nn.py 266.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
68
    'sequence_slice',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
99
    'roi_align',
X
Xin Pan 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
113
    'margin_rank_loss',
X
Xin Pan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
157
    'affine_channel',
Y
Yu Yang 已提交
158 159 160 161 162 163 164 165 166
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
167
       is_test=False,
168
       name=None):
Y
Yu Yang 已提交
169
    """
170
    **Fully Connected Layer**
Y
Yu Yang 已提交
171

172 173 174 175 176 177 178 179
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
180
    to the output as well.
C
caoying03 已提交
181

C
caoying03 已提交
182
    This process can be formulated as follows:
183 184 185

    .. math::

186
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
187 188 189

    In the above equation:

C
caoying03 已提交
190 191 192 193
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
194
    * :math:`Act`: The activation function.
C
caoying03 已提交
195
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
196 197

    Args:
R
ranqiu 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
213 214
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
215
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
216
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
217
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
218

219
    Returns:
F
fengjiayi 已提交
220
        Variable: The transformation result.
221 222

    Raises:
C
caoying03 已提交
223
        ValueError: If rank of the input tensor is less than 2.
224 225 226 227

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
228
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
229
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
230
    """
C
caoying03 已提交
231

C
caoying03 已提交
232
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
233 234 235 236

    dtype = helper.input_dtype()

    mul_results = []
237 238
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
239 240 241
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
242

Y
Yu Yang 已提交
243
        w = helper.create_parameter(
244
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
245
        tmp = helper.create_variable_for_type_inference(dtype)
246
        helper.append_op(
247 248 249
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
250
            outputs={"Out": tmp},
M
mozga-intel 已提交
251 252
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
253 254 255 256
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
257
    else:
X
Xin Pan 已提交
258
        pre_bias = helper.create_variable_for_type_inference(dtype)
259
        helper.append_op(
260 261 262
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
263
            attrs={"use_mkldnn": False})
264 265 266 267
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
268 269


270 271 272
def embedding(input,
              size,
              is_sparse=False,
273
              is_distributed=False,
274 275 276
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
277
    """
278 279
    **Embedding Layer**

280
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
281 282
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
283 284 285

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
286 287

    Args:
288 289 290 291 292
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
293
        is_distributed(bool): Whether to run lookup table from remote parameter server.
294 295
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
296
            with zeros whenever lookup encounters it in :attr:`input`. If
297
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
298 299
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
300
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
301

302 303 304
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
305

306 307
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
308

C
chengduoZH 已提交
309
          dict_size = len(dataset.ids)
310
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
311
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
312 313 314 315 316
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
317
    tmp = helper.create_variable_for_type_inference(dtype)
318 319
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
320 321 322 323 324
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
325 326 327 328 329
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
330 331 332
    return tmp


Y
yi.wu 已提交
333
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
334 335
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
336 337
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
338 339 340 341 342 343 344
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
345 346
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
347
    """
Y
yi.wu 已提交
348
    ${comment}
Y
Yibing Liu 已提交
349 350

    Args:
Y
yi.wu 已提交
351 352
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
353 354 355 356 357 358
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
359
        param_attr(ParamAttr|None): The parameter attribute for the learnable
360
                               hidden-hidden weights.
Y
Yibing Liu 已提交
361 362 363

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
364 365
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduo 已提交
366 367 368 369 370

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
371
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
372 373 374
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
375

376
                              1. `use_peepholes = False`
Y
yi.wu 已提交
377 378
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
379
                              2. `use_peepholes = True`
Y
yi.wu 已提交
380
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
381
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
382
                                 - The shape is (1 x 7D).
C
chengduo 已提交
383 384 385 386 387

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
388 389 390 391 392 393 394 395
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
396 397

    Returns:
Y
Yibing Liu 已提交
398 399
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
400

Y
Yibing Liu 已提交
401
    Examples:
Y
Yibing Liu 已提交
402 403
        .. code-block:: python

Y
Yibing Liu 已提交
404 405
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduo 已提交
406
                                           bias_attr=False)
Y
Yibing Liu 已提交
407 408
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
409
    """
C
chengduo 已提交
410
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
411
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
412
    size = size // 4
Y
Yu Yang 已提交
413 414 415 416 417 418 419 420
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
421 422 423 424
    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yancey 已提交
425 426 427 428 429 430 431 432 433 434
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
435 436 437

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
438
        inputs=inputs,
Y
Yu Yang 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
455 456 457 458 459 460 461 462 463 464 465
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
466 467
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
468 469 470
    """
    **Dynamic LSTMP Layer**

471 472 473 474 475 476
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
477 478 479 480 481

    The formula is as follows:

    .. math::

482
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
483

484
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
485

486
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
487

488
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
489

490
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
491

492
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
493

494
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
495

Y
Yibing Liu 已提交
496 497 498 499 500 501
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
502
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
503
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
504
          bias vector).
Y
Yibing Liu 已提交
505 506 507
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
508
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
509
    * :math:`h`: The hidden state.
510
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
511 512
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
513
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
514
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
515
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
516 517
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
518 519 520 521

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
522

Y
Yibing Liu 已提交
523 524 525 526 527 528 529 530 531 532 533 534
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
535
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
536 537
                               hidden-hidden weight and projection weight.

538 539
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
540 541
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
542 543
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
544
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
545 546 547 548 549

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
550
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
551 552 553 554 555 556
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
557
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
558 559 560
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
561
                                - The shape is (1 x 7D).
C
chengduo 已提交
562 563 564 565 566

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
567 568 569 570 571 572 573 574 575
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
576
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
577 578
                              default "tanh".
        proj_activation(str): The activation for projection output.
579
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
580 581
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
582 583
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
584 585

    Returns:
586 587 588 589
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
590 591

    Examples:
592

Y
Yibing Liu 已提交
593 594
        .. code-block:: python

595 596 597 598
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
599
            hidden_dim, proj_dim = 512, 256
600
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
601
                                     act=None, bias_attr=None)
602 603 604
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
605 606 607 608
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
609
    """
610

C
chengduo 已提交
611
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
612
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
613
    size = size // 4
Y
Yibing Liu 已提交
614 615 616 617 618 619 620 621 622 623
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
624 625 626 627 628 629
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
658 659 660 661 662 663 664 665 666
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
667
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
668

669
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
670
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
671

G
guosheng 已提交
672 673 674 675 676 677 678 679 680
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
681

G
guosheng 已提交
682
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
683

G
guosheng 已提交
684
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
685 686
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
687 688 689 690
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
691
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
692 693

    Args:
694 695
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
696
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
697
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
698 699
            is the hidden size.
        size(int): The dimension of the gru cell.
700
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
701 702
            hidden-hidden weight matrix. Note:

703
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
704
              :math:`D` is the hidden size.
705
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
706
              The first part are weights of the update gate and reset gate with
707
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
708
              candidate hidden state with shape :math:`(D \\times D)`.
709
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
710
            hidden-hidden bias.
711
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
712 713 714
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
715
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
716
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
717 718 719 720
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
721 722

    Returns:
G
guosheng 已提交
723
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
724
            and sequence length is the same with the input.
725

G
guosheng 已提交
726
    Examples:
727

G
guosheng 已提交
728 729
        .. code-block:: python

730 731 732 733
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
734
            hidden_dim = 512
735
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
736 737 738 739 740 741 742 743 744 745
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
746
    batch_size = input.shape[0]
G
guosheng 已提交
747 748 749
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
750 751 752
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
753

X
Xin Pan 已提交
754 755 756 757
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
776 777 778
def gru_unit(input,
             hidden,
             size,
779 780
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
781
             activation='tanh',
782
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
783
    """
784
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
785

786 787
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
788

789
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
790

791
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
792

793
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
794 795

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
796 797 798
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
799 800
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

801 802
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
803 804 805
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
806 807 808 809 810

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
811 812
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
813 814 815 816
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
817

818 819 820 821 822 823
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
824

825
             # assuming we have x_t_data and prev_hidden of size=10
826
             x_t = fluid.layers.fc(input=x_t_data, size=30)
827 828
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
829 830 831 832 833 834 835 836 837 838 839 840

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
841
    size = size // 3
Y
Yu Yang 已提交
842 843

    # create weight
844 845
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
846

X
Xin Pan 已提交
847 848 849
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
850
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
851
    # create bias
852
    if helper.bias_attr:
Y
Yu Yang 已提交
853 854 855
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
856
        inputs['Bias'] = bias
Y
Yu Yang 已提交
857 858 859

    helper.append_op(
        type='gru_unit',
860
        inputs=inputs,
Y
Yu Yang 已提交
861 862 863 864 865 866
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
867 868
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
869 870 871 872 873
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
874
@templatedoc()
875
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
876 877 878 879 880 881 882
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
883
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
884 885 886 887
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
888 889 890
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
891 892

    """
Y
Yu Yang 已提交
893 894 895 896 897 898
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
899 900 901 902 903 904 905 906
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
922
@templatedoc()
923
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
924 925 926 927 928
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
929

Y
yuyang18 已提交
930
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
931

Y
yuyang18 已提交
932 933 934
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
935
        Variable: ${viterbi_path_comment}
936

Y
yi.wu 已提交
937 938 939 940 941
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
942
    """
Y
Yu Yang 已提交
943 944
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
X
Xin Pan 已提交
945 946
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
947 948 949 950 951 952 953 954 955 956
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
957
@templatedoc()
F
fengjiayi 已提交
958
def cos_sim(X, Y):
Y
Yu Yang 已提交
959
    """
Y
yi.wu 已提交
960 961 962
    ${comment}

    Args:
963 964
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
965

Y
yi.wu 已提交
966
    Returns:
967
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
968
    """
F
fengjiayi 已提交
969
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
970 971 972
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
973 974 975 976 977 978 979 980 981 982
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
983 984 985 986 987
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
988
            dropout_implementation="downgrade_in_infer"):
989 990 991 992 993
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
994
    training. The dropout operator randomly sets (according to the given dropout
995 996 997 998
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
999 1000
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1001 1002 1003 1004 1005 1006 1007
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                           dropout op can be removed from the program. 
                                           the program will be efficient
                                        
P
phlrain 已提交
1022

1023 1024

    Returns:
1025
        Variable: A tensor variable is the shape with `x`.
1026 1027

    Examples:
1028

1029 1030
        .. code-block:: python

1031 1032
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1033 1034
    """

F
fengjiayi 已提交
1035
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1036 1037 1038
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1039 1040 1041 1042

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1043 1044 1045 1046 1047
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1048 1049 1050 1051
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1052 1053
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1054
        })
1055 1056 1057
    return out


1058
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1059
    """
Y
Yibing Liu 已提交
1060 1061
    **Cross Entropy Layer**

1062 1063 1064
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1065 1066

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1067
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1068

Y
Yibing Liu 已提交
1069
        .. math::
Y
yangyaming 已提交
1070

Y
Yibing Liu 已提交
1071 1072 1073
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1074 1075
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1076 1077 1078 1079 1080

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1081
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1082 1083 1084
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1085 1086
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1087
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1088

Y
Yibing Liu 已提交
1089
    Args:
Y
yangyaming 已提交
1090
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1091 1092 1093 1094
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1095
        label (Variable|list): the ground truth which is a 2-D tensor. When
1096 1097 1098 1099
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1100
        soft_label (bool): a flag indicating whether to
1101
                                           interpretate the given labels as soft
1102
                                           labels. Default: `False`.
M
minqiyang 已提交
1103 1104
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1105
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1106 1107 1108 1109 1110

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1111 1112 1113 1114 1115
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1116 1117 1118 1119 1120 1121

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1122
    """
F
fengjiayi 已提交
1123
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1124
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1125 1126 1127 1128 1129
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1130 1131
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1132 1133 1134
    return out


F
fengjiayi 已提交
1135
def square_error_cost(input, label):
Y
Yu Yang 已提交
1136
    """
1137 1138
    **Square error cost layer**

1139 1140
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1141

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1155 1156
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1157 1158

    Returns:
G
guosheng 已提交
1159
        Variable: The tensor variable storing the element-wise squared error \
1160
                  difference of input and label.
1161 1162 1163 1164 1165 1166 1167 1168

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1169
    """
F
fengjiayi 已提交
1170
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1171
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1172 1173 1174 1175 1176 1177
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1178
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1179
    helper.append_op(
F
fengjiayi 已提交
1180 1181
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1182 1183 1184
    return square_out


Y
yi.wu 已提交
1185
@templatedoc()
Y
Yu Yang 已提交
1186 1187 1188 1189
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1190
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1191
    """
Y
yi.wu 已提交
1192
    **Chunk Evaluator**
Y
yi.wu 已提交
1193

Y
yangyaming 已提交
1194
    This function computes and outputs the precision, recall and
1195
    F1-score of chunk detection.
Y
yi.wu 已提交
1196

Y
yi.wu 已提交
1197 1198 1199 1200 1201 1202 1203 1204
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1205

Y
yi.wu 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1231

Y
yi.wu 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1256
    Args:
1257 1258 1259 1260 1261
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1262

Y
yi.wu 已提交
1263
    Returns:
Y
update  
yi.wu 已提交
1264 1265 1266
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1267

Y
yi.wu 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1280
    """
F
fengjiayi 已提交
1281
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1282 1283

    # prepare output
X
Xin Pan 已提交
1284 1285 1286 1287 1288 1289 1290
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1291 1292 1293 1294 1295 1296 1297 1298

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1299 1300 1301 1302
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1303 1304 1305
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1306 1307
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1308
        })
1309 1310
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1311 1312


1313
@templatedoc()
Y
Yu Yang 已提交
1314 1315 1316 1317 1318 1319 1320
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1321 1322
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1323 1324 1325 1326
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1327 1328 1329 1330 1331 1332 1333

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1347

1348 1349
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1350 1351 1352 1353 1354 1355 1356
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1357
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1368
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1369 1370 1371 1372 1373 1374
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1375
def sequence_softmax(input, use_cudnn=False, name=None):
1376 1377 1378
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1379
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1396 1397 1398
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1399

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1411 1412
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1413
    softmax_out = helper.create_variable_for_type_inference(dtype)
1414 1415 1416 1417 1418 1419 1420 1421
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1422
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1423
    """
1424
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1425
    has the same shape as the input.
Q
qiaolongfei 已提交
1426

1427 1428 1429 1430 1431 1432
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1433
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1434 1435 1436 1437 1438 1439 1440

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1441
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1442 1443 1444 1445 1446 1447 1448 1449

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1450 1451 1452
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1465 1466
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1467
    softmax_out = helper.create_variable_for_type_inference(dtype)
1468 1469 1470 1471 1472 1473 1474 1475
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1476 1477 1478
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1479 1480
           stride=1,
           padding=0,
1481
           dilation=1,
Y
Yu Yang 已提交
1482 1483 1484
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1485
           use_cudnn=True,
1486 1487
           act=None,
           name=None):
Y
Yu Yang 已提交
1488
    """
C
chengduoZH 已提交
1489
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1490 1491
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1492
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1493 1494 1495 1496 1497 1498 1499
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1500 1501 1502
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1503

1504
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1505

C
chengduoZH 已提交
1506 1507
    .. math::

C
refine  
chengduoZH 已提交
1508
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1509

T
tensor-tang 已提交
1510
    Where:
C
chengduoZH 已提交
1511

1512 1513 1514 1515 1516
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1517
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1518 1519 1520

    Example:

1521 1522
        - Input:

W
weixing02 已提交
1523
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1524

W
weixing02 已提交
1525
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1526

1527
        - Output:
T
tensor-tang 已提交
1528

W
weixing02 已提交
1529
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1530

C
chengduoZH 已提交
1531
        Where
1532 1533

        .. math::
C
chengduoZH 已提交
1534

W
weixing02 已提交
1535 1536
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1537 1538

    Args:
1539
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1540
        num_filters(int): The number of filter. It is as same as the output
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1569 1570
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1571 1572
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1573
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1574
            will be named automatically. Default: None
C
chengduoZH 已提交
1575 1576

    Returns:
G
guosheng 已提交
1577
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1578 1579
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1580
    Raises:
1581 1582
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1583

C
chengduoZH 已提交
1584 1585 1586
    Examples:
        .. code-block:: python

1587 1588
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1589 1590 1591
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1592
    assert param_attr is not False, "param_attr should not be False here."
1593
    l_type = 'conv2d'
X
xzl 已提交
1594 1595
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1596
        l_type = 'depthwise_conv2d'
1597 1598 1599 1600

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1601 1602 1603 1604 1605
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1606
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1607

C
chengduoZH 已提交
1608 1609 1610
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1611
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1612

C
chengduoZH 已提交
1613 1614
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1615 1616

    input_shape = input.shape
M
minqiyang 已提交
1617
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1618 1619

    def _get_default_param_initializer():
C
chengduo 已提交
1620 1621
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1622 1623 1624 1625 1626 1627 1628 1629
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1630
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1631 1632

    helper.append_op(
1633
        type=l_type,
Y
Yu Yang 已提交
1634 1635 1636 1637 1638
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1639 1640 1641
        attrs={
            'strides': stride,
            'paddings': padding,
1642
            'dilations': dilation,
C
chengduoZH 已提交
1643
            'groups': groups,
1644
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1645
            'use_mkldnn': False
C
chengduoZH 已提交
1646
        })
Y
Yu Yang 已提交
1647 1648 1649 1650 1651 1652

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1670 1671 1672 1673 1674 1675
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1685 1686
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1687 1688 1689
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1690
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1716
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1717 1718
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1719
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1720 1721
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1722
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1723 1724
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1725
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1726 1727 1728 1729 1730 1731
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1742 1743
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1744 1745
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1746
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1747
            will be named automatically. Default: None.
C
chengduoZH 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1760 1761
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1762 1763 1764
    """

    l_type = 'conv3d'
C
chengduo 已提交
1765
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1776
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1790 1791 1792
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1793 1794 1795 1796 1797 1798 1799 1800
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1801
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1816
            'use_mkldnn': False
C
chengduoZH 已提交
1817 1818
        })

1819
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1820 1821 1822 1823

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1824
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1825
    """
Y
yangyaming 已提交
1826 1827 1828
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1840
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1841 1842 1843 1844 1845
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1846
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1847 1848 1849 1850 1851 1852 1853

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1854 1855
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1856

L
Luo Tao 已提交
1857 1858
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1859
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1860 1861 1862 1863 1864 1865 1866 1867
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1868

Y
yangyaming 已提交
1869
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1870 1871 1872 1873 1874
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1875 1876
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1877
    """
F
fengjiayi 已提交
1878
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1879
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1880 1881
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1882 1883 1884 1885 1886 1887 1888 1889

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1890 1891 1892 1893 1894
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1895 1896 1897
    return pool_out


C
add doc  
chengduoZH 已提交
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1917
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1918 1919 1920 1921 1922
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1923
def sequence_first_step(input):
L
Luo Tao 已提交
1924
    """
L
Luo Tao 已提交
1925
    This function gets the first step of sequence.
L
Luo Tao 已提交
1926 1927 1928 1929

    .. code-block:: text

       x is a 1-level LoDTensor:
1930
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1931 1932 1933 1934 1935
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1936
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1937
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1938

L
Luo Tao 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1948

Y
yangyaming 已提交
1949
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1950 1951 1952
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1953 1954 1955
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1956
def sequence_last_step(input):
L
Luo Tao 已提交
1957
    """
L
Luo Tao 已提交
1958
    This function gets the last step of sequence.
L
Luo Tao 已提交
1959 1960 1961 1962

    .. code-block:: text

       x is a 1-level LoDTensor:
1963
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1964 1965 1966 1967 1968
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1969
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1970
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1971

L
Luo Tao 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1981

Y
yangyaming 已提交
1982
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1983 1984 1985
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1986 1987 1988
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

    The layer crops a subsequence from given sequence with given start 
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
    
	- Case:

2002 2003 2004 2005 2006
            Given the input Variable **input**:
                
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2007

2008
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2009

2010 2011 2012 2013 2014
            the output Variable will be
                
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
Y
Yibing Liu 已提交
2015
	
2016 2017
    NOTE: The first dimension size of **input**, **offset** and **length** 
          should be equal. The **offset** should start from 0.
Y
Yibing Liu 已提交
2018 2019 2020
    
    Args:
        input(Variable): The input Variable which consists of the complete 
Y
Yibing Liu 已提交
2021
                         sequences.
Y
Yibing Liu 已提交
2022 2023 2024 2025 2026 2027
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2028
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset, 
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2044
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2059
@templatedoc()
Y
Yu Yang 已提交
2060
def pool2d(input,
C
chengduoZH 已提交
2061 2062
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2063 2064
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2065
           global_pooling=False,
C
chengduoZH 已提交
2066
           use_cudnn=True,
2067
           ceil_mode=False,
C
caoying03 已提交
2068
           name=None):
Y
Yu Yang 已提交
2069
    """
F
fengjiayi 已提交
2070
    ${comment}
2071 2072

    Args:
2073 2074 2075
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2076
                          feature, and W is the width of the feature.
2077
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2078
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2079
        pool_type: ${pooling_type_comment}
2080 2081
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
2082 2083 2084
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
2085
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2086 2087
                        layer will be named automatically.

2088
    Returns:
F
fengjiayi 已提交
2089
        Variable: The pooling result.
F
fengjiayi 已提交
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2103 2104 2105 2106
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2107
                            global_pooling=False)
Y
Yu Yang 已提交
2108 2109 2110 2111 2112
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2113

C
chengduoZH 已提交
2114 2115 2116 2117 2118
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2119 2120 2121 2122
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2123 2124
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2125

C
Add doc  
chengduoZH 已提交
2126
    l_type = 'pool2d'
2127 2128

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2129
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2130
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2131 2132

    helper.append_op(
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2144
            "use_mkldnn": False
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2161
    pooling configurations mentioned in input parameters.
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2174

2175
    Returns:
2176
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2177 2178 2179 2180 2181
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2182

C
chengduoZH 已提交
2183 2184 2185 2186 2187
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2188 2189 2190
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2191

C
chengduoZH 已提交
2192 2193
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2194

2195 2196
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2197
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2198
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2199 2200

    helper.append_op(
2201
        type=l_type,
Y
Yu Yang 已提交
2202 2203 2204 2205 2206 2207 2208
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2209
            "paddings": pool_padding,
2210
            "use_cudnn": use_cudnn,
2211
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2212
            "use_mkldnn": False
Y
Yu Yang 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2225
               data_layout='NCHW',
Y
Yang Yang 已提交
2226
               in_place=False,
2227 2228
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2229
               moving_variance_name=None,
2230 2231
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2232
    """
Q
qiaolongfei 已提交
2233 2234 2235 2236
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2237

Q
qiaolongfei 已提交
2238
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2239

Q
qiaolongfei 已提交
2240 2241
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2242 2243 2244
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2257 2258

    Args:
Q
qiaolongfei 已提交
2259
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2260 2261 2262 2263
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2264 2265 2266 2267 2268 2269 2270 2271
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2272
        data_layout(string, default NCHW): NCHW|NHWC
2273
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2274 2275 2276 2277
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2278
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2279
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2280 2281

    Returns:
Q
qiaolongfei 已提交
2282
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2283 2284 2285 2286 2287 2288 2289

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2290
    """
C
chengduo 已提交
2291
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2314
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2315

2316 2317
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2318 2319 2320
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2321
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2322
        shape=param_shape,
2323 2324 2325 2326 2327 2328 2329
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2330
            trainable=False,
W
wanghaoshuang 已提交
2331
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2332
        shape=param_shape,
2333 2334
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2335 2336 2337 2338 2339 2340

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2341 2342 2343 2344
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2345

X
Xin Pan 已提交
2346 2347
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2365 2366 2367 2368
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2369
            "use_mkldnn": False,
2370
            "fuse_with_relu": fuse_with_relu
2371
        })
Y
Yu Yang 已提交
2372 2373 2374 2375

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2376
@templatedoc()
G
guosheng 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2387
    ${comment}
G
guosheng 已提交
2388 2389 2390

    The formula is as follows:

Y
yuyang18 已提交
2391
    ..  math::
G
guosheng 已提交
2392 2393 2394 2395 2396 2397 2398

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2399 2400 2401 2402 2403 2404 2405 2406
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2407

G
guosheng 已提交
2408 2409
    Args:
        input(Variable): The input tensor variable.
2410
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2411
            normalization. Default True.
2412
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2413 2414
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2415
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2416
            Default 1.
2417
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2418
            division by zero. Default 1e-05.
G
guosheng 已提交
2419
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2420 2421 2422 2423
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The 
            :attr:`param_attr` is initialized as 1 if it is added. Default None. 
G
guosheng 已提交
2424
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2425 2426 2427 2428
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The 
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2429
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2430 2431 2432
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2433 2434

    Returns:
Y
yuyang18 已提交
2435
        ${y_comment}
G
guosheng 已提交
2436 2437 2438

    Examples:

Y
yuyang18 已提交
2439 2440 2441
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2457
    if shift:
G
guosheng 已提交
2458 2459 2460 2461 2462 2463
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2464 2465 2466 2467 2468
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2484 2485 2486 2487
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2488 2489 2490
                     padding=0,
                     stride=1,
                     dilation=1,
2491
                     groups=None,
C
caoying03 已提交
2492
                     param_attr=None,
2493
                     bias_attr=None,
C
chengduoZH 已提交
2494
                     use_cudnn=True,
2495
                     act=None,
C
caoying03 已提交
2496
                     name=None):
Y
Yu Yang 已提交
2497
    """
2498 2499 2500 2501 2502 2503 2504 2505
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2506 2507
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2508 2509 2510
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2511 2512 2513 2514 2515

    For each input :math:`X`, the equation is:

    .. math::

2516
        Out = \sigma (W \\ast X + b)
2517

2518
    Where:
2519 2520 2521

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2522 2523 2524 2525
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2526

2527 2528 2529 2530
    Example:

        - Input:

2531
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2532

2533
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2534 2535 2536

        - Output:

2537
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2538 2539

        Where
Y
Yu Yang 已提交
2540

2541 2542
        .. math::

2543 2544 2545 2546
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2547 2548

    Args:
2549 2550 2551 2552
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2553 2554 2555 2556
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2585
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2586 2587 2588
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2589
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2590
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2591 2592

    Returns:
2593
        Variable: The tensor variable storing the convolution transpose result.
2594 2595

    Raises:
2596 2597
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2598 2599 2600 2601

    Examples:
       .. code-block:: python

2602 2603
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2604
    """
C
chengduo 已提交
2605
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2606 2607 2608 2609 2610 2611 2612 2613
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2614 2615 2616
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2617 2618 2619
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2620

C
chengduoZH 已提交
2621 2622
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2623

Y
Yu Yang 已提交
2624 2625 2626 2627 2628
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2629

Y
Yu Yang 已提交
2630 2631
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2632

C
chengduoZH 已提交
2633
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2634
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2635
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2636
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2637
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2638 2639 2640
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2641

2642 2643 2644 2645 2646 2647 2648
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2649
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2650
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2651

Y
Yu Yang 已提交
2652 2653 2654
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2655
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2656
    helper.append_op(
2657
        type=op_type,
Y
Yu Yang 已提交
2658 2659
        inputs={'Input': [input],
                'Filter': [img_filter]},
2660
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2661
        attrs={
2662
            'output_size': output_size,
2663 2664 2665 2666 2667
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2668 2669
        })

2670 2671 2672
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2673 2674


2675
def conv3d_transpose(input,
Y
Yu Yang 已提交
2676 2677 2678
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2679 2680 2681
                     padding=0,
                     stride=1,
                     dilation=1,
2682
                     groups=None,
C
caoying03 已提交
2683
                     param_attr=None,
2684
                     bias_attr=None,
C
chengduoZH 已提交
2685
                     use_cudnn=True,
2686
                     act=None,
C
caoying03 已提交
2687
                     name=None):
Y
Yu Yang 已提交
2688
    """
2689
    **Convlution3D transpose layer**
2690

2691
    The convolution3D transpose layer calculates the output based on the input,
2692
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2693 2694 2695 2696 2697 2698
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2699 2700 2701
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2702 2703 2704 2705 2706

    For each input :math:`X`, the equation is:

    .. math::

2707
        Out = \sigma (W \\ast X + b)
2708 2709 2710

    In the above equation:

2711 2712
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2713 2714 2715 2716
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2717

2718 2719 2720 2721
    Example:

        - Input:

2722
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2723

2724
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2725 2726 2727

        - Output:

2728
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2729 2730

        Where
Y
Yu Yang 已提交
2731

2732 2733
        .. math::

2734 2735 2736
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2737 2738

    Args:
2739
        input(Variable): The input image with [N, C, D, H, W] format.
2740 2741 2742
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2743
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2744 2745
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2746
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2747 2748 2749
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2750 2751
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2752
        stride(int|tuple): The stride size. If stride is a tuple, it must
2753 2754
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2755
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2756 2757 2758
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2759 2760 2761 2762 2763
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2764 2765 2766 2767 2768 2769 2770 2771 2772
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2773 2774
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2775 2776
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2777 2778
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2779 2780

    Returns:
2781
        Variable: The tensor variable storing the convolution transpose result.
2782 2783

    Raises:
2784 2785
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2786 2787 2788 2789

    Examples:
       .. code-block:: python

2790 2791
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2792
    """
C
chengduo 已提交
2793
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2794 2795
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2796
    if not isinstance(input, Variable):
2797
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2798 2799
    input_channel = input.shape[1]

2800 2801 2802
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2803

C
chengduoZH 已提交
2804 2805 2806
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2807 2808 2809 2810 2811 2812
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2813 2814 2815
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2816

2817
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2818
                         padding[0] - 1) // dilation[0] + 1
2819
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2820
                         padding[1] - 1) // dilation[1] + 1
2821
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2822
                         padding[2] - 1) // dilation[2] + 1
2823
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2824
    else:
2825 2826
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2827

2828
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2829
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2830 2831 2832
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2833
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2834
    helper.append_op(
2835
        type=l_type,
Y
Yu Yang 已提交
2836 2837
        inputs={'Input': [input],
                'Filter': [img_filter]},
2838
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2839 2840 2841 2842
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2843
            'groups': groups,
C
chengduoZH 已提交
2844 2845
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2846

2847 2848
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2849
    return out
Y
yangyaming 已提交
2850 2851


Y
yangyaming 已提交
2852
def sequence_expand(x, y, ref_level=-1, name=None):
2853
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2854 2855 2856 2857
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2858 2859 2860 2861 2862

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2863
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2864
                x.data = [[a], [b], [c], [d]]
2865 2866 2867
                x.dims = [4, 1]

            y is a LoDTensor:
2868 2869
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2870

Y
yangyaming 已提交
2871
            ref_level: 0
2872

Y
yangyaming 已提交
2873
            then output is a 1-level LoDTensor:
2874
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2875
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2876 2877 2878 2879
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2880
                x.data = [[a], [b], [c]]
2881 2882 2883
                x.dims = [3, 1]

            y is a LoDTensor:
2884
                y.lod = [[2, 0, 3]]
2885

Y
yangyaming 已提交
2886
            ref_level: -1
2887

Y
yangyaming 已提交
2888 2889 2890
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2891 2892 2893
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2894 2895
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2896
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2897
                        will be named automatically.
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2908
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2909
    """
Y
yangyaming 已提交
2910
    helper = LayerHelper('sequence_expand', input=x, **locals())
2911
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2912
    tmp = helper.create_variable_for_type_inference(dtype)
2913
    helper.append_op(
Y
yangyaming 已提交
2914 2915 2916 2917 2918
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2919
    return tmp
2920 2921


C
chengduo 已提交
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2978
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
2979 2980 2981 2982 2983 2984 2985 2986
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2987
@templatedoc()
2988
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
2989 2990 2991 2992 2993
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2994 2995 2996
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2997
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
2998 2999 3000 3001
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3002 3003 3004
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3005

F
fengjiayi 已提交
3006
    Returns:
M
minqiyang 已提交
3007
        Variable: The padded sequence batch and the original lengths before
3008
                  padding. All sequences has the same length.
M
minqiyang 已提交
3009

F
fengjiayi 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3023 3024
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3025 3026 3027 3028

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3029 3030 3031 3032 3033 3034
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3035 3036
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3037
        attrs={'padded_length': maxlen})
3038
    return out, length
F
fengjiayi 已提交
3039 3040


3041
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3042
    """
3043
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058

    This layer removes the padding data in the input sequences and convert 
    them into sequences with actual length as output, identitied by lod 
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
		      [11.0, 12.0, 13.0, 14.0, 15.0]], 
     
	in which there are 3 sequences padded to length 5, and the acutal length 
3059
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3060 3061 3062 3063 3064 3065

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3066
	    out.lod = [[2, 3, 4]]      
Y
Yibing Liu 已提交
3067 3068 3069 3070 3071 3072

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3073 3074
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3089
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3101 3102 3103 3104 3105 3106 3107 3108 3109
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3110 3111
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3112 3113 3114

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3115 3116

    This layer does the search in beams for one time step. Specifically, it
3117 3118 3119 3120 3121 3122
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3123

3124 3125 3126 3127 3128 3129 3130 3131
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3132

3133
    Args:
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3159

3160
    Returns:
3161 3162
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3163 3164 3165 3166

    Examples:
        .. code-block:: python

3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3184 3185 3186 3187
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3188 3189 3190
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3191 3192 3193 3194 3195

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3196
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3214 3215 3216 3217 3218 3219 3220
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3221

3222 3223 3224 3225 3226 3227 3228 3229 3230
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3231

3232 3233 3234 3235 3236 3237
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3238

3239 3240 3241 3242 3243 3244 3245 3246
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3247 3248
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3264 3265 3266 3267
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3268
              param_attr=None,
C
caoying03 已提交
3269 3270
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3271 3272 3273 3274
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3275
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3276

3277
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3278

3279
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3280

3281
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3282 3283 3284

            h_t & = o_t tanh(c_t)

3285 3286 3287 3288 3289 3290
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3291 3292 3293

        .. math::

3294
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3295 3296 3297 3298 3299 3300 3301 3302

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3303
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3304 3305

    Args:
Y
yangyaming 已提交
3306 3307 3308 3309 3310 3311
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3312
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3325 3326
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3327 3328

    Returns:
Y
yangyaming 已提交
3329
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3330 3331

    Raises:
3332 3333 3334 3335
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3336 3337 3338 3339 3340 3341

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3342
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3343
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3344
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3361
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3362 3363 3364 3365
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3366 3367
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3368 3369 3370
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3371
    size = cell_t_prev.shape[1]
3372
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3373 3374
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3375
                param_attr=param_attr,
3376
                bias_attr=bias_attr)
Y
yangyaming 已提交
3377
    dtype = x_t.dtype
X
Xin Pan 已提交
3378 3379
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3380 3381 3382 3383 3384 3385 3386 3387 3388

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3389
    return h, c
G
guosheng 已提交
3390 3391


C
caoying03 已提交
3392
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3393
    """
Y
yangyaming 已提交
3394
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3395 3396 3397

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3398
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3399 3400
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3401 3402
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3403
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3404
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3405
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3406 3407
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3408 3409 3410

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3411

G
guosheng 已提交
3412 3413 3414 3415 3416 3417
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3418
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3419 3420 3421 3422
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3423 3424 3425 3426

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3427
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3428 3429 3430
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3431 3432
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3433
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3434 3435
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3436 3437 3438 3439 3440
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3441
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3442 3443 3444 3445
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3446 3447


C
caoying03 已提交
3448
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3449
    """
Y
Yibing Liu 已提交
3450
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3451 3452 3453

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3454 3455 3456
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3457
            must be in the range :math:`[-rank(input), rank(input))`. If
3458
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3459
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3460 3461
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3462
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3463
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3464
                       will be named automatically.
G
guosheng 已提交
3465 3466

    Returns:
Y
Yibing Liu 已提交
3467
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3468

G
guosheng 已提交
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3479 3480
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3481 3482 3483 3484 3485 3486 3487

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3488 3489
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3490
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3491 3492
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3493 3494 3495 3496 3497
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3498
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3499 3500 3501 3502
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3503 3504


C
caoying03 已提交
3505
def reduce_max(input, dim=None, keep_dim=False, name=None):
3506
    """
Y
yangyaming 已提交
3507
    Computes the maximum of tensor elements over the given dimension.
3508 3509 3510

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3511
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3512 3513 3514
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3515
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3516 3517
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3518
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3519 3520
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3521 3522 3523

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3524

3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3536 3537 3538 3539 3540 3541 3542

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3543 3544
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3545
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3546 3547
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3548 3549 3550 3551 3552
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3553
            'dim': dim if dim != None else [0],
3554 3555 3556 3557 3558 3559
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3560
def reduce_min(input, dim=None, keep_dim=False, name=None):
3561
    """
Y
yangyaming 已提交
3562
    Computes the minimum of tensor elements over the given dimension.
3563 3564 3565

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3566
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3567 3568 3569
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3570
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3571 3572
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3573
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3574 3575
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3576 3577 3578

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3579

3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3591 3592 3593 3594 3595 3596 3597

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3598 3599
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3600
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3601 3602
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3603 3604 3605 3606 3607
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3608
            'dim': dim if dim != None else [0],
3609 3610 3611 3612
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3613 3614


3615 3616 3617 3618 3619 3620
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3621
        dim (list|int|None): The dimensions along which the product is performed. If
3622 3623
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3624 3625
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3626 3627 3628
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3629
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3630
            layer will be named automatically.
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3645
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3646
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3647 3648 3649 3650 3651 3652 3653

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3654 3655
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3656
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3657 3658
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3659 3660 3661 3662 3663
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3664
            'dim': dim if dim != None else [0],
3665 3666 3667 3668 3669 3670
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3671
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3672
    """
C
caoying03 已提交
3673
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3674 3675 3676

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3677 3678 3679 3680 3681
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3682
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3683
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3684
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3685 3686
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3687 3688

    Returns:
D
dzhwinter 已提交
3689
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3690 3691 3692 3693 3694 3695 3696 3697 3698

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3699 3700
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3716
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3730 3731 3732 3733 3734 3735 3736 3737 3738


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3739
    .. math::
3740 3741

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3742 3743 3744 3745 3746

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3747
        x(Variable|list): The input tensor to l2_normalize layer.
3748
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3749 3750
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3751
        epsilon(float): The epsilon value is used to avoid division by zero, \
3752
            the defalut value is 1e-10.
3753
        name(str|None): A name for this layer(optional). If set None, the layer \
3754
            will be named automatically.
C
caoying03 已提交
3755 3756

    Returns:
3757
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3758 3759

    Examples:
3760

C
caoying03 已提交
3761 3762
        .. code-block:: python

3763 3764 3765 3766
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3767 3768
    """

F
fengjiayi 已提交
3769 3770
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3771 3772
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3773 3774
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3775
    helper.append_op(
3776 3777 3778 3779
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3780
        attrs={
3781 3782
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3783 3784
        })
    return out
3785 3786


S
sneaxiy 已提交
3787
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3788
    """
Y
ying 已提交
3789 3790 3791 3792
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3793

C
chengduoZH 已提交
3794
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3795
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3796

3797 3798 3799 3800 3801
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3802
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3803

C
chengduoZH 已提交
3804
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3805
      performs in the following way.
G
guosheng 已提交
3806

3807
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3808
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3809
        last two dimensions and a batched matrix multiply supporting broadcast
3810
        applies on the two tensors.
G
guosheng 已提交
3811

Y
ying 已提交
3812 3813
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3814
    removed after matrix multiplication.
G
guosheng 已提交
3815 3816 3817

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3818 3819 3820
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3821
        alpha (float): The scale of output. Default 1.0.
3822
        name(str|None): A name for this layer(optional). If set None, the layer
3823
            will be named automatically.
G
guosheng 已提交
3824 3825

    Returns:
3826
        Variable: The product Tensor variable.
G
guosheng 已提交
3827

G
guosheng 已提交
3828 3829 3830
    Examples:
        .. code-block:: python

3831
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3832 3833
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3834

3835 3836
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3837

3838 3839
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3840

3841 3842
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3843 3844 3845 3846

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3847 3848
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3849

Y
ying 已提交
3850
            # x: [M], y: [N]
3851
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3852
    """
Y
ying 已提交
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3865
            y_shape = y_shape + [1]
Y
ying 已提交
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3882
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3883
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3884
    helper.append_op(
3885 3886 3887 3888
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3889 3890 3891
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3892
            'alpha': float(alpha),
S
sneaxiy 已提交
3893
        })
3894
    return out
3895 3896


3897
def topk(input, k, name=None):
Q
qingqing01 已提交
3898 3899 3900 3901
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3902
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3903 3904 3905 3906 3907 3908
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3930 3931 3932
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3933
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3934
                 of input.
3935
        name(str|None): A name for this layer(optional). If set None, the layer
3936
                       will be named automatically.
F
fengjiayi 已提交
3937
                       Default: None
Q
qingqing01 已提交
3938 3939

    Returns:
3940 3941 3942
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3943
        within the last dimension of input.
Q
qingqing01 已提交
3944

F
fengjiayi 已提交
3945 3946
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3947 3948 3949 3950 3951 3952 3953

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
3954 3955
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3967
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3968
    """
Y
ying 已提交
3969 3970 3971 3972 3973 3974 3975 3976 3977
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3978

Y
ying 已提交
3979
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3980

3981
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3982 3983
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3984
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3985

3986
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3987 3988
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3989

3990 3991 3992
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3993
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3994
                          the length of reference string.
3995
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3996
                                     calculating edit distance.
3997
        name (str): The name of this layer. It is optional.
3998

W
wanghaoshuang 已提交
3999
    Returns:
W
wanghaoshuang 已提交
4000
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4001 4002 4003 4004 4005

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
4006
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
4007
            cost = fluid.layers.edit_distance(input=x,label=y)
4008
    """
4009
    helper = LayerHelper("edit_distance", **locals())
4010

4011
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4012
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4013 4014
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4015 4016 4017 4018 4019

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4020
            attrs={"tokens": ignored_tokens})
4021 4022 4023 4024 4025
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4026
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4027
            attrs={"tokens": ignored_tokens})
4028 4029
        label = erased_label

4030
    # edit distance op
X
Xin Pan 已提交
4031 4032
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4033 4034 4035 4036
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4037 4038
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4039 4040
        attrs={"normalized": normalized})

4041
    return edit_distance_out, sequence_num
4042 4043 4044 4045 4046


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4047

Y
ying 已提交
4048 4049 4050 4051
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4069
        input.lod = [[4, 4]]
4070 4071 4072 4073 4074 4075 4076

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4077
        output.lod = [[2, 1]]
4078 4079 4080

    Args:

Y
ying 已提交
4081 4082 4083 4084 4085 4086 4087 4088 4089
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4090
        name (str): The name of this layer. It is optional.
4091 4092

    Returns:
4093
        Variable: CTC greedy decode result. If all the sequences in result were
4094
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4095 4096 4097 4098 4099

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4100

4101
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4102
    """
4103
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4104
    _, topk_indices = topk(input, k=1)
4105 4106

    # ctc align op
X
Xin Pan 已提交
4107
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4108 4109 4110
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4111
        outputs={"Output": [ctc_out]},
4112 4113
        attrs={"merge_repeated": True,
               "blank": blank})
4114
    return ctc_out
4115 4116


F
fengjiayi 已提交
4117
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4118
    """
4119 4120
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4121
    to compute Connectionist Temporal Classification (CTC) loss.
4122 4123
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4124 4125 4126
    input tensor.

    Args:
4127
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4128 4129 4130 4131
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4132
       label (Variable): The ground truth of variable-length sequence,
4133 4134 4135
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4136 4137
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4138 4139 4140
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4141
         follewed by a mean_op.
W
wanghaoshuang 已提交
4142 4143

    Returns:
4144 4145
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4146 4147

    Examples:
4148

W
wanghaoshuang 已提交
4149
        .. code-block:: python
4150

4151 4152 4153
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4154 4155

    """
F
fengjiayi 已提交
4156
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4157 4158
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4159 4160 4161 4162 4163 4164 4165 4166 4167
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4183 4184 4185
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4186 4187 4188 4189 4190
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4191

4192
            out.lod  = [[0, 1, 3]]
4193 4194 4195 4196

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4197 4198 4199 4200 4201 4202 4203
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4204 4205 4206

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4207 4208

    Returns:
4209

4210 4211 4212 4213 4214
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4215
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4216
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4217 4218
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4219
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4220 4221 4222 4223 4224 4225
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4226 4227


4228 4229 4230 4231
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4232 4233 4234 4235 4236 4237
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4238 4239
        num_neg_samples=None,
        name=None):
4240 4241 4242 4243 4244 4245 4246
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4247 4248
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4249
            sample is 1.0.
C
chengduo 已提交
4250 4251 4252 4253 4254 4255 4256 4257 4258
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4259
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4260 4261
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4262

4263
    Returns:
Y
Yibing Liu 已提交
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4291
    """
Y
Yang Yu 已提交
4292 4293 4294
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4295 4296

    dim = input.shape[1]
Y
Yang Yu 已提交
4297 4298 4299 4300 4301 4302
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4316 4317 4318
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4319

Y
Yang Yu 已提交
4320 4321 4322 4323 4324 4325 4326 4327 4328
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4329 4330 4331

    helper.append_op(
        type='nce',
C
chengduo 已提交
4332
        inputs=inputs,
Y
Yang Yu 已提交
4333 4334 4335 4336 4337 4338
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4339
    return cost / (num_neg_samples + 1)
4340 4341


C
chengduo 已提交
4342 4343 4344 4345 4346 4347
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4348 4349
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4350
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4351 4352 4353 4354 4355 4356 4357 4358 4359
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4360

W
weixing02 已提交
4361
    Args:
M
minqiyang 已提交
4362
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4363 4364 4365 4366 4367
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4379 4380 4381 4382 4383 4384 4385 4386

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4387 4388 4389
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4390 4391 4392 4393
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4394 4395
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4396 4397
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4398
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4399 4400 4401 4402 4403
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4404 4405 4406 4407 4408 4409 4410 4411
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4412 4413
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4414
        inputs=inputs,
W
weixing02 已提交
4415 4416 4417 4418 4419 4420
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4421
def transpose(x, perm, name=None):
Y
ying 已提交
4422 4423 4424 4425 4426 4427 4428
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4429 4430 4431
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4432 4433 4434 4435 4436 4437 4438 4439

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4440
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4441 4442
    """

Y
fix ci.  
ying 已提交
4443
    if len(perm) != len(x.shape):
Y
ying 已提交
4444 4445 4446
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4447 4448 4449 4450 4451 4452
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4453 4454

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4455 4456
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4457
    helper.append_op(
4458
        type='transpose2',
Y
fix ci.  
ying 已提交
4459
        inputs={'X': [x]},
4460 4461
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4462 4463
        attrs={'axis': perm})
    return out
4464 4465


4466 4467 4468 4469 4470 4471 4472
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4473
    """
4474 4475 4476 4477 4478 4479 4480
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4481 4482 4483 4484 4485 4486 4487 4488 4489 4490

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4509 4510 4511 4512 4513 4514 4515 4516 4517
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4518 4519 4520
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4521 4522 4523 4524 4525
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4553 4554 4555
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4568
            output.dims = {8, 8}
4569

4570
            output.lod = [[4, 4]]
4571

D
dzhwinter 已提交
4572
     Examples:
4573 4574 4575

        .. code-block:: python

4576 4577
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4578 4579

    """
W
wanghaoshuang 已提交
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4590 4591 4592 4593 4594 4595 4596
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4597
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4598
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4599
    helper.append_op(
4600
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4601
    return out
4602 4603


Y
yuyang18 已提交
4604
@templatedoc()
4605
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4606 4607
    """
    ${comment}
4608 4609

    Args:
Y
yuyang18 已提交
4610
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4611 4612
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4613 4614 4615 4616 4617
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4618
        ${out_comment}.
4619 4620

    Examples:
Y
yuyang18 已提交
4621 4622 4623 4624
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4625 4626 4627 4628 4629 4630
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4631
    out = helper.create_variable_for_type_inference(dtype)
4632 4633 4634 4635 4636
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4637
    return helper.append_activation(out)
4638 4639


Y
yuyang18 已提交
4640
@templatedoc()
4641 4642
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4643 4644 4645 4646 4647 4648 4649
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4650 4651

    Args:
Y
yuyang18 已提交
4652 4653
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4654 4655

    Returns:
Y
yuyang18 已提交
4656
        ${out_comment}.
4657 4658
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4659 4660 4661 4662 4663

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4664
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4665 4666 4667 4668 4669 4670
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4671 4672


4673 4674 4675 4676
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4677 4678
    """
    **Softmax With Cross Entropy Operator.**
4679

4680 4681 4682 4683
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4684

4685 4686 4687
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4688

4689 4690 4691
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4692

4693
    The equation is as follows:
4694

4695
    1) Hard label (one-hot label, so every sample has exactly one class)
4696

4697 4698 4699 4700
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4701

4702 4703 4704
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4705

4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4718 4719
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4720 4721
                            if soft_label is set to False. Default: -100

4722 4723 4724 4725 4726 4727 4728 4729 4730
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4731 4732
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4733 4734
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4735 4736
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4737 4738 4739 4740 4741 4742
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4743 4744
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4745 4746 4747 4748 4749
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4750 4751
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4752
    For each instance, it computes the smooth L1 loss element by element first
4753
    and then sums all the losses. So the shape of ouput Variable is
4754
    [batch_size, 1].
4755

4756 4757
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4758
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4759
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4760
            L1 loss op with same shape as :attr:`x`.
4761
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4762 4763
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4764
            by this tensor element by element.
4765
        outside_weight (Variable|None): A tensor with rank at least 2. This
4766 4767
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4768
            element by element.
4769
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4770 4771
           scalar with default value 1.0.

4772
    Returns:
4773
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4774 4775 4776 4777 4778

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4779 4780
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4781
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4782
            out = fluid.layers.smooth_l1(x=fc, y=label)
4783
    """
4784

4785
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4786 4787
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4800 4801 4802 4803


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4804
    This layer creates the one-hot representations for input indices.
4805 4806

    Args:
Y
Yibing Liu 已提交
4807 4808
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4809 4810

    Returns:
Y
Yibing Liu 已提交
4811
        Variable: The one-hot representations of input.
4812 4813

    Examples:
C
caoying03 已提交
4814
        .. code-block:: python
4815

Y
Yibing Liu 已提交
4816 4817
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4818 4819
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4820
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4821 4822 4823 4824 4825 4826
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4827 4828


Y
Yu Yang 已提交
4829
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4830
    """
Y
yi.wu 已提交
4831 4832 4833
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4834 4835 4836 4837 4838 4839

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4840 4841
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4842 4843 4844 4845 4846 4847

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4848 4849
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4850 4851
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4852 4853 4854 4855 4856
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4857
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4858
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4859 4860
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4861 4862
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4863 4864 4865
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4866 4867


4868
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4869
    """
C
caoying03 已提交
4870 4871
    Gives a new shape to the input Tensor without changing its data.

4872 4873 4874 4875 4876
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4877

4878
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4879

4880 4881 4882 4883
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4884
    2. 0 means the actual dimension value is going to be copied from the
4885 4886 4887 4888
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4889 4890

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4891
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4892
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4893

4894
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4895 4896
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4897 4898
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4899
    dimensions.
C
caoying03 已提交
4900

4901
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4902 4903 4904 4905
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4906 4907

    Args:
4908
        x(variable): The input tensor.
C
caoying03 已提交
4909 4910
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4911 4912 4913 4914 4915
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4916
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4917 4918 4919 4920
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4921
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4922

4923 4924
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4925

X
Xin Pan 已提交
4926 4927 4928
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4929 4930
    Examples:
        .. code-block:: python
G
guosheng 已提交
4931

4932
            data = fluid.layers.data(
4933
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4934
            reshaped = fluid.layers.reshape(
4935
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4936 4937 4938
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4939
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4940 4941 4942 4943 4944
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4945

4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4961
    helper = LayerHelper("reshape2", **locals())
X
Xin Pan 已提交
4962 4963
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4964
    helper.append_op(
4965
        type="reshape2",
X
Xin Pan 已提交
4966
        inputs=inputs,
D
dzhwinter 已提交
4967
        attrs={"shape": shape},
4968 4969
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4970

D
dzhwinter 已提交
4971
    return helper.append_activation(out)
4972

4973

4974
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4975
    """
M
minqiyang 已提交
4976 4977 4978
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4979
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4980

Y
Yibing Liu 已提交
4981 4982
    Examples:
    Case 1:
M
minqiyang 已提交
4983
      Given
Y
Yibing Liu 已提交
4984 4985 4986 4987 4988 4989 4990 4991
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
4992
        and
Y
Yibing Liu 已提交
4993 4994 4995
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
4996

Y
Yibing Liu 已提交
4997
    Args:
4998
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4999
        axes (list): List of integers, indicating the dimensions to be squeezed.
5000
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5001 5002 5003 5004 5005 5006 5007 5008

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5009
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5010 5011
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5012 5013
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5014
    helper.append_op(
5015
        type="squeeze2",
5016
        inputs={"X": input},
Y
Yibing Liu 已提交
5017
        attrs={"axes": axes},
5018 5019
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5020

5021 5022 5023
    return out


5024
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5025
    """
M
minqiyang 已提交
5026 5027 5028
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5029

M
minqiyang 已提交
5030 5031
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5032
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5033

Y
Yibing Liu 已提交
5034
    Args:
5035
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5036
        axes (list): List of integers, indicating the dimensions to be inserted.
5037
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5038 5039 5040 5041 5042 5043 5044 5045

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5046
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5047 5048
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5049 5050
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5051
    helper.append_op(
5052
        type="unsqueeze2",
5053
        inputs={"X": input},
Y
Yibing Liu 已提交
5054
        attrs={"axes": axes},
5055 5056
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5057

5058 5059
    return out

5060

Y
yangyaming 已提交
5061
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5062
    """
Y
Yibing Liu 已提交
5063
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5064 5065 5066 5067
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5068
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5069 5070 5071 5072 5073 5074

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5075
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5076 5077 5078
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5079
            target_lod: [4, 2]
Y
yangyaming 已提交
5080 5081

            then we get a 1-level LoDTensor:
5082
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5083 5084 5085 5086 5087 5088
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5089
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5090 5091 5092 5093
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5094
                y.data = [[2, 4]]
Y
yangyaming 已提交
5095 5096 5097
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5098
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5099 5100 5101 5102 5103 5104
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5105
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5106 5107 5108 5109
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5110
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5111 5112 5113 5114
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5115
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5116 5117 5118 5119 5120
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5121
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5122
                           from :attr:`y`.
Y
yangyaming 已提交
5123
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5124
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5125 5126

    Returns:
Y
Yibing Liu 已提交
5127
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5128 5129

    Raises:
Y
Yibing Liu 已提交
5130
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5131 5132 5133 5134 5135 5136 5137 5138 5139

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5140
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5166
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5195 5196
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5209 5210 5211
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5225 5226 5227 5228


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5229
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5230
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5231

G
guosheng 已提交
5232 5233 5234 5235
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5258
                         The length of :attr:paddings must be
G
guosheng 已提交
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5269

G
guosheng 已提交
5270 5271 5272 5273 5274 5275
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5276
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5277 5278 5279 5280 5281 5282 5283
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5284 5285


C
chengduo 已提交
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5356
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5357 5358 5359 5360 5361 5362 5363 5364 5365
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5366 5367 5368 5369 5370 5371 5372
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5373 5374
    called label-smoothing regularization (LSR).

5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5398
                              be :math:`(1, class\_num)`.
5399 5400
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5401
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5421
    smooth_label = helper.create_variable_for_type_inference(dtype)
5422 5423 5424 5425 5426 5427 5428
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5429 5430


Y
yi.wu 已提交
5431
@templatedoc()
5432 5433
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5434
    ${comment}
5435 5436

    Args:
Y
yi.wu 已提交
5437 5438
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5439 5440 5441
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5442 5443

    Returns:
Y
update  
yi.wu 已提交
5444
        Variable: ${out_comment}.
5445 5446

    Examples:
5447 5448
        .. code-block:: python

5449
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5450 5451 5452
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5453 5454
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5467 5468


J
jerrywgz 已提交
5469 5470 5471 5472 5473 5474
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5475 5476
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

            align_out = fluid.layers.roi_align(input=x, 
                                               rois=rois, 
                                               pooled_height=7, 
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5502
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5543 5544
        .. code-block:: python

W
whs 已提交
5545 5546 5547 5548
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5549
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5550 5551 5552 5553 5554 5555
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5556 5557


5558 5559 5560 5561 5562
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5563
    """
Q
qiaolongfei 已提交
5564
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5565

5566
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5567 5568 5569
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5570

5571
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5572

5573
    Args:
5574
        input (Variable): The input tensor of image resize layer,
5575 5576
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5577
        out_shape(list|tuple|Variable|None): Output shape of image resize
5578 5579
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5580
        scale(float|None): The multiplier for the input height or width.
5581 5582 5583
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5584 5585
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5586 5587
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5588 5589

    Returns:
Q
update  
qiaolongfei 已提交
5590 5591
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5592

5593 5594 5595
    Examples:
        .. code-block:: python

5596
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5597
    """
5598 5599 5600 5601
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5602 5603
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5604 5605
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5606 5607 5608 5609

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5610 5611 5612
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5613
    if out_shape is not None:
B
baiyf 已提交
5614 5615 5616
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5617 5618 5619 5620 5621 5622
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5623 5624 5625 5626
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

X
Xin Pan 已提交
5627
    out = helper.create_variable_for_type_inference(dtype)
5628
    helper.append_op(
5629
        type=resample_methods[resample],
5630
        inputs=inputs,
5631 5632 5633 5634
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5635 5636


Y
yuyang18 已提交
5637
@templatedoc(op_type="bilinear_interp")
5638 5639
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5640 5641 5642 5643 5644 5645
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5646

Y
yuyang18 已提交
5647 5648 5649 5650 5651 5652 5653 5654
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5655 5656 5657 5658 5659 5660 5661
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5662 5663 5664
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5665 5666 5667 5668 5669 5670 5671
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5672
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5673

5674
    Returns:
Q
update  
qiaolongfei 已提交
5675
        Variable: The output is a 4-D tensor of the shape
5676
        (num_batches, channls, out_h, out_w).
5677 5678 5679 5680 5681 5682 5683 5684 5685 5686
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5687 5688 5689
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5690 5691 5692
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5693 5694
def gather(input, index):
    """
Q
qiaolongfei 已提交
5695 5696
    **Gather Layer**

5697
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5698 5699 5700 5701
    of X indexed by `index` and concatenate them together.

    .. math::

5702
        Out = X[Index]
W
whs 已提交
5703 5704 5705 5706 5707 5708 5709


    .. code-block:: text


                Given:

5710 5711
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5722
        input (Variable): The source input with rank>=1.
W
whs 已提交
5723 5724 5725 5726 5727 5728
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5729

W
whs 已提交
5730 5731 5732 5733 5734 5735
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5736
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5737 5738 5739 5740 5741 5742 5743 5744
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5776
    out = helper.create_variable_for_type_inference(dtype)
5777 5778 5779 5780 5781 5782 5783 5784 5785
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5836
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
5837 5838 5839 5840 5841 5842 5843 5844 5845
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5859

5860 5861 5862
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5863
    """
F
stash  
fengjiayi 已提交
5864
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5865
    dtype = x.dtype
X
Xin Pan 已提交
5866
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
5867
    if seed is None:
5868
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5869
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5870
    if isinstance(seed, int):
F
fengjiayi 已提交
5871 5872 5873 5874 5875
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5876 5877 5878 5879
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5880
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5881 5882
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5883 5884
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5885
    return out
W
whs 已提交
5886 5887


5888
def log(x, name=None):
W
wanghaoshuang 已提交
5889 5890 5891 5892 5893
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5894
        Out = \\ln(x)
W
wanghaoshuang 已提交
5895 5896

    Args:
5897
        x (Variable): Input tensor.
5898 5899
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5900 5901 5902 5903 5904 5905 5906 5907

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5908
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5909 5910
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5911
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5912
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5913
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5914 5915 5916
    return out


5917
def relu(x, name=None):
W
wanghaoshuang 已提交
5918 5919
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5920
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5921 5922 5923 5924
    the tensor elementwise.

    .. math::

5925
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5926 5927

    Args:
5928
        x (Variable): The input tensor.
5929 5930
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5931 5932 5933 5934 5935 5936 5937 5938

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5939
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5940 5941
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5942
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5943
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5944
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5945
    return out
5946 5947


W
whs 已提交
5948 5949 5950
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5951 5952 5953 5954
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5955
    .. math::
5956 5957

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5958

5959
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5960 5961 5962 5963 5964
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5965
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5966
                           Its shape should be the same as input.
5967
        num_classes (int): The possible number of labels.
W
whs 已提交
5968 5969 5970 5971

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5972
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5973 5974 5975 5976

    Examples:

        .. code-block:: python
5977

W
whs 已提交
5978 5979 5980 5981
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5982 5983 5984
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
5985 5986
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5987 5988
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5989
        outputs={
W
whs 已提交
5990 5991 5992
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5993 5994 5995
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6070
                    isinstance(shape, Variable)):
6071 6072 6073 6074 6075
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6076
    out = helper.create_variable_for_type_inference(x.dtype)
6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6094 6095 6096 6097 6098 6099 6100 6101 6102 6103


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6104

6105 6106
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6107

6108 6109 6110 6111
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6112

6113 6114 6115 6116 6117
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6118 6119 6120

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6156
    out = helper.create_variable_for_type_inference("float32")
6157 6158 6159 6160 6161 6162 6163 6164

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6165 6166


M
minqiyang 已提交
6167 6168
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6169
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6170
    which compares left score and right score passed in.
M
minqiyang 已提交
6171
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6172 6173 6174 6175 6176 6177

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6178
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6179 6180
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6181
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6182 6183 6184
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6185
       Variable: The ranking loss.
M
minqiyang 已提交
6186
    Raises:
M
minqiyang 已提交
6187
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6188 6189 6190 6191 6192 6193 6194
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6195
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6196 6197 6198 6199 6200 6201
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6202 6203
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6229

W
whs 已提交
6230 6231
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6232

W
whs 已提交
6233
      Case 0:
M
minqiyang 已提交
6234

W
whs 已提交
6235 6236 6237
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6238

W
whs 已提交
6239 6240 6241
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6242

W
whs 已提交
6243
      Case 1:
M
minqiyang 已提交
6244

W
whs 已提交
6245 6246
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6247

W
whs 已提交
6248 6249 6250
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6251

W
whs 已提交
6252
      Case 2:
M
minqiyang 已提交
6253

W
whs 已提交
6254 6255
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6256

W
whs 已提交
6257 6258 6259
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6260 6261


W
whs 已提交
6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6288
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6317
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6340
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6363
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6387
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6412
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6436
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6437 6438 6439 6440 6441 6442 6443 6444
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6459
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6460
                        will be named automatically.
J
jerrywgz 已提交
6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6488
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6489 6490 6491 6492 6493 6494 6495 6496 6497
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6512
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6535
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6557
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6558 6559 6560 6561 6562 6563 6564 6565
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6579

6580 6581 6582 6583 6584 6585 6586 6587 6588 6589
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6590 6591
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6607
        ValueError: If axis is not in range [0, rank(x)].
6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6624 6625
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6626
    helper.append_op(
6627
        type='flatten2',
6628
        inputs={"X": x},
6629 6630
        outputs={'Out': out,
                 'XShape': x_shape},
6631 6632
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6633 6634


C
chenweihang 已提交
6635
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6636
    """
C
chenweihang 已提交
6637
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6638
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6639 6640
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6641

C
chenweihang 已提交
6642 6643 6644 6645
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6646
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6647 6648 6649 6650 6651 6652
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6653
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6654 6655 6656
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6657 6658 6659
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
6671 6672
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6673 6674 6675 6676 6677 6678
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6679
    return out
6680

6681

S
sneaxiy 已提交
6682 6683 6684 6685 6686 6687 6688 6689 6690
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6691

S
sneaxiy 已提交
6692
    .. math::
6693

S
sneaxiy 已提交
6694 6695 6696
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6697
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6698 6699 6700 6701
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6702 6703 6704
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6705 6706
    Returns:
        Variable: The output sequence mask.
6707

S
sneaxiy 已提交
6708 6709
    """

Q
qingqing01 已提交
6710
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6711
    if name is None:
X
Xin Pan 已提交
6712
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
6713
    else:
X
Xin Pan 已提交
6714
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
6715

Q
qingqing01 已提交
6716 6717 6718
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6719 6720
        outputs={'Y': out},
        attrs={
6721
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6722 6723 6724
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6725 6726


X
Xin Pan 已提交
6727
def stack(x, axis=0):
S
sneaxiy 已提交
6728 6729 6730 6731
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6732 6733 6734 6735 6736 6737 6738

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6739
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6740
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6741 6742

    Args:
6743
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6744
        axis (int|None): The axis along which all inputs are stacked.
6745

S
sneaxiy 已提交
6746 6747
    Returns:
        Variable: The stacked variable.
6748

S
sneaxiy 已提交
6749 6750
    """

X
Xin Pan 已提交
6751 6752 6753 6754 6755 6756
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
6757
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
6758
    helper.append_op(
S
sneaxiy 已提交
6759 6760
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6761

X
Xin Pan 已提交
6762
    return out
D
dzhwinter 已提交
6763 6764 6765 6766 6767 6768 6769


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6770

D
dzhwinter 已提交
6771 6772 6773
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6774
    raised.
D
dzhwinter 已提交
6775 6776

    Args:
M
minqiyang 已提交
6777
        x (Variable): Input variable.
D
dzhwinter 已提交
6778 6779
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6780

D
dzhwinter 已提交
6781 6782
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6783

D
dzhwinter 已提交
6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
6795
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
6796 6797 6798 6799 6800 6801 6802 6803

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6816

W
whs 已提交
6817 6818 6819 6820
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6821

W
whs 已提交
6822
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6823

W
whs 已提交
6824
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6825

W
whs 已提交
6826 6827 6828 6829
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6830

W
whs 已提交
6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6847
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6848 6849 6850 6851 6852 6853
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6854 6855


G
fix  
gongweibao 已提交
6856 6857 6858
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6859
@templatedoc()
G
fix  
gongweibao 已提交
6860 6861 6862 6863 6864 6865 6866 6867 6868
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6869
    ${comment}
G
fix  
gongweibao 已提交
6870 6871

    Args:
G
gongweibao 已提交
6872 6873 6874
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6875
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6876 6877 6878
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6879 6880
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6881
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6882 6883 6884 6885

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
6886
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6903 6904


G
gongweibao 已提交
6905
@templatedoc()
X
Xin Pan 已提交
6906
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6907
    """
G
gongweibao 已提交
6908
    ${comment}
G
fix  
gongweibao 已提交
6909 6910

    Args:
G
gongweibao 已提交
6911 6912 6913 6914
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6915 6916 6917
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6918
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6919 6920 6921 6922

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
6923
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
6934
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6935 6936 6937 6938 6939
        })

    return out


G
gongweibao 已提交
6940
@templatedoc()
G
fix  
gongweibao 已提交
6941
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6942
    """
G
gongweibao 已提交
6943
    ${comment}
G
fix  
gongweibao 已提交
6944 6945

    Args:
G
gongweibao 已提交
6946 6947 6948 6949
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6950
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6951 6952

    Returns:
G
gongweibao 已提交
6953
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6954 6955 6956 6957

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
6958
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6970
@templatedoc()
G
fix  
gongweibao 已提交
6971 6972 6973 6974 6975 6976 6977 6978 6979
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6980
    ${comment}
G
fix  
gongweibao 已提交
6981 6982

    Args:
G
gongweibao 已提交
6983 6984
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6985
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6986 6987 6988 6989
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6990
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6991 6992

    Returns:
G
gongweibao 已提交
6993
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6994 6995 6996
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
6997
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7016
@templatedoc()
X
Xin Pan 已提交
7017
def sum(x):
G
fix  
gongweibao 已提交
7018
    """
G
gongweibao 已提交
7019
    ${comment}
G
fix  
gongweibao 已提交
7020 7021

    Args:
G
gongweibao 已提交
7022
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7023 7024

    Returns:
G
gongweibao 已提交
7025
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7026 7027 7028
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7029 7030
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7031 7032 7033 7034
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7035
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7036 7037 7038 7039

    return out


G
gongweibao 已提交
7040
@templatedoc()
G
fix  
gongweibao 已提交
7041 7042
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7043
    ${comment}
G
fix  
gongweibao 已提交
7044 7045

    Args:
G
gongweibao 已提交
7046 7047 7048 7049
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7050 7051

    Returns:
G
gongweibao 已提交
7052
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7053 7054 7055 7056

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7057 7058
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7070
@templatedoc()
G
fix  
gongweibao 已提交
7071 7072
def shape(input):
    """
G
gongweibao 已提交
7073
    ${comment}
G
fix  
gongweibao 已提交
7074 7075

    Args:
G
gongweibao 已提交
7076
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7077 7078

    Returns:
G
gongweibao 已提交
7079
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7080 7081 7082 7083

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7084 7085
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7086
    helper.append_op(
G
fix  
gongweibao 已提交
7087
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7088 7089

    return out
G
merge  
gongweibao 已提交
7090 7091


S
sneaxiy 已提交
7092 7093 7094 7095 7096 7097 7098 7099
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7100 7101
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7102
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7103 7104 7105
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7106

S
sneaxiy 已提交
7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7118
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7119 7120 7121 7122 7123 7124 7125 7126
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7127
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7128
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7129 7130 7131 7132 7133 7134

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7135
    if name is None:
X
Xin Pan 已提交
7136
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7137 7138 7139
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7140 7141 7142 7143 7144 7145 7146 7147 7148 7149

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7150
    return helper.append_activation(out)
S
sneaxiy 已提交
7151 7152


X
Xin Pan 已提交
7153
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7154 7155 7156
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7157
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7158 7159 7160
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7161
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7162 7163 7164
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7165
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7166 7167 7168
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7169
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7170 7171 7172
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7173
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7174 7175 7176
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7177
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7189 7190
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7191
        ])
M
minqiyang 已提交
7192 7193


7194
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7195 7196
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7197 7198
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7199 7200 7201

    if out is None:
        if name is None:
X
Xin Pan 已提交
7202
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7218
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7237
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7256
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7275
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
X
Xin Pan 已提交
7310
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
X
Xin Pan 已提交
7342
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7372
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7402
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7403 7404 7405 7406 7407 7408 7409 7410 7411
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7412 7413
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7436
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7466
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7467 7468 7469 7470 7471 7472 7473 7474 7475 7476
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504


def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
    
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7505
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out