creation.py 39.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16
import numpy as np
17 18
from paddle.common_ops_import import fill_constant
from ..fluid.layers import utils
19

20
from ..fluid.layers import tensor
L
Li Fuchen 已提交
21
from ..fluid.framework import Variable
22
from ..fluid.framework import unique_name
23
from ..fluid.framework import _current_expected_place, _get_paddle_place
24
from ..fluid.framework import dygraph_only
P
Pei Yang 已提交
25 26 27 28 29
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
30
# TODO: define functions to get create a tensor  
31
from ..fluid.layers import linspace  # noqa: F401
32
import paddle
33

34 35
__all__ = []

W
wangchaochaohu 已提交
36

37 38
@dygraph_only
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
39
    r"""
C
chentianyu03 已提交
40 41
    Constructs a ``paddle.Tensor`` from ``data`` , 
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.
42 43 44

    If the ``data`` is already a tensor, and ``dtype`` or ``place`` does't change, no copy 
    will be performed and return origin tensor, otherwise a new tensor will be constructed
L
Leo Chen 已提交
45
    and returned. 
46 47

    Args:
C
chentianyu03 已提交
48 49
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
50
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
C
chentianyu03 已提交
51 52
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
            'complex64' , 'complex128'. Default: None, infers dtype from ``data`` 
53
            except for python float number which gets dtype from ``get_default_type`` .
54 55 56
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is 
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. 
57 58 59
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
C
chentianyu03 已提交
60
        Tensor: A Tensor constructed from ``data`` .
61 62

    Raises:
C
chentianyu03 已提交
63
        TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor
64 65
        ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
66
        ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string. 
67 68 69 70 71 72 73 74 75 76 77

    Examples:

    .. code-block:: python

        import paddle
                
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
78 79
        # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #        [1])
80 81 82

        x = paddle.to_tensor(1)
        paddle.to_tensor(x, dtype='int32', place=paddle.CPUPlace()) # A new tensor will be constructed due to different dtype or place
83 84
        # Tensor(shape=[1], dtype=int32, place=CPUPlace, stop_gradient=True,
        #        [1])
85 86

        paddle.to_tensor((1.1, 2.2), place=paddle.CUDAPinnedPlace())
87 88
        # Tensor(shape=[1], dtype=float32, place=CUDAPinnedPlace, stop_gradient=True,
        #        [1])
89 90

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CUDAPlace(0), stop_gradient=False)
91 92 93
        # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])
94

C
chentianyu03 已提交
95 96
        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.VarBase'>
97 98

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
C
chentianyu03 已提交
99 100 101
        # Tensor(shape=[2, 2], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
102 103
    """

104
    place = _get_paddle_place(place)
105 106
    if place is None:
        place = _current_expected_place()
107 108 109
    elif not isinstance(
            place,
        (core.Place, core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace)):
110
        raise ValueError(
111
            "'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
        )

    #Todo(zhouwei): Support allocate tensor on any other specified card
    if isinstance(place, core.CUDAPlace) and isinstance(
            _current_expected_place(), core.CUDAPlace) and place._get_device_id(
            ) != _current_expected_place()._get_device_id():
        place = _current_expected_place()

    if not isinstance(data, np.ndarray):
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
        elif isinstance(data, paddle.Tensor):
            data.stop_gradient = stop_gradient
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data
        else:
            raise TypeError(
C
chentianyu03 已提交
140
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor".
141
                format(type(data)))
142 143 144 145 146 147 148 149 150 151 152
        if not dtype and data.dtype in [
                'float16', 'float32', 'float64', 'complex64', 'complex128'
        ]:
            default_type = paddle.get_default_dtype()
            if np.iscomplexobj(data):
                default_type = 'complex64' if default_type in [
                    'float16', 'float32'
                ] else 'complex128'
            data = data.astype(default_type)

    if dtype and convert_dtype(dtype) != data.dtype:
153
        data = data.astype(convert_dtype(dtype))
154

C
chentianyu03 已提交
155 156 157 158 159 160
    return paddle.Tensor(
        value=data,
        place=place,
        persistable=False,
        zero_copy=False,
        stop_gradient=stop_gradient)
161 162


163
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
164
    """
S
swtkiwi 已提交
165

166 167
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
168

P
Pei Yang 已提交
169
    Args:
170 171
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
172
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
173 174
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
175 176
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
177
    Returns:
178
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
179
    
P
Pei Yang 已提交
180 181
    Examples:
        .. code-block:: python
182

P
Pei Yang 已提交
183 184
          import paddle
          import numpy as np
185 186
          
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
187
          output = paddle.full_like(input, 2.0)
188 189
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
190 191 192
    """

    if dtype is None:
193
        dtype = x.dtype
194
    else:
195 196 197 198 199
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
200

201
    helper = LayerHelper("full_like", **locals())
202 203 204
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'full_like')
205 206
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
207
                'full_like/zeros_like/ones_like')
208
    out = helper.create_variable_for_type_inference(dtype=dtype)
209

P
Pei Yang 已提交
210 211
    helper.append_op(
        type='fill_any_like',
212
        inputs={'X': [x]},
213
        attrs={'value': fill_value,
214
               "dtype": dtype},
P
Pei Yang 已提交
215
        outputs={'Out': [out]})
216
    out.stop_gradient = True
P
Pei Yang 已提交
217 218 219
    return out


220
def ones(shape, dtype=None, name=None):
221
    """
S
swtkiwi 已提交
222

223 224 225
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
226
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
227
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
228 229 230
            bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
231
    Returns:
232
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
233 234 235 236

    Examples:
        .. code-block:: python

237 238
          import paddle 
          
239
          # default dtype for ones OP
240 241 242 243 244 245 246 247 248
          data1 = paddle.ones(shape=[3, 2]) 
          # [[1. 1.]
          #  [1. 1.]
          #  [1. 1.]]
          
          data2 = paddle.ones(shape=[2, 2], dtype='int32') 
          # [[1 1]
          #  [1 1]]
          
249
          # shape is a Tensor
250
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
251 252 253
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[1 1]
          #  [1 1]]
254
    """
255 256 257
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
258 259


260
def ones_like(x, dtype=None, name=None):
261
    """
262 263
    This OP returns a Tensor filled with the value 1, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
264 265

    Args:
266 267 268 269 270 271 272 273 274 275
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

276
    Returns:
277 278 279 280 281
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

    Raise:
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
Z
zhupengyang 已提交
282
        float64, int32 or int64.
283 284 285 286

    Examples:
        .. code-block:: python

287
            import paddle
288

289
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
290 291
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
292

293 294
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
295 296


297
def zeros(shape, dtype=None, name=None):
298 299 300 301
    """
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
302
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
303
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
304 305 306
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
307 308

    Returns:
309
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
310 311 312 313 314

    Examples:
        .. code-block:: python

          import paddle
315
          
316 317 318 319 320 321 322 323 324
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
325
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
326
          data3 = paddle.zeros(shape=shape, dtype='int32') 
327 328
          # [[0 0]
          #  [0 0]]
329
    """
330 331 332
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
333 334


335
def zeros_like(x, dtype=None, name=None):
336
    """
337 338
    This OP returns a Tensor filled with the value 0, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
339 340

    Args:
341 342 343 344 345 346
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
347 348 349
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
350 351

    Returns:
352 353
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
354

355
    Raise:
356
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
Z
zhupengyang 已提交
357
        float64, int32 or int64.
358

359 360 361
    Examples:
        .. code-block:: python

362
            import paddle
363

Z
zhupengyang 已提交
364
            x = paddle.to_tensor([1, 2, 3])
365 366
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
367

368 369
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
370 371


372
def eye(num_rows, num_columns=None, dtype=None, name=None):
373
    """
374
    
375
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
376

377
    Args:
378 379
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
380
            If None, default: num_rows.
W
wangchaochaohu 已提交
381
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
382 383
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
384 385
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
386

387
    Returns:
388
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
389

390 391
    Examples:
        .. code-block:: python
392
          
393
          import paddle
394

395
          data = paddle.eye(3, dtype='int32')
396 397 398
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
399
          data = paddle.eye(2, 3, dtype='int32')
400 401
          # [[1 0 0]
          #  [0 1 0]]
402 403
    """

404 405 406
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
407
        num_columns = num_rows
408 409 410 411 412
    return paddle.fluid.layers.eye(num_rows=num_rows,
                                   num_columns=num_columns,
                                   batch_shape=None,
                                   dtype=dtype,
                                   name=name)
413 414


415
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
416
    """
S
swtkiwi 已提交
417

418
    This Op return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
419 420
    
    Args:
421
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
422 423
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
424 425 426
                If ``shape`` is an Tensor, it should be an 1-D Tensor .
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
427
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
428
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
429
            type of created Tensor is `float32`
W
wangchaochaohu 已提交
430 431 432
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
433
    Returns:
434
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
435

W
wangchaochaohu 已提交
436 437 438
    Examples:
        .. code-block:: python

439
          import paddle
W
wangchaochaohu 已提交
440

441 442 443
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
          #[[0]
          # [0]]
W
wangchaochaohu 已提交
444

445
          # attr shape is a list which contains Tensor.
446
          positive_2 = paddle.full([1], 2, "int32")
447 448
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
          # [[1.5 1.5]]
W
wangchaochaohu 已提交
449

450
          # attr shape is a Tensor.
451
          shape = paddle.full([2], 2, "int32")
452 453 454
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
          # [[True True] 
          #  [True True]]
455
          
456
          # attr fill_value is a Tensor.
457
          val = paddle.full([1], 2.0, "float32")
458 459 460
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
          # [[2.0] 
          #  [2.0]]
W
wangchaochaohu 已提交
461 462 463 464 465
    """

    if dtype is None:
        dtype = 'float32'

466
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
467 468


469
def arange(start=0, end=None, step=1, dtype=None, name=None):
470
    """
471
    This OP returns a 1-D Tensor with spaced values within a given interval.
472

473 474
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
475

476 477
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
478 479

    Parameters:
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
498

499 500
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
501 502
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
503

504
    Raises:
505
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
506

Z
zhupengyang 已提交
507
    Examples:
508 509
        .. code-block:: python

Z
zhupengyang 已提交
510
            import paddle
511

Z
zhupengyang 已提交
512 513
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
514

Z
zhupengyang 已提交
515 516
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
517

Z
zhupengyang 已提交
518 519 520
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
521

Z
zhupengyang 已提交
522 523 524
            start_var = paddle.to_tensor([3])
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
525 526 527 528 529 530 531
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
532

533
    return paddle.fluid.layers.range(start, end, step, dtype, name)
W
WuHaobo 已提交
534 535 536 537 538 539


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
540
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
541 542

    assert x is not None, 'x cannot be None in {}'.format(op_type)
543 544
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
W
WuHaobo 已提交
545
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
546
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


Y
yaoxuefeng 已提交
570
def tril(x, diagonal=0, name=None):
571
    r"""
W
WuHaobo 已提交
572
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
Y
yaoxuefeng 已提交
573
    of matrices :attr:`x`, the other elements of the result tensor are set 
W
WuHaobo 已提交
574 575 576 577
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
578
        x (Tensor): The input x which is a Tensor.
579
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
580 581 582 583 584 585 586 587 588 589 590
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
591
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
592
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
593 594 595

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
596
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
597 598 599 600 601

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
602
            import paddle
W
WuHaobo 已提交
603 604 605 606 607 608

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

Y
yaoxuefeng 已提交
609

610
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
611 612
            
            tril1 = paddle.tensor.tril(x)
W
WuHaobo 已提交
613 614 615 616 617
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
618
            tril2 = paddle.tensor.tril(x, diagonal=2)
W
WuHaobo 已提交
619 620 621 622 623
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
624
            tril3 = paddle.tensor.tril(x, diagonal=-1)
W
WuHaobo 已提交
625 626 627 628
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

629 630 631
    """
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
632
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
633 634 635 636

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
637
def triu(x, diagonal=0, name=None):
638
    r"""
W
WuHaobo 已提交
639
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
640
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
641 642 643 644
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
645
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
646 647 648 649 650 651 652 653 654 655 656 657
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
658
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
659
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
660 661 662

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
663
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
664 665 666 667 668

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
669
            import paddle
W
WuHaobo 已提交
670 671 672 673 674

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
675

W
WuHaobo 已提交
676 677

            # example 1, default diagonal
678
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
679
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
680 681 682 683 684
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
685
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
686 687 688 689 690
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
691
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
692 693 694 695 696
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
697 698
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
699
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
700 701

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
702 703


704
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
705
    """
706
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
707 708 709
    vector, and creates N-dimensional grids.
    
    Args:
Y
yaoxuefeng 已提交
710
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
711
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
712 713
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
714 715 716
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
Y
yaoxuefeng 已提交
717
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
718 719 720 721 722 723

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
724 725 726 727
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
728

Y
yaoxuefeng 已提交
729 730
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
731 732 733 734 735 736

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

737 738
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
S
suytingwan 已提交
739
    if in_dygraph_mode():
740 741
        num = len(args)
        out = core.ops.meshgrid(list(args), num)
S
suytingwan 已提交
742 743
        return out

744
    name = kwargs.get("name", None)
S
suytingwan 已提交
745 746
    helper = LayerHelper('meshgrid', **locals())

747 748
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
749

750
    for id, input_ in enumerate(args):
S
suytingwan 已提交
751 752 753 754
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

755
    num = len(args)
S
suytingwan 已提交
756
    out = [
757
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
758 759
        for i in range(num)
    ]
760 761
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
762 763

    return out
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839


def diag(x, offset=0, padding_value=0, name=None):
    """
    If ``x`` is a vector (1-D tensor), a 2-D square tensor whth the elements of ``x`` as the diagonal is returned.

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.diag(x)
          print(y.numpy())
          # [[1 0 0]
          #  [0 2 0]
          #  [0 0 3]]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0]
          #  [0 0 2 0]
          #  [0 0 0 3]
          #  [0 0 0 0]]

          y = paddle.diag(x, padding_value=6)
          print(y.numpy())
          # [[1 6 6]
          #  [6 2 6]
          #  [6 6 3]]

        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
          y = paddle.diag(x)
          print(y.numpy())
          # [1 5]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [2 6]

          y = paddle.diag(x, offset=-1)
          print(y.numpy())
          # [4]
    """
    if in_dygraph_mode():
        return core.ops.diag_v2(x, "offset", offset, "padding_value",
                                padding_value)

    check_type(x, 'x', (Variable), 'diag_v2')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diag_v2')
840 841 842 843 844 845 846
    check_type(offset, 'offset', (int), 'diag_v2')
    check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
    if len(x.shape) != 1 and len(x.shape) != 2:
        raise ValueError(
            "The dimension of input x must be either 1 or 2, but received {}".
            format(len(x.shape)))

847 848 849 850 851 852 853 854 855 856 857 858 859
    helper = LayerHelper("diag_v2", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diag_v2',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'offset': offset,
               'padding_value': padding_value})

    out.stop_gradient = True
    return out
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945


def empty(shape, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which size is same as ``shape``.
    
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.set_device("cpu")  # and use cpu device

          # example 1: argument ``shape`` is a list which doesn't contain Tensor.
          data1 = paddle.empty(shape=[2,3], dtype='float32')
          #[[4.3612203e+27 1.8176809e+31 1.3555911e-19]     # uninitialized
          # [1.1699684e-19 1.3563156e-19 3.6408321e-11]]    # uninitialized

          # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
          shape_data = np.array([2, 3]).astype('int32')
          shape = paddle.to_tensor(shape_data)
          data2 = paddle.empty(shape=shape, dtype='float32')
          #[[1.7192326e-37 4.8125365e-38 1.9866003e-36]     # uninitialized
          # [1.3284029e-40 7.1117408e-37 2.5353012e+30]]    # uninitialized

          # example 3: argument ``shape`` is a list which contains Tensor.
          dim2_data = np.array([3]).astype('int32')
          dim2 = paddle.to_tensor(dim2_data)
          data3 = paddle.empty(shape=[2, dim2], dtype='float32')
          #[[1.1024214e+24 7.0379409e+22 6.5737699e-34]     # uninitialized
          # [7.5563101e+31 7.7130405e+31 2.8020654e+20]]    # uninitialized
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        out = core.ops.empty('shape', shape, 'dtype',
                             convert_np_dtype_to_dtype_(dtype))
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty')
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty')

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011


def empty_like(x, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
    
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

    if in_dygraph_mode():
        out = core.ops.empty('shape', x.shape, 'dtype',
                             convert_np_dtype_to_dtype_(dtype))
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty_like')
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like')

    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out
1012 1013 1014 1015 1016 1017 1018 1019 1020


def assign(x, output=None):
    """
 
 
    The OP copies the :attr:`x` to the :attr:`output`.
 
    Parameters:
1021 1022 1023 1024
        x (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
 
    Returns:
        Tensor: A tensor with the same shape, data type and value as :attr:`x`.
 
    Examples:
        .. code-block:: python
 
          import paddle
          import numpy as np
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
1045
    check_type(x, 'x', (Variable, np.ndarray, list, tuple, float, int, bool),
1046
               'assign')
1047
    return tensor.assign(x, output)