5462 5463
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5464 5465
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5466
    return out
W
whs 已提交
5467 5468


5469
def log(x, name=None):
W
wanghaoshuang 已提交
5470 5471 5472 5473 5474
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5475
        Out = \\ln(x)
W
wanghaoshuang 已提交
5476 5477

    Args:
5478
        x (Variable): Input tensor.
5479 5480
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5481 5482 5483 5484 5485 5486 5487 5488

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5489
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5490 5491
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5492
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5493
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5494
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5495 5496 5497
    return out


5498
def relu(x, name=None):
W
wanghaoshuang 已提交
5499 5500
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5501
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5502 5503 5504 5505
    the tensor elementwise.

    .. math::

5506
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5507 5508

    Args:
5509
        x (Variable): The input tensor.
5510 5511
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5512 5513 5514 5515 5516 5517 5518 5519

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5520
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5521 5522
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5523
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5524
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5525
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5526
    return out
5527 5528


W
whs 已提交
5529 5530 5531
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5532 5533 5534 5535
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5536
    .. math::
5537 5538

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5539

5540
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5541 5542 5543 5544 5545
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5546
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5547
                           Its shape should be the same as input.
5548
        num_classes (int): The possible number of labels.
W
whs 已提交
5549 5550 5551 5552

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5553
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5554 5555 5556 5557

    Examples:

        .. code-block:: python
5558

W
whs 已提交
5559 5560 5561 5562 5563 5564 5565 5566 5567
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5568 5569
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5570
        outputs={
W
whs 已提交
5571 5572 5573
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5574 5575 5576
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5651
                    isinstance(shape, Variable)):
5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5675 5676 5677 5678 5679 5680 5681 5682 5683 5684


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5685

5686 5687
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5688

5689 5690 5691 5692
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5693

5694 5695 5696 5697 5698
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5699 5700 5701

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5746 5747


W
whs 已提交
5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
5762

W
whs 已提交
5763 5764
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
5765

W
whs 已提交
5766
      Case 0:
M
minqiyang 已提交
5767

W
whs 已提交
5768 5769 5770
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
5771

W
whs 已提交
5772 5773 5774
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
5775

W
whs 已提交
5776
      Case 1:
M
minqiyang 已提交
5777

W
whs 已提交
5778 5779
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
5780

W
whs 已提交
5781 5782 5783
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
5784

W
whs 已提交
5785
      Case 2:
M
minqiyang 已提交
5786

W
whs 已提交
5787 5788
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
5789

W
whs 已提交
5790 5791 5792
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
5793 5794


W
whs 已提交
5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
5992
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
5993
                        will be named automatically.
J
jerrywgz 已提交
5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6112

6113 6114 6115 6116 6117 6118 6119 6120 6121 6122
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6123 6124
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6140
        ValueError: If axis is not in range [0, rank(x)].
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6158
    x_shape = helper.create_tmp_variable(x.dtype)
6159
    helper.append_op(
6160
        type='flatten2',
6161
        inputs={"X": x},
6162 6163
        outputs={'Out': out,
                 'XShape': x_shape},
6164 6165
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6166 6167


C
chenweihang 已提交
6168
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6169
    """
C
chenweihang 已提交
6170
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6171
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6172 6173
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6174

C
chenweihang 已提交
6175 6176 6177 6178
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6179
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6180 6181 6182 6183 6184 6185
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6186
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6187 6188 6189
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6190 6191 6192
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6204
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6205 6206 6207 6208 6209 6210
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
6211

6212

S
sneaxiy 已提交
6213 6214 6215 6216 6217 6218 6219 6220 6221
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6222

S
sneaxiy 已提交
6223
    .. math::
6224

S
sneaxiy 已提交
6225 6226 6227
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6228
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6229 6230 6231 6232
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6233 6234 6235
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6236 6237
    Returns:
        Variable: The output sequence mask.
6238

S
sneaxiy 已提交
6239 6240
    """

Q
qingqing01 已提交
6241
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6242 6243 6244 6245 6246
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6247 6248 6249
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6250 6251
        outputs={'Y': out},
        attrs={
6252
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6253 6254 6255
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6256 6257


X
Xin Pan 已提交
6258
def stack(x, axis=0):
S
sneaxiy 已提交
6259 6260 6261 6262
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6263 6264 6265 6266 6267 6268 6269

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6270
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6271
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6272 6273

    Args:
6274
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6275
        axis (int|None): The axis along which all inputs are stacked.
6276

S
sneaxiy 已提交
6277 6278
    Returns:
        Variable: The stacked variable.
6279

S
sneaxiy 已提交
6280 6281
    """

X
Xin Pan 已提交
6282 6283 6284 6285 6286 6287 6288 6289
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6290 6291
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6292

X
Xin Pan 已提交
6293
    return out
D
dzhwinter 已提交
6294 6295 6296 6297 6298 6299 6300


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6301

D
dzhwinter 已提交
6302 6303 6304
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6305
    raised.
D
dzhwinter 已提交
6306 6307

    Args:
M
minqiyang 已提交
6308
        x (Variable): Input variable.
D
dzhwinter 已提交
6309 6310
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6311

D
dzhwinter 已提交
6312 6313
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6314

D
dzhwinter 已提交
6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6347

W
whs 已提交
6348 6349 6350 6351
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6352

W
whs 已提交
6353
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6354

W
whs 已提交
6355
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6356

W
whs 已提交
6357 6358 6359 6360
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6361

W
whs 已提交
6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
G
fix  
gongweibao 已提交
6385 6386 6387 6388 6389


from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6390
@templatedoc()
G
fix  
gongweibao 已提交
6391 6392 6393 6394 6395 6396 6397 6398 6399
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6400
    ${comment}
G
fix  
gongweibao 已提交
6401 6402

    Args:
G
gongweibao 已提交
6403 6404 6405
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6406
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6407 6408 6409
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6410 6411
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6412
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6434 6435


G
gongweibao 已提交
6436
@templatedoc()
G
fix  
gongweibao 已提交
6437 6438 6439 6440 6441 6442 6443
def gaussian_random(shape,
                    mean=0.0,
                    std=1.0,
                    seed=0,
                    dtype='float32',
                    use_mkldnn=False):
    """
G
gongweibao 已提交
6444
    ${comment}
G
fix  
gongweibao 已提交
6445 6446

    Args:
G
gongweibao 已提交
6447 6448 6449 6450
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6451 6452 6453 6454
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.
        use_mkldnn (Bool): Only used in mkldnn kernel.

    Returns:
G
gongweibao 已提交
6455
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476

    """

    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
            'use_mkldnn': use_mkldnn
        })

    return out


G
gongweibao 已提交
6477
@templatedoc()
G
fix  
gongweibao 已提交
6478
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6479
    """
G
gongweibao 已提交
6480
    ${comment}
G
fix  
gongweibao 已提交
6481 6482

    Args:
G
gongweibao 已提交
6483 6484 6485 6486
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6487
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6488 6489

    Returns:
G
gongweibao 已提交
6490
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6491 6492 6493 6494

    """

    helper = LayerHelper('sampling_id', **locals())
G
fix  
gongweibao 已提交
6495
    out = helper.create_tmp_variable(dtype)
G
fix  
gongweibao 已提交
6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6507
@templatedoc()
G
fix  
gongweibao 已提交
6508 6509 6510 6511 6512 6513 6514 6515 6516
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6517
    ${comment}
G
fix  
gongweibao 已提交
6518 6519

    Args:
G
gongweibao 已提交
6520 6521
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6522
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6523 6524 6525 6526
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6527
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6528 6529

    Returns:
G
gongweibao 已提交
6530
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
6553
@templatedoc()
G
fix  
gongweibao 已提交
6554 6555
def sum(x, use_mkldnn=False):
    """
G
gongweibao 已提交
6556
    ${comment}
G
fix  
gongweibao 已提交
6557 6558

    Args:
G
gongweibao 已提交
6559 6560
        x (Variable): ${x_comment}
        use_mkldnn (Bool): ${use_mkldnn_comment}
G
fix  
gongweibao 已提交
6561 6562

    Returns:
G
gongweibao 已提交
6563
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6564 6565 6566
    """

    helper = LayerHelper('sum', **locals())
G
fix  
gongweibao 已提交
6567
    out = helper.create_tmp_variable(dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
6568 6569 6570 6571 6572 6573 6574 6575 6576
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'use_mkldnn': use_mkldnn})

    return out


G
gongweibao 已提交
6577
@templatedoc()
G
fix  
gongweibao 已提交
6578 6579
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
6580
    ${comment}
G
fix  
gongweibao 已提交
6581 6582

    Args:
G
gongweibao 已提交
6583 6584 6585 6586
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
6587 6588

    Returns:
G
gongweibao 已提交
6589
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6590 6591 6592 6593

    """

    helper = LayerHelper('slice', **locals())
G
fix  
gongweibao 已提交
6594
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
6606
@templatedoc()
G
fix  
gongweibao 已提交
6607 6608
def shape(input):
    """
G
gongweibao 已提交
6609
    ${comment}
G
fix  
gongweibao 已提交
6610 6611

    Args:
G
gongweibao 已提交
6612
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
6613 6614

    Returns:
G
gongweibao 已提交
6615
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6616 6617 6618 6619

    """

    helper = LayerHelper('shape', **locals())
G
fix  
gongweibao 已提交
6620
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6621
    helper.append_op(
G
fix  
gongweibao 已提交
6622
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
6623 6624

    return out
G
merge  
gongweibao 已提交
6625 6626


S
sneaxiy 已提交
6627 6628 6629 6630 6631 6632 6633 6634
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
6635 6636 6637 6638 6639 6640
    name = helper.kwargs.get('name', None)
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6641

S
sneaxiy 已提交
6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
6653
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
6654 6655 6656 6657 6658 6659 6660 6661
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
6662
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
6663
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
6664 6665 6666 6667 6668 6669

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
6670 6671 6672 6673 6674
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6675 6676 6677 6678 6679 6680 6681 6682 6683 6684

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
6685
    return helper.append_activation(out)
S
sneaxiy 已提交
6686 6687


S
sneaxiy 已提交
6688
def elementwise_add(x, y, axis=-1, use_mkldnn=False, act=None, name=None):
S
sneaxiy 已提交
6689 6690 6691
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


S
sneaxiy 已提交
6692
def elementwise_div(x, y, axis=-1, use_mkldnn=False, act=None, name=None):
S
sneaxiy 已提交
6693 6694 6695
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


S
sneaxiy 已提交
6696
def elementwise_sub(x, y, axis=-1, use_mkldnn=False, act=None, name=None):
S
sneaxiy 已提交
6697 6698 6699
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


S
sneaxiy 已提交
6700
def elementwise_mul(x, y, axis=-1, use_mkldnn=False, act=None, name=None):
S
sneaxiy 已提交
6701 6702 6703
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


S
sneaxiy 已提交
6704
def elementwise_max(x, y, axis=-1, use_mkldnn=False, act=None, name=None):
S
sneaxiy 已提交
6705 6706 6707
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


S
sneaxiy 已提交
6708
def elementwise_min(x, y, axis=-1, use_mkldnn=False, act=None, name=None):
S
sneaxiy 已提交
6709 6710 6711
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


S
sneaxiy 已提交
6712
def elementwise_pow(x, y, axis=-1, use_mkldnn=False, act=None, name=None):
S
sneaxiy 已提交
6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
6724 6725
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
6726
        ])
M
minqiyang 已提交
6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888


def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
    helper = LayerHelper(op_name, **locals())

    if binary_op:
        assert x.dtype == y.dtype

    if out is None:
        if name is None:
            out = helper.create_tmp_variable(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
def logical_and(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_or(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_xor(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_not(x, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out