nn.py 197.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

Y
Yu Yang 已提交
20 21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
23
from ..param_attr import ParamAttr
24 25 26
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
Y
yuyang18 已提交
27
import random
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
Y
ying 已提交
32 33 34
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
35
    'dynamic_lstmp',
G
guosheng 已提交
36
    'dynamic_gru',
Y
ying 已提交
37 38 39 40 41 42 43 44 45
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
46
    'conv3d',
Y
ying 已提交
47
    'sequence_pool',
48 49
    'sequence_softmax',
    'softmax',
Y
ying 已提交
50
    'pool2d',
Y
yuyang18 已提交
51
    'pool3d',
Y
ying 已提交
52 53 54
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
55
    'conv3d_transpose',
Y
ying 已提交
56 57 58 59 60 61
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
62
    'reduce_prod',
Y
ying 已提交
63 64 65 66
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
67 68
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
69 70
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
71
    'topk',
Y
ying 已提交
72 73
    'warpctc',
    'sequence_reshape',
74
    'transpose',
75
    'im2sequence',
76
    'nce',
W
weixing02 已提交
77
    'hsigmoid',
Q
Qiao Longfei 已提交
78
    'beam_search',
79
    'row_conv',
80
    'multiplex',
G
guosheng 已提交
81
    'layer_norm',
82 83
    'softmax_with_cross_entropy',
    'smooth_l1',
84
    'one_hot',
Y
Yu Yang 已提交
85
    'autoincreased_step_counter',
C
caoying03 已提交
86
    'reshape',
Y
yangyaming 已提交
87
    'lod_reset',
D
dragonwarrior 已提交
88
    'lrn',
G
guosheng 已提交
89
    'pad',
90
    'label_smooth',
91
    'roi_pool',
W
whs 已提交
92
    'dice_loss',
F
fengjiayi 已提交
93 94
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
95
    'resize_bilinear',
W
whs 已提交
96
    'gather',
97
    'random_crop',
Y
yuyang18 已提交
98 99 100
    'mean_iou',
    'relu',
    'log',
101
    'crop',
102
    'rank_loss',
103
    'flatten',
Y
Yu Yang 已提交
104 105 106 107 108 109 110 111
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
112
       use_mkldnn=False,
Y
Yu Yang 已提交
113
       act=None,
J
Jacek Czaja 已提交
114
       is_test=False,
115
       name=None):
Y
Yu Yang 已提交
116
    """
117
    **Fully Connected Layer**
Y
Yu Yang 已提交
118

119 120 121 122 123 124 125 126
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
127
    to the output as well.
C
caoying03 已提交
128

C
caoying03 已提交
129
    This process can be formulated as follows:
130 131 132

    .. math::

133
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
134 135 136

    In the above equation:

C
caoying03 已提交
137 138 139 140
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
141
    * :math:`Act`: The activation function.
C
caoying03 已提交
142
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
143 144

    Args:
R
ranqiu 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
160 161
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
162
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
163
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
164 165
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
166
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
167

168
    Returns:
F
fengjiayi 已提交
169
        Variable: The transformation result.
170 171

    Raises:
C
caoying03 已提交
172
        ValueError: If rank of the input tensor is less than 2.
173 174 175 176

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
177
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
178
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
179
    """
C
caoying03 已提交
180

C
caoying03 已提交
181
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
182 183 184 185

    dtype = helper.input_dtype()

    mul_results = []
186 187
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
188 189 190
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
191

Y
Yu Yang 已提交
192
        w = helper.create_parameter(
193 194
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
195
        helper.append_op(
196 197 198
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
199
            outputs={"Out": tmp},
M
mozga-intel 已提交
200 201
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
202 203 204 205
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
206
    else:
207 208
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
209 210 211 212
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
213 214 215 216
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
217 218


219 220 221
def embedding(input,
              size,
              is_sparse=False,
222
              is_distributed=False,
223 224 225
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
226
    """
227 228
    **Embedding Layer**

229
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
230 231
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
232 233 234

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
235 236

    Args:
237 238 239 240 241
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
242
        is_distributed(bool): Whether to run lookup table from remote parameter server.
243 244
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
245
            with zeros whenever lookup encounters it in :attr:`input`. If
246
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
247 248
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
249
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
250

251 252 253
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
254

255 256
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
257

C
chengduoZH 已提交
258
          dict_size = len(dataset.ids)
259
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
260
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
261 262 263 264 265 266
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
267 268
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
269 270 271 272 273
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
274 275 276 277 278
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
279 280 281
    return tmp


Y
yi.wu 已提交
282
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
283 284
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
285 286
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
287 288 289 290 291 292 293
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
294 295
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
296
    """
Y
yi.wu 已提交
297
    ${comment}
Y
Yibing Liu 已提交
298 299

    Args:
Y
yi.wu 已提交
300 301
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
302 303 304 305 306 307 308
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

309
        param_attr(ParamAttr|None): The parameter attribute for the learnable
310
                               hidden-hidden weights.
Y
Yibing Liu 已提交
311 312 313

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
314 315
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
316
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
317 318 319
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
320

321
                              1. `use_peepholes = False`
Y
yi.wu 已提交
322 323
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
324
                              2. `use_peepholes = True`
Y
yi.wu 已提交
325
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
326
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
327
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
328 329 330 331 332 333 334 335
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
336 337

    Returns:
Y
Yibing Liu 已提交
338 339
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
340

Y
Yibing Liu 已提交
341
    Examples:
Y
Yibing Liu 已提交
342 343
        .. code-block:: python

Y
Yibing Liu 已提交
344 345
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
346
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
347 348
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
349
    """
350

Y
Yu Yang 已提交
351
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
352
    size = size // 4
Y
Yu Yang 已提交
353 354 355 356 357 358 359 360 361 362 363 364
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
365 366 367 368 369 370 371 372 373 374
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
375 376 377

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
378
        inputs=inputs,
Y
Yu Yang 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
395 396 397 398 399 400 401 402 403 404 405
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
406 407
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
408 409 410
    """
    **Dynamic LSTMP Layer**

411 412 413 414 415 416
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
417 418 419 420 421

    The formula is as follows:

    .. math::

422
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
423

424
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
425

426
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
427

428
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
429

430
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
431

432
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
433

434
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
435

Y
Yibing Liu 已提交
436 437 438 439 440 441
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
442
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
443
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
444
          bias vector).
Y
Yibing Liu 已提交
445 446 447
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
448
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
449
    * :math:`h`: The hidden state.
450
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
451 452
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
453
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
454
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
455
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
456 457
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
458 459 460 461

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
462

Y
Yibing Liu 已提交
463 464 465 466 467 468 469 470 471 472 473 474
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
475
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
476 477
                               hidden-hidden weight and projection weight.

478 479
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
480 481
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
482 483
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
484 485
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
486 487 488 489 490 491
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
492
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
493 494 495
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
496
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
497 498 499 500 501 502 503 504 505
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
506
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
507 508
                              default "tanh".
        proj_activation(str): The activation for projection output.
509
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
510 511
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
512 513
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
514 515

    Returns:
516 517 518 519
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
520 521

    Examples:
522

Y
Yibing Liu 已提交
523 524
        .. code-block:: python

525 526 527 528
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
529
            hidden_dim, proj_dim = 512, 256
530
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
531
                                     act=None, bias_attr=None)
532 533 534
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
535 536 537 538
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
539
    """
540

Y
Yibing Liu 已提交
541
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
542
    size = size // 4
Y
Yibing Liu 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
587 588 589 590 591 592 593 594 595
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
596
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
597

598
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
599
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
600

G
guosheng 已提交
601 602 603 604 605 606 607 608 609
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
610

G
guosheng 已提交
611
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
612

G
guosheng 已提交
613
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
614 615
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
616 617 618 619
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
620
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
621 622

    Args:
623 624
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
625
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
626
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
627 628
            is the hidden size.
        size(int): The dimension of the gru cell.
629
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
630 631
            hidden-hidden weight matrix. Note:

632
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
633
              :math:`D` is the hidden size.
634
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
635
              The first part are weights of the update gate and reset gate with
636
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
637
              candidate hidden state with shape :math:`(D \\times D)`.
638
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
639
            hidden-hidden bias.
640
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
641 642 643
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
644
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
645
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
646 647 648 649
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
650 651

    Returns:
G
guosheng 已提交
652
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
653
            and sequence length is the same with the input.
654

G
guosheng 已提交
655
    Examples:
656

G
guosheng 已提交
657 658
        .. code-block:: python

659 660 661 662
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
663
            hidden_dim = 512
664
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
665 666 667 668 669 670 671 672 673 674
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
675
    batch_size = input.shape[0]
G
guosheng 已提交
676 677 678
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
679 680 681
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
705 706 707
def gru_unit(input,
             hidden,
             size,
708 709
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
710
             activation='tanh',
711
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
712
    """
713
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
714

715 716
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
717

718
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
719

720
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
721

722
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
723 724

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
725 726 727
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
728 729
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

730 731
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
732 733 734
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
735 736 737 738 739

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
740 741
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
742 743 744 745
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
746

747 748 749 750 751 752
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
753

754
             # assuming we have x_t_data and prev_hidden of size=10
755
             x_t = fluid.layers.fc(input=x_t_data, size=30)
756 757
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
758 759 760 761 762 763 764 765 766 767 768 769

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
770
    size = size // 3
Y
Yu Yang 已提交
771 772

    # create weight
773 774
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
775

776 777 778 779
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
780
    # create bias
781
    if helper.bias_attr:
Y
Yu Yang 已提交
782 783 784
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
785
        inputs['Bias'] = bias
Y
Yu Yang 已提交
786 787 788

    helper.append_op(
        type='gru_unit',
789
        inputs=inputs,
Y
Yu Yang 已提交
790 791 792 793 794 795
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
796 797
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
798 799 800 801 802
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
803
@templatedoc()
804
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
805 806 807 808 809 810 811
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
812
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
813 814 815 816
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
817 818 819
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
820 821

    """
Y
Yu Yang 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
847
@templatedoc()
848
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
849 850 851 852 853
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
854

Y
yuyang18 已提交
855
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
856

Y
yuyang18 已提交
857 858 859
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
860
        Variable: ${viterbi_path_comment}
861

Y
yi.wu 已提交
862 863 864 865 866
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
867
    """
Y
Yu Yang 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
881
@templatedoc()
F
fengjiayi 已提交
882
def cos_sim(X, Y):
Y
Yu Yang 已提交
883
    """
Y
yi.wu 已提交
884 885 886
    ${comment}

    Args:
887 888
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
889

Y
yi.wu 已提交
890
    Returns:
891
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
892
    """
F
fengjiayi 已提交
893
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


907
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
908 909 910 911 912
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
913
    training. The dropout operator randomly sets (according to the given dropout
914 915 916 917
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
918 919
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
920 921 922 923 924 925 926
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
927 928

    Returns:
929
        Variable: A tensor variable is the shape with `x`.
930 931

    Examples:
932

933 934
        .. code-block:: python

935 936
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
937 938
    """

F
fengjiayi 已提交
939
    helper = LayerHelper('dropout', **locals())
940 941
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
942 943 944 945

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

946 947 948 949 950
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
951 952 953 954 955 956
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
957 958 959
    return out


F
fengjiayi 已提交
960
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
961
    """
Y
Yibing Liu 已提交
962 963
    **Cross Entropy Layer**

964 965 966
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
967 968

    1) One-hot cross-entropy:
F
fengjiayi 已提交
969
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
970

Y
Yibing Liu 已提交
971
        .. math::
Y
yangyaming 已提交
972

Y
Yibing Liu 已提交
973 974 975
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
976 977
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
978 979 980 981 982

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
983
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
984 985 986
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
987 988
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
989
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
990

Y
Yibing Liu 已提交
991
    Args:
Y
yangyaming 已提交
992
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
993 994 995 996
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
997
        label (Variable|list): the ground truth which is a 2-D tensor. When
998 999 1000 1001
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1002
        soft_label (bool): a flag indicating whether to
1003 1004
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
1005 1006 1007 1008 1009

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1010 1011 1012 1013 1014
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1015 1016 1017 1018 1019 1020

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1021
    """
F
fengjiayi 已提交
1022
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1023 1024 1025 1026 1027 1028
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
1029
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
1030 1031 1032
    return out


F
fengjiayi 已提交
1033
def square_error_cost(input, label):
Y
Yu Yang 已提交
1034
    """
1035 1036
    **Square error cost layer**

1037 1038
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1039

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1053 1054
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1055 1056

    Returns:
G
guosheng 已提交
1057
        Variable: The tensor variable storing the element-wise squared error \
1058
                  difference of input and label.
1059 1060 1061 1062 1063 1064 1065 1066

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1067
    """
F
fengjiayi 已提交
1068
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1078 1079
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1080 1081 1082
    return square_out


Y
yi.wu 已提交
1083
@templatedoc()
Y
Yu Yang 已提交
1084 1085 1086 1087
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1088
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1089
    """
Y
yi.wu 已提交
1090
    **Chunk Evaluator**
Y
yi.wu 已提交
1091

Y
yangyaming 已提交
1092
    This function computes and outputs the precision, recall and
1093
    F1-score of chunk detection.
Y
yi.wu 已提交
1094

Y
yi.wu 已提交
1095 1096 1097 1098 1099 1100 1101 1102
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1103

Y
yi.wu 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1129

Y
yi.wu 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1154
    Args:
1155 1156 1157 1158 1159
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1160

Y
yi.wu 已提交
1161
    Returns:
Y
update  
yi.wu 已提交
1162 1163 1164
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1165

Y
yi.wu 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1178
    """
F
fengjiayi 已提交
1179
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1180 1181 1182 1183 1184

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1185 1186 1187
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1188 1189 1190 1191 1192 1193 1194 1195

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1196 1197 1198 1199
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1200 1201 1202
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1203 1204
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1205
        })
1206 1207
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1208 1209


1210
@templatedoc()
Y
Yu Yang 已提交
1211 1212 1213 1214 1215 1216 1217
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1218
                  act=None):
Y
Yu Yang 已提交
1219 1220 1221 1222
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1233

1234 1235
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1254
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1255 1256 1257 1258 1259 1260
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1261
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1262 1263 1264
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1265
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1285

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1308
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1309
    """
1310
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1311
    has the same shape as the input.
Q
qiaolongfei 已提交
1312

1313 1314 1315 1316 1317 1318
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1319
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1320 1321 1322 1323 1324 1325 1326

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1327
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1362 1363 1364
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1365 1366
           stride=1,
           padding=0,
1367
           dilation=1,
Y
Yu Yang 已提交
1368 1369 1370
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1371
           use_cudnn=True,
1372
           use_mkldnn=False,
1373 1374
           act=None,
           name=None):
Y
Yu Yang 已提交
1375
    """
C
chengduoZH 已提交
1376
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1377 1378
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1379
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1380 1381 1382 1383 1384 1385 1386
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1387 1388 1389
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1390

1391
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1392

C
chengduoZH 已提交
1393 1394
    .. math::

C
refine  
chengduoZH 已提交
1395
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1396

T
tensor-tang 已提交
1397
    Where:
C
chengduoZH 已提交
1398

1399 1400 1401 1402 1403
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1404
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1405 1406 1407

    Example:

1408 1409
        - Input:

W
weixing02 已提交
1410
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1411

W
weixing02 已提交
1412
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1413

1414
        - Output:
T
tensor-tang 已提交
1415

W
weixing02 已提交
1416
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1417

C
chengduoZH 已提交
1418
        Where
1419 1420

        .. math::
C
chengduoZH 已提交
1421

W
weixing02 已提交
1422 1423
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1424 1425

    Args:
1426
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1427
        num_filters(int): The number of filter. It is as same as the output
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1450 1451
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1452 1453 1454
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1455 1456

    Returns:
G
guosheng 已提交
1457
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1458 1459
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1460
    Raises:
1461 1462
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1463

C
chengduoZH 已提交
1464 1465 1466
    Examples:
        .. code-block:: python

1467 1468
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1469 1470 1471
    """

    num_channels = input.shape[1]
1472 1473

    l_type = 'conv2d'
X
xzl 已提交
1474 1475
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1476
        l_type = 'depthwise_conv2d'
1477 1478 1479 1480

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1481 1482 1483 1484 1485
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1486
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1487

C
chengduoZH 已提交
1488 1489 1490
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1491
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1492

C
chengduoZH 已提交
1493 1494
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1495 1496

    input_shape = input.shape
M
minqiyang 已提交
1497
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1512
        type=l_type,
Y
Yu Yang 已提交
1513 1514 1515 1516 1517
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1518 1519 1520
        attrs={
            'strides': stride,
            'paddings': padding,
1521
            'dilations': dilation,
C
chengduoZH 已提交
1522
            'groups': groups,
1523 1524
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1525
        })
Y
Yu Yang 已提交
1526 1527 1528 1529 1530 1531

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1550 1551 1552 1553 1554 1555
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1565 1566
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1567 1568 1569
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1570
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1596
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1597 1598
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1599
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1600 1601
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1602
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1603 1604
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1605
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1632 1633
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1648
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1689
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1690 1691 1692 1693

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1694
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1695
    """
Y
yangyaming 已提交
1696 1697 1698
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1710
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1711 1712 1713 1714 1715
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1716
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1717 1718 1719 1720 1721 1722 1723

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1724 1725
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1726

L
Luo Tao 已提交
1727 1728
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1729
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1730 1731 1732 1733 1734 1735 1736 1737
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1738

Y
yangyaming 已提交
1739
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1740 1741 1742 1743 1744
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1745 1746
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1747
    """
F
fengjiayi 已提交
1748
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1760 1761 1762 1763 1764
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1765 1766 1767
    return pool_out


F
fengjiayi 已提交
1768
def sequence_first_step(input):
L
Luo Tao 已提交
1769
    """
L
Luo Tao 已提交
1770
    This function gets the first step of sequence.
L
Luo Tao 已提交
1771 1772 1773 1774

    .. code-block:: text

       x is a 1-level LoDTensor:
1775
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1776 1777 1778 1779 1780
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1781
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1782
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1783

L
Luo Tao 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1793

Y
yangyaming 已提交
1794
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1795 1796 1797
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1798 1799 1800
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1801
def sequence_last_step(input):
L
Luo Tao 已提交
1802
    """
L
Luo Tao 已提交
1803
    This function gets the last step of sequence.
L
Luo Tao 已提交
1804 1805 1806 1807

    .. code-block:: text

       x is a 1-level LoDTensor:
1808
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1809 1810 1811 1812 1813
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1814
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1815
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1816

L
Luo Tao 已提交
1817 1818 1819 1820 1821 1822 1823 1824 1825
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1826

Y
yangyaming 已提交
1827
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1828 1829 1830
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1831 1832 1833
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1834
@templatedoc()
Y
Yu Yang 已提交
1835
def pool2d(input,
C
chengduoZH 已提交
1836 1837
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1838 1839
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1840
           global_pooling=False,
C
chengduoZH 已提交
1841
           use_cudnn=True,
1842
           ceil_mode=False,
1843
           use_mkldnn=False,
C
caoying03 已提交
1844
           name=None):
Y
Yu Yang 已提交
1845
    """
F
fengjiayi 已提交
1846
    ${comment}
1847 1848

    Args:
1849 1850 1851
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1852
                          feature, and W is the width of the feature.
1853
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1854
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1855
        pool_type: ${pooling_type_comment}
1856 1857
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1858 1859 1860 1861
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1862
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1863 1864
                        layer will be named automatically.

1865
    Returns:
F
fengjiayi 已提交
1866
        Variable: The pooling result.
F
fengjiayi 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1880 1881 1882 1883
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1884
                            global_pooling=False)
Y
Yu Yang 已提交
1885 1886 1887 1888 1889
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1890

C
chengduoZH 已提交
1891 1892 1893 1894 1895
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1896 1897 1898 1899
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1900 1901
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1902

C
Add doc  
chengduoZH 已提交
1903
    l_type = 'pool2d'
1904 1905

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1906 1907 1908 1909
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1939
    pooling configurations mentioned in input parameters.
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1953

1954
    Returns:
1955
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1956 1957 1958 1959 1960
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1961

C
chengduoZH 已提交
1962 1963 1964 1965 1966
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1967 1968 1969
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1970

C
chengduoZH 已提交
1971 1972
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1973

1974 1975
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1976 1977 1978 1979
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1980
        type=l_type,
Y
Yu Yang 已提交
1981 1982 1983 1984 1985 1986 1987
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1988
            "paddings": pool_padding,
1989
            "use_cudnn": use_cudnn,
1990 1991
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2004
               data_layout='NCHW',
Y
Yang Yang 已提交
2005
               in_place=False,
2006
               use_mkldnn=False,
2007 2008
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2009
               moving_variance_name=None,
2010 2011
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2012
    """
Q
qiaolongfei 已提交
2013 2014 2015 2016
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2017

Q
qiaolongfei 已提交
2018
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2019

Q
qiaolongfei 已提交
2020 2021
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2022 2023 2024
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2037 2038

    Args:
Q
qiaolongfei 已提交
2039
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2040 2041 2042 2043
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2044 2045 2046
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
Q
qiaolongfei 已提交
2047
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2048 2049 2050 2051 2052
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2053
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2054
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2055 2056

    Returns:
Q
qiaolongfei 已提交
2057
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2058 2059 2060 2061 2062 2063 2064

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2088
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2089

2090 2091
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2092 2093 2094
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2095
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2096
        shape=param_shape,
2097 2098 2099 2100 2101 2102 2103
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2104
            trainable=False,
W
wanghaoshuang 已提交
2105
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2106
        shape=param_shape,
2107 2108
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2109 2110 2111 2112 2113 2114

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2115 2116
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2117

Y
Yang Yang 已提交
2118
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2136 2137 2138 2139
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2140 2141
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2142
        })
Y
Yu Yang 已提交
2143 2144 2145 2146

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2147
@templatedoc()
G
guosheng 已提交
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2158
    ${comment}
G
guosheng 已提交
2159 2160 2161

    The formula is as follows:

Y
yuyang18 已提交
2162
    ..  math::
G
guosheng 已提交
2163 2164 2165 2166 2167 2168 2169

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2170 2171 2172 2173 2174 2175 2176 2177
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2178

G
guosheng 已提交
2179 2180
    Args:
        input(Variable): The input tensor variable.
2181
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2182
            normalization.
2183
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2184
            normalization.
2185
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2186
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2187
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2188 2189 2190 2191 2192 2193
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2194
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2195 2196

    Returns:
Y
yuyang18 已提交
2197
        ${y_comment}
G
guosheng 已提交
2198 2199 2200

    Examples:

Y
yuyang18 已提交
2201 2202 2203
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2219
    if shift:
G
guosheng 已提交
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2244 2245 2246 2247
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2248 2249 2250
                     padding=0,
                     stride=1,
                     dilation=1,
2251
                     groups=None,
C
caoying03 已提交
2252
                     param_attr=None,
2253
                     bias_attr=None,
C
chengduoZH 已提交
2254
                     use_cudnn=True,
2255
                     act=None,
C
caoying03 已提交
2256
                     name=None):
Y
Yu Yang 已提交
2257
    """
2258 2259 2260 2261 2262 2263 2264 2265
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2266 2267
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2268 2269 2270
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2271 2272 2273 2274 2275

    For each input :math:`X`, the equation is:

    .. math::

2276
        Out = \sigma (W \\ast X + b)
2277

2278
    Where:
2279 2280 2281

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2282 2283 2284 2285
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2286

2287 2288 2289 2290
    Example:

        - Input:

2291
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2292

2293
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2294 2295 2296

        - Output:

2297
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2298 2299

        Where
Y
Yu Yang 已提交
2300

2301 2302 2303 2304
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2305 2306

    Args:
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2340 2341

    Returns:
2342
        Variable: The tensor variable storing the convolution transpose result.
2343 2344

    Raises:
2345 2346
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2347 2348 2349 2350

    Examples:
       .. code-block:: python

2351 2352
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2353
    """
2354 2355 2356 2357 2358 2359 2360 2361 2362

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2363 2364 2365
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2366 2367 2368
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2369

C
chengduoZH 已提交
2370 2371
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2372

Y
Yu Yang 已提交
2373 2374 2375 2376 2377
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2378

Y
Yu Yang 已提交
2379 2380
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2381

C
chengduoZH 已提交
2382
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2383
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2384
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2385
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2386
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2387 2388 2389
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2390

2391
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2392
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2393 2394 2395
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2396
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2397
    helper.append_op(
2398
        type=op_type,
Y
Yu Yang 已提交
2399 2400
        inputs={'Input': [input],
                'Filter': [img_filter]},
2401
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2402
        attrs={
2403 2404 2405 2406 2407
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2408 2409
        })

2410 2411 2412
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2413 2414


2415
def conv3d_transpose(input,
Y
Yu Yang 已提交
2416 2417 2418
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2419 2420 2421
                     padding=0,
                     stride=1,
                     dilation=1,
2422
                     groups=None,
C
caoying03 已提交
2423
                     param_attr=None,
2424
                     bias_attr=None,
C
chengduoZH 已提交
2425
                     use_cudnn=True,
2426
                     act=None,
C
caoying03 已提交
2427
                     name=None):
Y
Yu Yang 已提交
2428
    """
2429
    **Convlution3D transpose layer**
2430

2431
    The convolution3D transpose layer calculates the output based on the input,
2432
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2433 2434 2435 2436 2437 2438
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2439 2440 2441
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2442 2443 2444 2445 2446

    For each input :math:`X`, the equation is:

    .. math::

2447
        Out = \sigma (W \\ast X + b)
2448 2449 2450

    In the above equation:

2451 2452
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2453 2454 2455 2456
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2457

2458 2459 2460 2461
    Example:

        - Input:

2462
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2463

2464
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2465 2466 2467

        - Output:

2468
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2469 2470

        Where
Y
Yu Yang 已提交
2471

2472 2473
        .. math::

2474 2475 2476
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2477 2478

    Args:
2479
        input(Variable): The input image with [N, C, D, H, W] format.
2480 2481 2482
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2483
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2484 2485
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2486
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2487 2488 2489
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2490 2491
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2492
        stride(int|tuple): The stride size. If stride is a tuple, it must
2493 2494
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2495
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2496 2497 2498
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2499 2500 2501 2502 2503
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2504 2505 2506
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2507 2508 2509 2510 2511
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2512 2513

    Returns:
2514
        Variable: The tensor variable storing the convolution transpose result.
2515 2516

    Raises:
2517 2518
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2519 2520 2521 2522

    Examples:
       .. code-block:: python

2523 2524
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2525
    """
2526 2527
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2528
    if not isinstance(input, Variable):
2529
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2530 2531
    input_channel = input.shape[1]

2532 2533 2534
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2535

C
chengduoZH 已提交
2536 2537 2538
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2539 2540 2541 2542 2543 2544
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2545 2546 2547
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2548

2549
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2550
                         padding[0] - 1) // dilation[0] + 1
2551
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2552
                         padding[1] - 1) // dilation[1] + 1
2553
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2554
                         padding[2] - 1) // dilation[2] + 1
2555
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2556
    else:
2557 2558
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2559

2560
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2561
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2562 2563 2564
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2565
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2566
    helper.append_op(
2567
        type=l_type,
Y
Yu Yang 已提交
2568 2569
        inputs={'Input': [input],
                'Filter': [img_filter]},
2570
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2571 2572 2573 2574
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2575
            'groups': groups,
C
chengduoZH 已提交
2576 2577
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2578

2579 2580
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2581
    return out
Y
yangyaming 已提交
2582 2583


Y
yangyaming 已提交
2584
def sequence_expand(x, y, ref_level=-1, name=None):
2585
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2586 2587 2588 2589
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2590 2591 2592 2593 2594

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2595
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2596
                x.data = [[a], [b], [c], [d]]
2597 2598 2599
                x.dims = [4, 1]

            y is a LoDTensor:
2600 2601
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2602

Y
yangyaming 已提交
2603
            ref_level: 0
2604

Y
yangyaming 已提交
2605
            then output is a 1-level LoDTensor:
2606
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2607
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2608 2609 2610 2611
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2612
                x.data = [[a], [b], [c]]
2613 2614 2615
                x.dims = [3, 1]

            y is a LoDTensor:
2616
                y.lod = [[2, 0, 3]]
2617

Y
yangyaming 已提交
2618
            ref_level: -1
2619

Y
yangyaming 已提交
2620 2621 2622
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2623 2624 2625
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2626 2627
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2628
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2629
                        will be named automatically.
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2640
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2641
    """
Y
yangyaming 已提交
2642
    helper = LayerHelper('sequence_expand', input=x, **locals())
2643 2644 2645
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2646 2647 2648 2649 2650
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2651
    return tmp
2652 2653


2654 2655 2656 2657 2658 2659 2660 2661 2662
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2663 2664
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2665 2666 2667

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2668 2669

    This layer does the search in beams for one time step. Specifically, it
2670 2671 2672 2673 2674 2675
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2676

2677 2678 2679 2680 2681 2682 2683 2684
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2685

2686
    Args:
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2712

2713
    Returns:
2714 2715
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2716 2717 2718 2719

    Examples:
        .. code-block:: python

2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2748
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2766 2767 2768 2769 2770 2771 2772
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2773

2774 2775 2776 2777 2778 2779 2780 2781 2782
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2783

2784 2785 2786 2787 2788 2789
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2790

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2816 2817 2818 2819
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2820
              param_attr=None,
C
caoying03 已提交
2821 2822
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2823 2824 2825 2826
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2827
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2828

2829
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2830

2831
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2832

2833
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2834 2835 2836

            h_t & = o_t tanh(c_t)

2837 2838 2839 2840 2841 2842
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2843 2844 2845

        .. math::

2846
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2847 2848 2849 2850 2851 2852 2853 2854

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2855
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2856 2857

    Args:
Y
yangyaming 已提交
2858 2859 2860 2861 2862 2863
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2864
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2865 2866
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2867 2868
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2869 2870
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2871 2872

    Returns:
Y
yangyaming 已提交
2873
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2874 2875

    Raises:
2876 2877 2878 2879
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2880 2881 2882 2883 2884 2885

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2886
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2887
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2888
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2905
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2906 2907 2908 2909
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2910 2911
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2912 2913 2914
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2915
    size = cell_t_prev.shape[1]
2916
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2917 2918
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2919
                param_attr=param_attr,
2920
                bias_attr=bias_attr)
Y
yangyaming 已提交
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2933
    return h, c
G
guosheng 已提交
2934 2935


C
caoying03 已提交
2936
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2937
    """
Y
yangyaming 已提交
2938
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2939 2940 2941

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2942
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2943 2944
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2945 2946
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2947
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2948
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2949
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2950 2951
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2952 2953 2954

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2955

G
guosheng 已提交
2956 2957 2958 2959 2960 2961
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
2962
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
2963 2964 2965 2966
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2967 2968 2969 2970

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
2971
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
2972 2973 2974
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2975 2976 2977
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2978 2979
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2980 2981 2982 2983 2984
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2985
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2986 2987 2988 2989
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2990 2991


C
caoying03 已提交
2992
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2993
    """
Y
Yibing Liu 已提交
2994
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
2995 2996 2997

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
2998 2999 3000
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3001
            must be in the range :math:`[-rank(input), rank(input))`. If
3002
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3003
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3004 3005
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3006
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3007
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3008
                       will be named automatically.
G
guosheng 已提交
3009 3010

    Returns:
Y
Yibing Liu 已提交
3011
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3012

G
guosheng 已提交
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3023 3024
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3025 3026 3027 3028 3029 3030 3031

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3032 3033 3034
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3035 3036
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3037 3038 3039 3040 3041
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3042
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3043 3044 3045 3046
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3047 3048


C
caoying03 已提交
3049
def reduce_max(input, dim=None, keep_dim=False, name=None):
3050
    """
Y
yangyaming 已提交
3051
    Computes the maximum of tensor elements over the given dimension.
3052 3053 3054

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3055
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3056 3057 3058
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3059
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3060 3061
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3062
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3063 3064
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3065 3066 3067

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3068

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3080 3081 3082 3083 3084 3085 3086

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3087 3088 3089
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3090 3091
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3092 3093 3094 3095 3096
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3097
            'dim': dim if dim != None else [0],
3098 3099 3100 3101 3102 3103
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3104
def reduce_min(input, dim=None, keep_dim=False, name=None):
3105
    """
Y
yangyaming 已提交
3106
    Computes the minimum of tensor elements over the given dimension.
3107 3108 3109

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3110
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3111 3112 3113
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3114
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3115 3116
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3117
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3118 3119
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3120 3121 3122

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3123

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3135 3136 3137 3138 3139 3140 3141

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3142 3143 3144
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3145 3146
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3147 3148 3149 3150 3151
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3152
            'dim': dim if dim != None else [0],
3153 3154 3155 3156
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3157 3158


3159 3160 3161 3162 3163 3164
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3165
        dim (list|int|None): The dimensions along which the product is performed. If
3166 3167
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3168 3169
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3170 3171 3172
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3173
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3174
            layer will be named automatically.
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3189
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3190
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3191 3192 3193 3194 3195 3196 3197

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3198 3199 3200
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3201 3202
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3203 3204 3205 3206 3207
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3208
            'dim': dim if dim != None else [0],
3209 3210 3211 3212 3213 3214
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3215
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3216
    """
C
caoying03 已提交
3217
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3218 3219 3220

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3221 3222 3223 3224 3225
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3226
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3227
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3228
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3229 3230
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3231 3232

    Returns:
D
dzhwinter 已提交
3233
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3234 3235 3236 3237 3238 3239 3240 3241 3242

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3243 3244
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3274 3275 3276 3277 3278 3279 3280 3281 3282


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3283
    .. math::
3284 3285

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3286 3287 3288 3289 3290

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3291
        x(Variable|list): The input tensor to l2_normalize layer.
3292
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3293 3294
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3295
        epsilon(float): The epsilon value is used to avoid division by zero, \
3296
            the defalut value is 1e-10.
3297
        name(str|None): A name for this layer(optional). If set None, the layer \
3298
            will be named automatically.
C
caoying03 已提交
3299 3300

    Returns:
3301
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3302 3303

    Examples:
3304

C
caoying03 已提交
3305 3306
        .. code-block:: python

3307 3308 3309 3310
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3311 3312
    """

F
fengjiayi 已提交
3313 3314
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3315 3316
    helper = LayerHelper("l2_normalize", **locals())

3317 3318
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3319
    helper.append_op(
3320 3321 3322 3323
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3324
        attrs={
3325 3326
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3327 3328
        })
    return out
3329 3330


3331
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3332
    """
Y
ying 已提交
3333 3334 3335 3336
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3337

C
chengduoZH 已提交
3338
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3339
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3340

3341 3342 3343 3344 3345
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3346
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3347

C
chengduoZH 已提交
3348
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3349
      performs in the following way.
G
guosheng 已提交
3350

3351
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3352
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3353
        last two dimensions and a batched matrix multiply supporting broadcast
3354
        applies on the two tensors.
G
guosheng 已提交
3355

Y
ying 已提交
3356 3357
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3358
    removed after matrix multiplication.
G
guosheng 已提交
3359 3360 3361

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3362 3363 3364
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3365
        name(str|None): A name for this layer(optional). If set None, the layer
3366
            will be named automatically.
G
guosheng 已提交
3367 3368

    Returns:
3369
        Variable: The product Tensor variable.
G
guosheng 已提交
3370

G
guosheng 已提交
3371 3372 3373
    Examples:
        .. code-block:: python

3374
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3375 3376
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3377

3378 3379
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3380

3381 3382
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3383

3384 3385
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3386 3387 3388 3389

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3390 3391
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3392

Y
ying 已提交
3393
            # x: [M], y: [N]
3394
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3395
    """
Y
ying 已提交
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3408
            y_shape = y_shape + [1]
Y
ying 已提交
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3425
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3426
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3427
    helper.append_op(
3428 3429 3430 3431 3432 3433 3434
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3435 3436


3437
def topk(input, k, name=None):
Q
qingqing01 已提交
3438 3439 3440 3441
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3442
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3443 3444 3445 3446 3447 3448
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3470 3471 3472
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3473
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3474
                 of input.
3475
        name(str|None): A name for this layer(optional). If set None, the layer
3476
                       will be named automatically.
F
fengjiayi 已提交
3477
                       Default: None
Q
qingqing01 已提交
3478 3479

    Returns:
3480 3481 3482
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3483
        within the last dimension of input.
Q
qingqing01 已提交
3484

F
fengjiayi 已提交
3485 3486
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3487 3488 3489 3490 3491 3492 3493

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
F
fengjiayi 已提交
3494
    if k < 1 or k >= shape[-1]:
Q
qingqing01 已提交
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3512
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3513
    """
Y
ying 已提交
3514 3515 3516 3517 3518 3519 3520 3521 3522
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3523

Y
ying 已提交
3524
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3525

3526
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3527 3528
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3529
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3530

3531
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3532 3533
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3534

3535 3536 3537
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3538
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3539
                          the length of reference string.
3540
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3541
                                     calculating edit distance.
3542
        name (str): The name of this layer. It is optional.
3543

W
wanghaoshuang 已提交
3544
    Returns:
W
wanghaoshuang 已提交
3545
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3546 3547 3548 3549 3550

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3551
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3552
            cost = fluid.layers.edit_distance(input=x,label=y)
3553
    """
3554
    helper = LayerHelper("edit_distance", **locals())
3555

3556
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3557
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3558 3559 3560 3561 3562 3563 3564
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3565
            attrs={"tokens": ignored_tokens})
3566 3567 3568 3569 3570
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3571
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3572
            attrs={"tokens": ignored_tokens})
3573 3574
        label = erased_label

3575 3576
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3577
    sequence_num = helper.create_tmp_variable(dtype="int64")
3578 3579 3580 3581
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3582 3583
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3584 3585
        attrs={"normalized": normalized})

3586
    return edit_distance_out, sequence_num
3587 3588 3589 3590 3591


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3592

Y
ying 已提交
3593 3594 3595 3596
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3614
        input.lod = [[4, 4]]
3615 3616 3617 3618 3619 3620 3621

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3622
        output.lod = [[2, 1]]
3623 3624 3625

    Args:

Y
ying 已提交
3626 3627 3628 3629 3630 3631 3632 3633 3634
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3635
        name (str): The name of this layer. It is optional.
3636 3637

    Returns:
3638
        Variable: CTC greedy decode result. If all the sequences in result were
3639
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3640 3641 3642 3643 3644

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3645

3646
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3647
    """
3648
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3649
    _, topk_indices = topk(input, k=1)
3650 3651 3652 3653 3654 3655

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3656
        outputs={"Output": [ctc_out]},
3657 3658
        attrs={"merge_repeated": True,
               "blank": blank})
3659
    return ctc_out
3660 3661


F
fengjiayi 已提交
3662
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3663
    """
3664 3665
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3666
    to compute Connectionist Temporal Classification (CTC) loss.
3667 3668
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3669 3670 3671
    input tensor.

    Args:
3672
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3673 3674 3675 3676
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3677
       label (Variable): The ground truth of variable-length sequence,
3678 3679 3680
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3681 3682
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3683 3684 3685
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3686
         follewed by a mean_op.
W
wanghaoshuang 已提交
3687 3688

    Returns:
3689 3690
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3691 3692

    Examples:
3693

W
wanghaoshuang 已提交
3694
        .. code-block:: python
3695

3696 3697 3698
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3699 3700

    """
F
fengjiayi 已提交
3701
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3728 3729 3730
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3731 3732 3733 3734 3735
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3736

3737
            out.lod  = [[0, 1, 3]]
3738 3739 3740 3741

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3742 3743 3744 3745 3746 3747 3748
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3749 3750 3751

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3752 3753

    Returns:
3754

3755 3756 3757 3758 3759
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3760
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3761
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3762 3763 3764 3765 3766 3767 3768 3769 3770
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3771 3772


3773 3774 3775 3776
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3777 3778 3779 3780 3781 3782 3783
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3784 3785 3786 3787 3788 3789 3790
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3791 3792
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3793
            sample is 1.0.
3794 3795 3796
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3797

3798
    Returns:
Y
Yibing Liu 已提交
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3826
    """
Y
Yang Yu 已提交
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3846 3847 3848 3849 3850 3851 3852 3853 3854
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3871
    return cost / (num_neg_samples + 1)
3872 3873


G
guosheng 已提交
3874
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
3875 3876
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
3877
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
3878 3879 3880 3881 3882 3883 3884 3885 3886
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
3887

W
weixing02 已提交
3888
    Args:
M
minqiyang 已提交
3889
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
3890 3891 3892 3893 3894
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
3895 3896
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
3897
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
3898 3899
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
3900 3901 3902 3903 3904 3905 3906 3907

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
3908 3909 3910
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
3911 3912 3913 3914 3915 3916 3917 3918
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
3919
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
3920 3921 3922 3923 3924
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
3925 3926 3927 3928 3929 3930 3931 3932
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
3933 3934
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
3935
        inputs=inputs,
W
weixing02 已提交
3936 3937 3938 3939 3940 3941
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
3942
def transpose(x, perm, name=None):
Y
ying 已提交
3943 3944 3945 3946 3947 3948 3949
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3950 3951 3952
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3953 3954 3955 3956 3957 3958 3959 3960

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3961
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3962 3963
    """

Y
fix ci.  
ying 已提交
3964
    if len(perm) != len(x.shape):
Y
ying 已提交
3965 3966 3967
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3968 3969 3970 3971 3972 3973
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3974 3975

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3976
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3977 3978
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3979
        inputs={'X': [x]},
Y
ying 已提交
3980 3981 3982
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3983 3984


3985 3986 3987 3988 3989 3990 3991
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
3992
    """
3993 3994 3995 3996 3997 3998 3999
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4028 4029 4030 4031 4032 4033 4034 4035 4036
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4037 4038 4039
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4040 4041 4042 4043 4044
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4072 4073 4074
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4087
            output.dims = {8, 8}
4088

4089
            output.lod = [[4, 4]]
4090

D
dzhwinter 已提交
4091
     Examples:
4092 4093 4094

        .. code-block:: python

4095 4096
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4097 4098

    """
W
wanghaoshuang 已提交
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4109 4110 4111 4112 4113 4114 4115
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4116
    helper = LayerHelper('im2sequence', **locals())
4117 4118
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4119
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4120
    return out
4121 4122


Y
yuyang18 已提交
4123
@templatedoc()
4124
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4125 4126
    """
    ${comment}
4127 4128

    Args:
Y
yuyang18 已提交
4129
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4130 4131
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4132 4133 4134 4135 4136
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4137
        ${out_comment}.
4138 4139

    Examples:
Y
yuyang18 已提交
4140 4141 4142 4143
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4156
    return helper.append_activation(out)
4157 4158


Y
yuyang18 已提交
4159
@templatedoc()
4160 4161
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4162 4163 4164 4165 4166 4167 4168
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4169 4170

    Args:
Y
yuyang18 已提交
4171 4172
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4173 4174

    Returns:
Y
yuyang18 已提交
4175
        ${out_comment}.
4176 4177
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4178 4179 4180 4181 4182 4183

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4184 4185 4186 4187 4188 4189
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4190 4191 4192 4193 4194


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
4195

4196 4197 4198 4199
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4200

4201 4202 4203
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4204

4205 4206 4207
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4208

4209
    The equation is as follows:
4210

4211
    1) Hard label (one-hot label, so every sample has exactly one class)
4212

4213 4214 4215 4216
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4217

4218 4219 4220
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4221

4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4243 4244
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4261 4262
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4263
    For each instance, it computes the smooth L1 loss element by element first
4264
    and then sums all the losses. So the shape of ouput Variable is
4265
    [batch_size, 1].
4266

4267 4268
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4269
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4270
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4271
            L1 loss op with same shape as :attr:`x`.
4272
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4273 4274
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4275
            by this tensor element by element.
4276
        outside_weight (Variable|None): A tensor with rank at least 2. This
4277 4278
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4279
            element by element.
4280
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4281 4282
           scalar with default value 1.0.

4283
    Returns:
4284
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4285 4286 4287 4288 4289

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4290 4291
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4292
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4293
            out = fluid.layers.smooth_l1(x=fc, y=label)
4294
    """
4295

4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4311 4312 4313 4314


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4315
    This layer creates the one-hot representations for input indices.
4316 4317

    Args:
Y
Yibing Liu 已提交
4318 4319
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4320 4321

    Returns:
Y
Yibing Liu 已提交
4322
        Variable: The one-hot representations of input.
4323 4324

    Examples:
C
caoying03 已提交
4325
        .. code-block:: python
4326

Y
Yibing Liu 已提交
4327 4328
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4329 4330 4331 4332 4333 4334 4335 4336 4337
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4338 4339


Y
Yu Yang 已提交
4340
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4341
    """
Y
yi.wu 已提交
4342 4343 4344
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4345 4346 4347 4348 4349 4350

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4351 4352
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4353 4354 4355 4356 4357 4358

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4359 4360
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4361 4362
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4363 4364 4365 4366 4367
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4368
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4369
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4370 4371
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4372 4373
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4374 4375 4376
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4377 4378


4379
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4380
    """
C
caoying03 已提交
4381 4382
    Gives a new shape to the input Tensor without changing its data.

4383 4384 4385 4386 4387
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4388

4389
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4390

4391 4392 4393 4394
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4395
    2. 0 means the actual dimension value is going to be copied from the
4396 4397 4398 4399
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4400 4401

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4402
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4403
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4404

4405
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4406 4407
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4408 4409
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4410
    dimensions.
C
caoying03 已提交
4411

4412
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4413 4414 4415 4416
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4417 4418

    Args:
4419
        x(variable): The input tensor.
C
caoying03 已提交
4420 4421
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4422 4423 4424 4425 4426
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4427
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4428 4429 4430 4431
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4432
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4433

4434 4435
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4436

X
Xin Pan 已提交
4437 4438 4439
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4440 4441
    Examples:
        .. code-block:: python
G
guosheng 已提交
4442

4443
            data = fluid.layers.data(
4444
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4445
            reshaped = fluid.layers.reshape(
4446
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4447 4448 4449 4450
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")
X
Xin Pan 已提交
4451 4452 4453 4454 4455
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4456

4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
4472
    helper = LayerHelper("reshape", **locals())
D
dzhwinter 已提交
4473
    out = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4474 4475
    helper.append_op(
        type="reshape",
X
Xin Pan 已提交
4476
        inputs=inputs,
D
dzhwinter 已提交
4477 4478
        attrs={"shape": shape},
        outputs={"Out": out})
C
caoying03 已提交
4479

D
dzhwinter 已提交
4480
    return helper.append_activation(out)
4481 4482


Y
yangyaming 已提交
4483
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4484
    """
Y
Yibing Liu 已提交
4485
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4486 4487 4488 4489
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4490
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4491 4492 4493 4494 4495 4496

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4497
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4498 4499 4500
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4501
            target_lod: [4, 2]
Y
yangyaming 已提交
4502 4503

            then we get a 1-level LoDTensor:
4504
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4505 4506 4507 4508 4509 4510
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4511
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4512 4513 4514 4515
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4516
                y.data = [[2, 4]]
Y
yangyaming 已提交
4517 4518 4519
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4520
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4521 4522 4523 4524 4525 4526
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4527
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4528 4529 4530 4531
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4532
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4533 4534 4535 4536
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4537
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4538 4539 4540 4541 4542
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4543
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4544
                           from :attr:`y`.
Y
yangyaming 已提交
4545
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4546
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4547 4548

    Returns:
Y
Yibing Liu 已提交
4549
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4550 4551

    Raises:
Y
Yibing Liu 已提交
4552
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4588
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4617 4618
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4646 4647 4648 4649


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4650
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4651
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4652

G
guosheng 已提交
4653 4654 4655 4656
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4679
                         The length of :attr:paddings must be
G
guosheng 已提交
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4690

G
guosheng 已提交
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4705 4706 4707 4708 4709 4710 4711 4712 4713


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4714 4715
    called label-smoothing regularization (LSR).

4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4739
                              be :math:`(1, class\_num)`.
4740 4741
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4742
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4770 4771


Y
yi.wu 已提交
4772
@templatedoc()
4773 4774
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
4775
    ${comment}
4776 4777

    Args:
Y
yi.wu 已提交
4778 4779
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
4780 4781 4782
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
4783 4784

    Returns:
Y
update  
yi.wu 已提交
4785
        Variable: ${out_comment}.
4786 4787

    Examples:
4788 4789
        .. code-block:: python

4790
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4836 4837
        .. code-block:: python

W
whs 已提交
4838 4839 4840 4841
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
4842
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
4843 4844 4845 4846 4847 4848
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4849 4850


4851 4852 4853 4854 4855
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4856
    """
Q
qiaolongfei 已提交
4857
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
4858

4859
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
4860 4861 4862
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
4863

4864
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4865

4866
    Args:
4867
        input (Variable): The input tensor of image resize layer,
4868 4869
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4870
        out_shape(list|tuple|Variable|None): Output shape of image resize
4871 4872
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4873
        scale(float|None): The multiplier for the input height or width.
4874 4875 4876
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4877 4878
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4879 4880
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4881 4882

    Returns:
Q
update  
qiaolongfei 已提交
4883 4884
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4885

4886 4887 4888
    Examples:
        .. code-block:: python

4889
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4890
    """
4891 4892 4893 4894
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4895 4896
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4897 4898
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4899 4900 4901 4902

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4903 4904 4905
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4906
    if out_shape is not None:
B
baiyf 已提交
4907 4908 4909
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4910 4911 4912 4913 4914 4915
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4916 4917 4918 4919
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4920 4921
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4922
        type=resample_methods[resample],
4923
        inputs=inputs,
4924 4925 4926 4927
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4928 4929


Y
yuyang18 已提交
4930
@templatedoc(op_type="bilinear_interp")
4931 4932
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4933 4934 4935 4936 4937 4938
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4939

Y
yuyang18 已提交
4940 4941 4942 4943 4944 4945 4946 4947
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
4948 4949 4950 4951 4952 4953 4954
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
4955 4956 4957
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
4958 4959 4960 4961 4962 4963 4964
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
4965
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
4966

4967
    Returns:
Q
update  
qiaolongfei 已提交
4968
        Variable: The output is a 4-D tensor of the shape
4969
        (num_batches, channls, out_h, out_w).
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
4980 4981 4982
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
4983 4984 4985
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4986 4987
def gather(input, index):
    """
Q
qiaolongfei 已提交
4988 4989
    **Gather Layer**

4990
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
4991 4992 4993 4994
    of X indexed by `index` and concatenate them together.

    .. math::

4995
        Out = X[Index]
W
whs 已提交
4996 4997 4998 4999 5000 5001 5002


    .. code-block:: text


                Given:

5003 5004
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5015
        input (Variable): The source input with rank>=1.
W
whs 已提交
5016 5017 5018 5019 5020 5021
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5022

W
whs 已提交
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5051

5052 5053 5054
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5055
    """
F
stash  
fengjiayi 已提交
5056
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5057
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5058
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5059 5060
    if seed is None:
        seed = random.randint(-65536, 65535)
F
fengjiayi 已提交
5061
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5062
    if isinstance(seed, int):
F
fengjiayi 已提交
5063 5064 5065 5066 5067
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5068 5069 5070 5071
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5072
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5073 5074
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5075 5076
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5077
    return out
W
whs 已提交
5078 5079


5080
def log(x):
W
wanghaoshuang 已提交
5081 5082 5083 5084 5085
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5086
        Out = \\ln(x)
W
wanghaoshuang 已提交
5087 5088

    Args:
5089
        x (Variable): Input tensor.
W
wanghaoshuang 已提交
5090 5091 5092 5093 5094 5095 5096 5097

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5098
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5099 5100
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5101
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5102
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5103
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5104 5105 5106
    return out


5107
def relu(x):
W
wanghaoshuang 已提交
5108 5109
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5110
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5111 5112 5113 5114
    the tensor elementwise.

    .. math::

5115
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5116 5117

    Args:
5118
        x (Variable): The input tensor.
W
wanghaoshuang 已提交
5119 5120 5121 5122 5123 5124 5125 5126

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5127
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5128 5129
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5130
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5131
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5132
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5133
    return out
5134 5135


W
whs 已提交
5136 5137 5138
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5139 5140 5141 5142
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5143
    .. math::
5144 5145

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5146

5147
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5148 5149 5150 5151 5152
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5153
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5154
                           Its shape should be the same as input.
5155
        num_classes (int): The possible number of labels.
W
whs 已提交
5156 5157 5158 5159

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5160
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5161 5162 5163 5164

    Examples:

        .. code-block:: python
5165

W
whs 已提交
5166 5167 5168 5169 5170 5171 5172 5173 5174
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5175 5176
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5177
        outputs={
W
whs 已提交
5178 5179 5180
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5181 5182 5183
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
        isinstance(shape, Variable)):
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5282 5283 5284 5285 5286 5287 5288 5289 5290 5291


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5292

5293 5294
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5295

5296 5297 5298 5299
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5300

5301 5302 5303 5304 5305
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5306 5307 5308

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367


def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
5368

5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
5379 5380
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
5396
        ValueError: If axis is not in range [0, rank(x)].
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
    helper.append_op(
        type='flatten',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={"axis": axis})
    return out