operator.cc 75.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/shape_inference.h"
27
#include "paddle/fluid/framework/transfer_scope_cache.h"
28
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/var_type.h"
L
Leo Chen 已提交
30
#include "paddle/fluid/platform/enforce.h"
31
#include "paddle/fluid/platform/profiler.h"
32
#include "paddle/pten/common/scalar.h"
33
#include "paddle/pten/common/scalar_array.h"
34 35 36 37 38 39

namespace paddle {
namespace framework {
class LoDTensor;
}  // namespace framework
}  // namespace paddle
40
#ifdef PADDLE_WITH_XPU
41 42
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
43
#endif
Q
Qiao Longfei 已提交
44

45 46 47 48
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
49 50 51 52
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
53
DECLARE_bool(benchmark);
54
DECLARE_bool(check_nan_inf);
55
DECLARE_bool(enable_unused_var_check);
56 57
PADDLE_DEFINE_EXPORTED_int32(inner_op_parallelism, 0,
                             "number of threads for inner op");
58
DECLARE_bool(run_pten_kernel);
F
Feng Xing 已提交
59
DECLARE_bool(run_kp_kernel);
D
dzhwinter 已提交
60

Q
Qiao Longfei 已提交
61 62 63
namespace paddle {
namespace framework {

64 65 66 67 68 69
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
70

71
static DDim GetDimsDebug(const ScopeBase& scope, const std::string& name,
72
                         bool get_actual_dim = false) {
73
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
74 75
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
76 77
  }

M
minqiyang 已提交
78 79 80 81 82 83 84 85 86
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
S
Steffy-zxf 已提交
87 88
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
89 90 91 92 93
  } else {
    return DDim({-1});
  }
}

94
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
95 96 97 98 99
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

100
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
101 102 103 104
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
105

M
minqiyang 已提交
106 107 108
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
109 110
      return "";
    }
Y
Yu Yang 已提交
111
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
112
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
113 114 115 116
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
117
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
118
    }
S
Steffy-zxf 已提交
119 120
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
121 122 123 124 125
  } else {
    return "";
  }
}

126
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
  } else if (var->IsType<SelectedRows>()) {
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

155
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
156 157 158 159 160
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
161 162
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
163 164 165 166 167
  }

  return -1;
}

168
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
169 170 171 172 173 174 175
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
176 177 178
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
179 180 181 182 183
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
184 185 186 187 188
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
189
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
190 191 192 193 194 195
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
196
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
197 198 199 200 201 202
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

203
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
204 205 206
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
207
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
208 209 210 211
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
212
#else
213
      auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
P
peizhilin 已提交
214
      platform::SetDeviceId(dev_id);
215 216 217
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
218 219 220 221
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
222 223 224
#else
      auto dev_id = BOOST_GET_CONST(platform::XPUPlace, place).device;
      platform::SetXPUDeviceId(dev_id);
225 226 227 228 229 230 231 232 233 234
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
      auto dev_id = BOOST_GET_CONST(platform::NPUPlace, place).device;
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
235 236 237 238 239 240 241 242 243 244
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
      auto dev_id = BOOST_GET_CONST(platform::MLUPlace, place).device;
      platform::SetMLUDeviceId(dev_id);
245
#endif
P
peizhilin 已提交
246
    }
P
peizhilin 已提交
247

248
    {
249 250 251 252 253 254
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
      platform::RecordEvent op_type_record_event(Type());
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
255
          op_name, platform::EventRole::kUniqueOp);
P
peizhilin 已提交
256 257
      RunImpl(scope, place);
    }
258

Z
Zhang Ting 已提交
259
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
260
  } catch (platform::EnforceNotMet& exception) {
261
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
262
    throw std::move(exception);
263 264 265 266 267 268
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
269
  } catch (...) {
270
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
271
    std::rethrow_exception(std::current_exception());
272
  }
273 274
}

275
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
276
  return inputs_.find(name) != inputs_.end();
277 278
}

279
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
280
  auto& ins = Inputs(name);
281 282
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
283
      platform::errors::InvalidArgument(
284 285
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
286
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
287 288
}

Y
Yu Yang 已提交
289 290
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
291
  auto it = inputs_.find(name);
292 293 294 295
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
296
  return it->second;
Y
Yan Chunwei 已提交
297 298
}

299
bool OperatorBase::HasOutputs(const std::string& name) const {
300
  if (outputs_.find(name) != outputs_.end()) {
301 302 303 304 305 306
    return true;
  } else {
    return false;
  }
}

307
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
308
  auto& outs = Outputs(name);
309 310 311 312 313
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
314
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
315 316
}

Y
Yu Yang 已提交
317 318
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
319
  auto it = outputs_.find(name);
320 321 322 323
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
324
  return it->second;
Y
Yan Chunwei 已提交
325 326
}

327
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
328
  std::stringstream ss;
Y
Yu Yang 已提交
329
  ss << "Op(" << type_ << "), inputs:{";
330

331
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
332 333
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
334 335
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
336 337
  }

Y
Yu Yang 已提交
338 339
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
340 341
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
342 343
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
344 345
      auto var_name = input.second[i];
      ss << var_name;
346
      if (scope) {
Q
Qiao Longfei 已提交
347 348 349 350 351 352 353
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
354 355 356
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
357
          ss << ":" << dtype;
358 359
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
360
          ss << "(" << GetPlace(*scope, var_name) << ")";
361
        }
362
      }
Y
Yu Yang 已提交
363 364 365
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
366
    }
Y
Yu Yang 已提交
367
    ss << "]";
Y
Yu Yang 已提交
368 369
    ++it;
    if (it != inputs_.end()) {
370 371
      ss << ", ";
    }
Q
Qiao Longfei 已提交
372
  }
Y
Yu Yang 已提交
373
  ss << "}, outputs:{";
Y
Yu Yang 已提交
374 375
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
376 377
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
378 379
      auto var_name = output.second[i];
      ss << var_name;
380
      if (scope) {
Q
Qiao Longfei 已提交
381 382 383 384 385 386 387
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
388 389
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
390 391
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
392
          ss << "(" << GetPlace(*scope, var_name) << ")";
393
        }
394
      }
Y
Yu Yang 已提交
395 396 397
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
398
    }
Y
Yu Yang 已提交
399
    ss << "]";
Y
Yu Yang 已提交
400 401
    ++it;
    if (it != outputs_.end()) {
402 403
      ss << ", ";
    }
Q
Qiao Longfei 已提交
404
  }
Y
Yu Yang 已提交
405
  ss << "}.";
Q
Qiao Longfei 已提交
406 407 408
  return ss.str();
}

Y
Yu Yang 已提交
409
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
410 411
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
412
                           const AttributeMap& attrs)
S
sneaxiy 已提交
413 414 415 416 417 418
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
419 420 421 422 423 424 425 426
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
427
}
428

Q
qijun 已提交
429 430
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
431
  for (auto& o : inputs_) {
Q
qijun 已提交
432 433 434 435 436 437
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
438 439 440 441 442 443 444 445 446 447
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
448
  auto& info = Info();
Y
Yu Yang 已提交
449 450

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
451
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
452 453 454 455 456 457 458 459 460
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
461 462
}

463
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
464
  if (info_ == nullptr || info_->proto_ == nullptr) return;
465

S
sneaxiy 已提交
466
  for (auto& in : info_->Proto().inputs()) {
467
    if (!in.dispensable() && !in.extra()) {
468 469 470 471
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
472
    }
473 474
  }

S
sneaxiy 已提交
475
  for (auto& out : info_->Proto().outputs()) {
476
    if (!out.dispensable() && !out.extra()) {
477 478 479 480
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
481
    }
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
497

C
chengduo 已提交
498
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
499 500 501 502
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
503
  } else {
504 505 506
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
507 508 509
  }
}

C
chengduo 已提交
510
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
511
  if (var->IsType<LoDTensor>()) {
512
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
513
  } else if (var->IsType<SelectedRows>()) {
514
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
515
  } else {
516 517 518
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
519 520 521
  }
}

522
bool ExecutionContext::HasInput(const std::string& name) const {
523
  auto* var = InputVar(name);
524 525 526 527
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
528
  auto* var = OutputVar(name);
529 530 531
  return var != nullptr;
}

X
Xin Pan 已提交
532
const Variable* ExecutionContext::InputVar(const std::string& name) const {
533 534
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
535 536 537
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

538 539
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
540
      platform::errors::InvalidArgument(
541 542
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
543 544 545
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
546
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
547 548 549
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

550 551 552 553 554
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
555 556 557
  return it->second.empty() ? nullptr : it->second[0];
}

558
template <>
559
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
560
  return Input<LoDTensor>(name);
561 562 563
}

template <>
564
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
565
    const std::string& name) const {
566 567
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
568 569
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
570 571 572 573 574
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
575
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
576
                   if (var == nullptr) return nullptr;
577 578 579 580 581
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
582 583 584 585 586
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

587
template <>
588
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
589
  return Output<LoDTensor>(name);
590 591 592
}

template <>
593
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
594
    const std::string& name) const {
H
hong 已提交
595 596 597
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
598 599
    return {};
  }
600
  std::vector<Tensor*> res;
601 602 603 604 605
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
606
                 });
607 608 609
  return res;
}

Y
Yu Yang 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

625 626
class RuntimeInferShapeContext : public InferShapeContext {
 public:
627
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
628
      : op_(op), ctx_(ctx) {}
629 630

  bool HasInput(const std::string& name) const override {
631
    // has only one input
X
Xin Pan 已提交
632
    const auto& ins = ctx_.inputs;
633 634
    auto it = ins.find(name);
    if (it == ins.end()) {
635 636
      return false;
    }
637
    const auto& in = it->second;
X
Xin Pan 已提交
638
    if (in.size() == 0) return false;
639 640 641 642
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
643
    return in[0] != nullptr;
644 645 646
  }

  bool HasOutput(const std::string& name) const override {
647
    // has only one output
X
Xin Pan 已提交
648
    const auto& outs = ctx_.outputs;
649 650
    auto it = outs.find(name);
    if (it == outs.end()) {
651 652
      return false;
    }
653
    const auto& out = it->second;
X
Xin Pan 已提交
654
    if (out.size() == 0) {
655 656
      return false;
    }
657 658 659 660
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
661
    return out[0] != nullptr;
662 663 664
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
665 666
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
667
    if (it == ins.end() || it->second.empty()) {
668 669
      return false;
    }
X
Xin Pan 已提交
670 671
    for (auto& input : it->second) {
      if (input == nullptr) {
672 673 674 675 676 677 678
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
679 680
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
681
    if (it == outs.end() || it->second.empty()) {
682 683
      return false;
    }
X
Xin Pan 已提交
684 685
    for (auto& output : it->second) {
      if (output == nullptr) {
686 687 688 689 690 691 692 693
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
694
  std::vector<std::string> Inputs(const std::string& name) const override {
695 696 697
    return op_.Inputs(name);
  }

H
hong 已提交
698
  std::vector<std::string> Outputs(const std::string& name) const override {
699 700 701
    return op_.Outputs(name);
  }

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

725 726
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
727 728
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
745 746 747

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
748

749 750 751 752 753
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
754 755 756 757 758 759 760 761 762 763 764 765

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
766
      PADDLE_THROW(platform::errors::Unimplemented(
767
          "Currently, the input type of ShareDim only can be LoDTensor "
768
          "or SelectedRows."));
769 770 771
    }
  }

H
hong 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
790
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
817 818
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
819 820
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
837 838

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
839
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
840
    Variable* out_var = out_it->second.at(j);
841 842 843 844
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
845
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
846 847
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
848

M
mozga-intel 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
868 869
  }

870
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
871
    PADDLE_THROW(platform::errors::PreconditionNotMet(
872
        "GetLoDLevel is only used in compile time. The calculation of "
873
        "output's actual lod is different among operators so that should be "
874
        "set in the runtime kernel."));
875 876
  }

877 878
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
879
    PADDLE_THROW(platform::errors::PreconditionNotMet(
880
        "SetLoDLevel is only used in compile time. The calculation of "
881
        "output's actual lod is different among operators so that should be "
882
        "set in the runtime kernel."));
C
chengduo 已提交
883 884
  }

885 886
  bool IsRuntime() const override { return true; }

887 888 889 890 891 892 893 894 895 896 897
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
    } catch (std::bad_cast exp) {
      return false;
    }
  }

898 899
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
900
      const std::string& name) const override {
901 902 903 904 905 906 907 908
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
909
      const std::string& name) const override {
910 911 912 913 914 915 916
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
917 918
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
919 920 921 922 923
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
924 925 926 927 928 929 930 931
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
932 933 934 935 936 937 938 939 940 941
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
942 943
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
944 945 946 947 948
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
949 950 951 952 953 954 955 956 957
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

958
 protected:
X
Xin Pan 已提交
959
  DDim GetDim(Variable* var) const {
960 961
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
962 963 964 965 966
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
967 968 969 970
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
971 972 973
    }
  }

X
Xin Pan 已提交
974 975 976 977 978 979 980 981
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
982
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
983 984
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
985 986
  }

X
Xin Pan 已提交
987
  void SetDim(Variable* var, const DDim& dim) {
988 989 990 991 992
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
993 994 995 996
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
997 998 999 1000 1001 1002
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1003 1004 1005 1006 1007 1008
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
1009 1010 1011 1012 1013
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1014 1015 1016
    }
  }

F
fengjiayi 已提交
1017 1018
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1019 1020
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1021 1022
  }

X
Xin Pan 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1034 1035 1036
    return ToVarType(var->Type());
  }

1037 1038 1039
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1040 1041 1042 1043
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1044 1045 1046 1047 1048
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1049 1050 1051 1052
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1053
    return it->second;
F
fengjiayi 已提交
1054 1055
  }

1056
  const OperatorBase& op_;
X
Xin Pan 已提交
1057
  const RuntimeContext& ctx_;
1058 1059
};

1060 1061
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1062 1063 1064 1065
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
1066 1067
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
1068 1069
    return;
  }
1070 1071 1072 1073 1074 1075 1076 1077
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1078 1079
}

1080 1081
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1082 1083
  auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1084
                     [data_type](OpKernelMap::const_reference kern_pair) {
1085 1086
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1087 1088
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1089 1090 1091
                     });
}

1092 1093
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1094 1095 1096
  bool use_mkldnn_ctx = ctx.HasAttr("use_mkldnn") &&
                        ctx.Attr<bool>("use_mkldnn") &&
                        platform::is_cpu_place(ctx.GetPlace());
1097
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1098 1099
}

B
baojun-nervana 已提交
1100
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1101 1102
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1103
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1104
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1105 1106
}

L
luotao1 已提交
1107 1108
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1109 1110
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1111 1112 1113
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1114
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1115
    all_kernels_must_compute_runtime_shape_ = true;
1116
  const Scope* cur_scope = &scope;
1117
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1118 1119
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1120
    pre_scope_ = cur_scope;
L
luotao1 已提交
1121
  } else {
1122 1123 1124 1125 1126 1127
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1128 1129 1130 1131 1132 1133 1134 1135
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1136
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1137
  auto* dev_ctx = pool.Get(place);
1138

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1149 1150 1151 1152 1153 1154 1155 1156 1157
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);

  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
  if (FLAGS_run_pten_kernel &&
      pten::KernelFactory::Instance().HasCompatiblePtenKernel(type_)) {
1158
    if (pt_kernel_signature_ == nullptr || pt_kernel_ == nullptr) {
1159 1160 1161 1162 1163 1164 1165 1166
      ChoosePtenKernel(exe_ctx);
    }
    run_pten_kernel_ = pt_kernel_->IsValid();
  }
  if (!run_pten_kernel_) {
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
    }
1167 1168
  }

Y
yuyang18 已提交
1169 1170
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1171 1172
  Scope* transfer_scope = nullptr;
  {
1173
    platform::RecordEvent record_event("prepare_data",
1174
                                       platform::EventRole::kInnerOp);
1175 1176 1177 1178
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1179
  }
Y
yuyang18 已提交
1180 1181 1182 1183
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1184 1185
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
1186
  }
Q
QI JUN 已提交
1187

1188
  if (!all_kernels_must_compute_runtime_shape_) {
1189
    platform::RecordEvent record_event("infer_shape",
1190
                                       platform::EventRole::kInnerOp);
1191
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1192
    this->Info().infer_shape_(&infer_shape_ctx);
1193
  }
1194 1195 1196 1197 1198

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1199 1200
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1201
  {
1202
    platform::RecordEvent record_event("compute",
1203
                                       platform::EventRole::kInnerOp);
1204
    if (run_pten_kernel_) {
1205 1206 1207 1208 1209
      if (pt_kernel_context_ == nullptr) {
        pt_kernel_context_.reset(new pten::KernelContext());
      }
      BuildPtenKernelContext(*runtime_ctx, dev_ctx);
      (*pt_kernel_)(pt_kernel_context_.get());
1210
      WriteBackToOutputs(runtime_ctx);
1211
      pt_kernel_context_->ClearData();
1212 1213 1214 1215
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1216
  }
D
dzhwinter 已提交
1217

Y
yuyang18 已提交
1218
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1219
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1220
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1221
  }
1222 1223 1224 1225 1226 1227 1228

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1229 1230 1231 1232 1233 1234 1235 1236
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1237

D
dzhwinter 已提交
1238
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1239
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1240
    dev_ctx->Wait();
1241 1242
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1243 1244
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1245
  }
C
chengduoZH 已提交
1246 1247

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1248
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1249
  }
1250 1251 1252 1253 1254 1255 1256

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1257
}
X
Xin Pan 已提交
1258

1259 1260 1261
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto& dev_ctx = ctx.device_context();
L
Liu Yiqun 已提交
1262

1263
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1264 1265 1266
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1277 1278 1279
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
      if (SupportGPU()) {
1280
        expected_kernel_key.place_ = dev_ctx.GetPlace();
B
Baibaifan 已提交
1281
      } else if (SupportNPU()) {
1282
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1283 1284 1285 1286 1287 1288 1289 1290
      } else {
        expected_kernel_key.place_ = platform::CPUPlace();
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1291 1292
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1293 1294 1295 1296 1297 1298
  return expected_kernel_key;
}

void OperatorWithKernel::ChoosePtenKernel(const ExecutionContext& ctx) const {
  pt_kernel_signature_.reset(
      new KernelSignature(std::move(this->GetExpectedPtenKernelArgs(ctx))));
1299
  VLOG(6) << *pt_kernel_signature_.get();
1300 1301 1302 1303

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

Y
YuanRisheng 已提交
1304
  auto pt_kernel_name = pt_kernel_signature_->name;
1305 1306 1307 1308 1309 1310
  auto pt_kernel_key = TransOpKernelTypeToPtenKernelKey(*kernel_type_.get());
  pt_kernel_.reset(
      new pten::Kernel(pten::KernelFactory::Instance().SelectKernel(
          pt_kernel_name, pt_kernel_key)));

  if (pt_kernel_->IsValid()) {
C
Chen Weihang 已提交
1311
    VLOG(6) << "Static mode ChoosePtenKernel - kernel name: " << pt_kernel_name
1312 1313 1314
            << " | kernel key: " << pt_kernel_key
            << " | kernel: " << *pt_kernel_;
  } else {
C
Chen Weihang 已提交
1315
    VLOG(6) << "Static mode ChoosePtenKernel - kernel `" << pt_kernel_name
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
            << "` not found.";
  }
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1344 1345
#endif
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
1346 1347 1348 1349
  if (is_xpu_place(expected_kernel_key.place_) &&
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1350 1351 1352 1353 1354 1355
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
      is_npu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
      is_mlu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1376
#endif
1377 1378 1379 1380
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1381

1382 1383 1384 1385 1386
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1387 1388
}

Y
yuyang18 已提交
1389 1390 1391 1392
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1393
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1394
    auto* origin_var = scope.FindVar(var_name);
1395 1396 1397
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1398
    auto* original_tensor =
C
chengduo 已提交
1399
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1400
    auto* var = transfer_scope.FindVar(var_name);
1401 1402
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1403
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1404
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1405
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1406 1407 1408 1409 1410
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1411 1412 1413
  }
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
      auto src_type = grad_tensor->type();
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
      auto dst_type = tensor->saved_type();
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1481
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1482
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1483 1484
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1485
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1486

1487
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1488 1489 1490 1491
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1492 1493
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1494 1495 1496
    }
  }

Y
yuyang18 已提交
1497
  for (auto& var_name_item : Inputs()) {
1498 1499
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1500

X
Xin Pan 已提交
1501 1502 1503 1504
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1505
      auto* var = input_vars[i];
X
Xin Pan 已提交
1506

Y
yuyang18 已提交
1507
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1508
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1509 1510 1511
        continue;
      }

C
chengduo 已提交
1512
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1528 1529
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1562 1563
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1564

1565 1566 1567
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1568
      // We use a thread_local cache to fix that issue, the key in the cache is
1569 1570 1571 1572 1573
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1574 1575
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1576
      // variables, that behavior a lot different.
1577 1578 1579 1580 1581 1582 1583 1584 1585
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1586 1587
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1588
        enable_cache_transfer_scope_ = true;
1589
      }
1590
      if (!new_scope) {
Y
yuyang18 已提交
1591 1592
        new_scope = &scope.NewScope();
      }
1593 1594 1595 1596
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1597
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1598 1599
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1600
      if (enable_cache_runtime_context_) {
1601 1602
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1603 1604

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1605
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1606
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1624
      Tensor out;
Y
yuyang18 已提交
1625
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1626 1627 1628
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1629

1630 1631 1632 1633 1634 1635
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
1636 1637 1638 1639 1640 1641

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
1642 1643
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1644 1645 1646

  return new_scope;
}
Q
Qiao Longfei 已提交
1647

1648
void OperatorWithKernel::ParseInputDataType(
1649
    const std::vector<Variable*>& vars, const std::string& name,
1650
    proto::VarType::Type* data_type) const {
1651
  proto::VarType::Type default_data_type =
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
1663
      } else if (var->IsType<LoDTensorArray>()) {
1664 1665 1666 1667
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
1668 1669
          }
        }
1670 1671
      }
      if (t != nullptr) {
1672 1673
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
1674 1675 1676
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(), name));
1677
        proto::VarType::Type tmp = t->type();
1678 1679 1680 1681 1682 1683 1684 1685 1686
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(), name, DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
1687 1688 1689 1690 1691 1692
        *data_type = tmp;
      }
    }
  }
}

1693
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1694
    const ExecutionContext& ctx) const {
1695 1696 1697
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1698
  for (auto& input : ctx.InNameList()) {
1699 1700
    const std::vector<Variable*> vars = ctx.MultiInputVar(input);
    ParseInputDataType(vars, input, &data_type);
Y
Yu Yang 已提交
1701
  }
1702 1703 1704 1705
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
1706 1707 1708 1709 1710 1711 1712 1713
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
1714
  ParseInputDataType(ctx.MultiInputVar(name), name, &data_type);
1715 1716
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
1717 1718 1719 1720 1721
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
1722
  return data_type;
Y
Yu Yang 已提交
1723
}
1724

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
  } else if (var->IsType<SelectedRows>()) {
    t = var->GetMutable<SelectedRows>()->mutable_value();
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
  auto type_a = tensor_a->type();
  auto type_b = tensor_b->type();

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

1785 1786 1787 1788 1789 1790 1791 1792
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1793 1794
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1795 1796
}

1797 1798
KernelSignature OperatorWithKernel::GetExpectedPtenKernelArgs(
    const ExecutionContext& ctx) const {
Y
YuanRisheng 已提交
1799 1800
  return KernelSignatureMap::Instance().Get(
      pten::TransToPtenKernelName(Type()));
1801 1802
}

1803 1804
void OperatorWithKernel::BuildPtenKernelContext(
    const RuntimeContext& ctx, platform::DeviceContext* dev_ctx) const {
1805 1806 1807
  if (pt_kernel_context_ == nullptr) {
    pt_kernel_context_.reset(new pten::KernelContext());
  }
1808 1809 1810 1811 1812 1813 1814
  // TODO(chenweihang): now only work for very simple case,
  // many cases need to be deal with later:
  // 1. the input and output are not tensor
  // 2. the dispensbale, duplicable input and output
  // 3. needless attributes remove
  // 4. use pt Tensor directly
  // 5. kernel input is not DenseTensor
1815
  pt_kernel_context_->SetDeviceContext(dev_ctx);
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843

  auto& input_names = std::get<0>(pt_kernel_signature_->args);
  auto& attr_names = std::get<1>(pt_kernel_signature_->args);
  auto& output_names = std::get<2>(pt_kernel_signature_->args);

  auto input_defs = pt_kernel_->args_def().input_defs();
  auto attr_defs = pt_kernel_->args_def().attribute_defs();
  auto output_defs = pt_kernel_->args_def().output_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
1844 1845
    auto& in_def = input_defs.at(i);
    auto& ins_vector = ctx.inputs.at(input_names[i]);
1846 1847 1848 1849 1850

    // calcute the start and end index of the input tensors
    size_t start_idx =
        (i == 0 ? 0 : pt_kernel_context_->InputRangeAt(i - 1).second);
    size_t end_idx = start_idx + ins_vector.size();
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
    auto current_vector_size = pt_kernel_context_->InputsSize();

    // If the memory needed is less than the current memory allocated, we will
    // reuse the current memory by using ReMakePtenDenseTensorFromVar.
    // Otherwise,we will create new storage.
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      if (current_vector_size > start_idx + offset) {
        auto& input_ptr =
            pt_kernel_context_->MutableInputPtrAt(start_idx + offset);
        if (input_ptr == nullptr) {
          input_ptr = experimental::MakePtenTensorBaseFromVar(
              *ins_vector[offset], in_def);
        } else {
1864
          experimental::ReMakePtenDenseTensorFromVar(
1865
              *ins_vector[offset], in_def,
1866
              pt_kernel_context_->MutableInputAt<pten::DenseTensor>(start_idx +
1867
                                                                    offset));
1868
        }
1869 1870 1871 1872
      } else {
        pt_kernel_context_->EmplaceBackInputWithoutSetRange(
            experimental::MakePtenTensorBaseFromVar(*ins_vector[offset],
                                                    in_def));
1873
      }
1874
    }
1875
    pt_kernel_context_->AssignInputRange(std::make_pair(start_idx, end_idx), i);
1876 1877 1878
  }

  for (size_t i = 0; i < output_names.size(); ++i) {
1879 1880
    auto& out_def = output_defs.at(i);
    auto& outs_vector = ctx.outputs.at(output_names[i]);
1881 1882 1883 1884

    size_t start_idx =
        (i == 0 ? 0 : pt_kernel_context_->OutputRangeAt(i - 1).second);
    size_t end_idx = start_idx + outs_vector.size();
1885 1886 1887 1888 1889 1890 1891
    auto current_vector_size = pt_kernel_context_->OutputsSize();

    // If the memory needed is less than the current memory allocated, we will
    // reuse the current memory by using ReMakePtenDenseTensorFromVar.
    // Otherwise,we will create new storage.
    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
      if (current_vector_size > start_idx + offset) {
1892
        auto* buffer_tensor =
1893
            pt_kernel_context_->MutableOutputAt<pten::DenseTensor>(start_idx +
1894 1895 1896 1897 1898
                                                                   offset);
        if (buffer_tensor) {
          experimental::ReMakePtenDenseTensorFromVar(outs_vector[offset],
                                                     out_def, buffer_tensor);
        }
1899 1900 1901 1902
      } else {
        pt_kernel_context_->EmplaceBackOutputWithoutSetRange(
            experimental::MakePtenTensorBaseFromVar(outs_vector[offset],
                                                    out_def));
1903
      }
1904
    }
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917

    // Deal with the case that some outputs are NULL when run the kernel.
    // For example : the outputs of matmul_grad are dx and dy,
    // sometimes dx or dy may be NULL.
    if (outs_vector.empty()) {
      if (current_vector_size > start_idx) {
        pt_kernel_context_->SetOutputWithoutSetRange(start_idx, {nullptr});
      } else {
        pt_kernel_context_->EmplaceBackOutputWithoutSetRange({nullptr});
      }
      end_idx = start_idx + 1;
    }

1918 1919
    pt_kernel_context_->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
1920 1921 1922
  }

  for (size_t i = 0; i < attr_names.size(); ++i) {
1923 1924 1925 1926 1927 1928 1929
    if (attr_defs[i].type_index == std::type_index(typeid(pten::ScalarArray))) {
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // shape is in the attribute
        if (std::type_index(attr_iter->second.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
          pt_kernel_context_->EmplaceBackAttr(std::move(pten::ScalarArray(
              BOOST_GET_CONST(std::vector<int64_t>, attr_iter->second))));
1930 1931 1932 1933
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
          pt_kernel_context_->EmplaceBackAttr(std::move(pten::ScalarArray(
              BOOST_GET_CONST(std::vector<int32_t>, attr_iter->second))));
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to ScalarArray when "
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
          pt_kernel_context_->EmplaceBackAttr(std::move(
              experimental::MakePtenScalarArrayFromVar(*ins_vector.front())));
        } else {  // ShapeTensorList
          pt_kernel_context_->EmplaceBackAttr(std::move(
              experimental::MakePtenScalarArrayFromVarList(ins_vector)));
        }
      }
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(pten::Scalar))) {
1952 1953 1954
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // scalar is in the attribute
        auto& attr = Attrs().at(attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
          pt_kernel_context_->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(float, attr))));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
          pt_kernel_context_->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(std::string, attr))));
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext.",
              attr_names[i]));
        }
1971
      } else {
1972 1973 1974
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
        pt_kernel_context_->EmplaceBackAttr(std::move(
            experimental::MakePtenScalarFromVar(*ins_vector.front())));
1975
      }
1976

1977 1978
    } else {
      // TODO(chenweihang): support other attrs later
1979
      auto& attr = Attrs().at(attr_names[i]);
1980
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
1981
        pt_kernel_context_->EmplaceBackAttr(BOOST_GET_CONST(int, attr));
1982
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
1983
        pt_kernel_context_->EmplaceBackAttr(BOOST_GET_CONST(float, attr));
1984
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
1985
        pt_kernel_context_->EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
1986
      } else if (attr_defs[i].type_index ==
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
                 std::type_index(typeid(pten::DataType))) {
        auto data_type = pten::TransToPtenDataType(
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
        pt_kernel_context_->EmplaceBackAttr(data_type);
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int>))) {
          // Emplace Back Attr according to the type of Pten_Kernel args.
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
          pt_kernel_context_->EmplaceBackAttr(vector_int64_attr);
        }
        // TODO(YuanRisheng) Need support vector<int64_t> attr

2004 2005
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
2006
            "Unsupported cast op attribute `%s` when construct "
2007 2008 2009 2010 2011 2012 2013
            "KernelContext.",
            attr_names[i]));
      }
    }
  }
}

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
void OperatorWithKernel::WriteBackToOutputs(RuntimeContext* ctx) const {
  // auto& input_names = std::get<0>(pt_kernel_signature_->args);
  // auto& attr_names = std::get<1>(pt_kernel_signature_->args);
  auto& output_names = std::get<2>(pt_kernel_signature_->args);

  // pt_kernel_context_

  for (size_t i = 0; i < output_names.size(); ++i) {
    auto& outs_vector = ctx->outputs.at(output_names[i]);

    auto& range_pair = pt_kernel_context_->OutputRangeAt(i);
    auto pten_outs =
        pt_kernel_context_->MutableOutputBetween<pten::DenseTensor>(
            range_pair.first, range_pair.second);

    for (size_t j = 0; j < pten_outs.size(); ++j) {
2030 2031 2032
      if (pten_outs[j]) {
        experimental::MakeVariableFromPtenTensor(pten_outs[j], outs_vector[j]);
      }
2033 2034 2035 2036
    }
  }
}

Q
Qiao Longfei 已提交
2037
}  // namespace framework
L
liaogang 已提交
2038
}  // namespace paddle