nn.py 247.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
Y
Yu Yang 已提交
153 154 155 156 157 158 159 160 161
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
162
       is_test=False,
163
       name=None):
Y
Yu Yang 已提交
164
    """
165
    **Fully Connected Layer**
Y
Yu Yang 已提交
166

167 168 169 170 171 172 173 174
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
175
    to the output as well.
C
caoying03 已提交
176

C
caoying03 已提交
177
    This process can be formulated as follows:
178 179 180

    .. math::

181
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
182 183 184

    In the above equation:

C
caoying03 已提交
185 186 187 188
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
189
    * :math:`Act`: The activation function.
C
caoying03 已提交
190
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
191 192

    Args:
R
ranqiu 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
208 209
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
210
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
211
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
212
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
213

214
    Returns:
F
fengjiayi 已提交
215
        Variable: The transformation result.
216 217

    Raises:
C
caoying03 已提交
218
        ValueError: If rank of the input tensor is less than 2.
219 220 221 222

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
223
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
224
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
225
    """
C
caoying03 已提交
226

C
caoying03 已提交
227
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
228 229 230 231

    dtype = helper.input_dtype()

    mul_results = []
232 233
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
234 235 236
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
237

Y
Yu Yang 已提交
238
        w = helper.create_parameter(
239 240
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
241
        helper.append_op(
242 243 244
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
245
            outputs={"Out": tmp},
M
mozga-intel 已提交
246 247
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
248 249 250 251
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
252
    else:
253 254
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
255 256 257
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
258
            attrs={"use_mkldnn": False})
259 260 261 262
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
263 264


265 266 267
def embedding(input,
              size,
              is_sparse=False,
268
              is_distributed=False,
269 270 271
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
272
    """
273 274
    **Embedding Layer**

275
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
276 277
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
278 279 280

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
281 282

    Args:
283 284 285 286 287
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
288
        is_distributed(bool): Whether to run lookup table from remote parameter server.
289 290
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
291
            with zeros whenever lookup encounters it in :attr:`input`. If
292
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
293 294
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
295
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
296

297 298 299
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
300

301 302
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
303

C
chengduoZH 已提交
304
          dict_size = len(dataset.ids)
305
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
306
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
307 308 309 310 311 312
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
313 314
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
315 316 317 318 319
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
320 321 322 323 324
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
325 326 327
    return tmp


Y
yi.wu 已提交
328
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
329 330
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
331 332
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
333 334 335 336 337 338 339
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
340 341
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
342
    """
Y
yi.wu 已提交
343
    ${comment}
Y
Yibing Liu 已提交
344 345

    Args:
Y
yi.wu 已提交
346 347
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
348 349 350 351 352 353 354
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

355
        param_attr(ParamAttr|None): The parameter attribute for the learnable
356
                               hidden-hidden weights.
Y
Yibing Liu 已提交
357 358 359

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
360 361
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
362
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
363 364 365
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
366

367
                              1. `use_peepholes = False`
Y
yi.wu 已提交
368 369
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
370
                              2. `use_peepholes = True`
Y
yi.wu 已提交
371
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
372
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
373
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
374 375 376 377 378 379 380 381
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
382 383

    Returns:
Y
Yibing Liu 已提交
384 385
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
386

Y
Yibing Liu 已提交
387
    Examples:
Y
Yibing Liu 已提交
388 389
        .. code-block:: python

Y
Yibing Liu 已提交
390 391
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduozh 已提交
392
                                           bias_attr=False)
Y
Yibing Liu 已提交
393 394
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
395
    """
396

Y
Yu Yang 已提交
397
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
398
    size = size // 4
Y
Yu Yang 已提交
399 400 401 402 403 404 405 406 407 408 409 410
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
411 412 413 414 415 416 417 418 419 420
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
421 422 423

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
424
        inputs=inputs,
Y
Yu Yang 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
441 442 443 444 445 446 447 448 449 450 451
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
452 453
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
454 455 456
    """
    **Dynamic LSTMP Layer**

457 458 459 460 461 462
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
463 464 465 466 467

    The formula is as follows:

    .. math::

468
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
469

470
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
471

472
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
473

474
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
475

476
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
477

478
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
479

480
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
481

Y
Yibing Liu 已提交
482 483 484 485 486 487
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
488
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
489
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
490
          bias vector).
Y
Yibing Liu 已提交
491 492 493
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
494
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
495
    * :math:`h`: The hidden state.
496
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
497 498
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
499
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
500
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
501
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
502 503
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
504 505 506 507

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
508

Y
Yibing Liu 已提交
509 510 511 512 513 514 515 516 517 518 519 520
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
521
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
522 523
                               hidden-hidden weight and projection weight.

524 525
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
526 527
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
528 529
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
530 531
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
532 533 534 535 536 537
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
538
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
539 540 541
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
542
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
543 544 545 546 547 548 549 550 551
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
552
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
553 554
                              default "tanh".
        proj_activation(str): The activation for projection output.
555
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
556 557
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
558 559
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
560 561

    Returns:
562 563 564 565
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
566 567

    Examples:
568

Y
Yibing Liu 已提交
569 570
        .. code-block:: python

571 572 573 574
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
575
            hidden_dim, proj_dim = 512, 256
576
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
577
                                     act=None, bias_attr=None)
578 579 580
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
581 582 583 584
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
585
    """
586

Y
Yibing Liu 已提交
587
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
588
    size = size // 4
Y
Yibing Liu 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
633 634 635 636 637 638 639 640 641
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
642
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
643

644
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
645
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
646

G
guosheng 已提交
647 648 649 650 651 652 653 654 655
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
656

G
guosheng 已提交
657
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
658

G
guosheng 已提交
659
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
660 661
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
662 663 664 665
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
666
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
667 668

    Args:
669 670
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
671
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
672
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
673 674
            is the hidden size.
        size(int): The dimension of the gru cell.
675
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
676 677
            hidden-hidden weight matrix. Note:

678
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
679
              :math:`D` is the hidden size.
680
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
681
              The first part are weights of the update gate and reset gate with
682
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
683
              candidate hidden state with shape :math:`(D \\times D)`.
684
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
685
            hidden-hidden bias.
686
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
687 688 689
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
690
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
691
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
692 693 694 695
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
696 697

    Returns:
G
guosheng 已提交
698
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
699
            and sequence length is the same with the input.
700

G
guosheng 已提交
701
    Examples:
702

G
guosheng 已提交
703 704
        .. code-block:: python

705 706 707 708
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
709
            hidden_dim = 512
710
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
711 712 713 714 715 716 717 718 719 720
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
721
    batch_size = input.shape[0]
G
guosheng 已提交
722 723 724
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
725 726 727
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
751 752 753
def gru_unit(input,
             hidden,
             size,
754 755
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
756
             activation='tanh',
757
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
758
    """
759
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
760

761 762
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
763

764
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
765

766
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
767

768
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
769 770

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
771 772 773
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
774 775
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

776 777
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
778 779 780
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
781 782 783 784 785

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
786 787
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
788 789 790 791
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
792

793 794 795 796 797 798
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
799

800
             # assuming we have x_t_data and prev_hidden of size=10
801
             x_t = fluid.layers.fc(input=x_t_data, size=30)
802 803
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
804 805 806 807 808 809 810 811 812 813 814 815

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
816
    size = size // 3
Y
Yu Yang 已提交
817 818

    # create weight
819 820
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
821

822 823 824 825
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
826
    # create bias
827
    if helper.bias_attr:
Y
Yu Yang 已提交
828 829 830
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
831
        inputs['Bias'] = bias
Y
Yu Yang 已提交
832 833 834

    helper.append_op(
        type='gru_unit',
835
        inputs=inputs,
Y
Yu Yang 已提交
836 837 838 839 840 841
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
842 843
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
844 845 846 847 848
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
849
@templatedoc()
850
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
851 852 853 854 855 856 857
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
858
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
859 860 861 862
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
863 864 865
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
866 867

    """
Y
Yu Yang 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
893
@templatedoc()
894
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
895 896 897 898 899
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
900

Y
yuyang18 已提交
901
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
902

Y
yuyang18 已提交
903 904 905
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
906
        Variable: ${viterbi_path_comment}
907

Y
yi.wu 已提交
908 909 910 911 912
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
913
    """
Y
Yu Yang 已提交
914 915 916 917 918 919 920 921 922 923 924 925 926
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
927
@templatedoc()
F
fengjiayi 已提交
928
def cos_sim(X, Y):
Y
Yu Yang 已提交
929
    """
Y
yi.wu 已提交
930 931 932
    ${comment}

    Args:
933 934
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
935

Y
yi.wu 已提交
936
    Returns:
937
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
938
    """
F
fengjiayi 已提交
939
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


953
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
954 955 956 957 958
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
959
    training. The dropout operator randomly sets (according to the given dropout
960 961 962 963
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
964 965
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
966 967 968 969 970 971 972
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
973 974

    Returns:
975
        Variable: A tensor variable is the shape with `x`.
976 977

    Examples:
978

979 980
        .. code-block:: python

981 982
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
983 984
    """

F
fengjiayi 已提交
985
    helper = LayerHelper('dropout', **locals())
986 987
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
988 989 990 991

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

992 993 994 995 996
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
997 998 999 1000 1001 1002
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
1003 1004 1005
    return out


1006
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1007
    """
Y
Yibing Liu 已提交
1008 1009
    **Cross Entropy Layer**

1010 1011 1012
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1013 1014

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1015
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1016

Y
Yibing Liu 已提交
1017
        .. math::
Y
yangyaming 已提交
1018

Y
Yibing Liu 已提交
1019 1020 1021
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1022 1023
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1024 1025 1026 1027 1028

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1029
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1030 1031 1032
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1033 1034
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1035
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1036

Y
Yibing Liu 已提交
1037
    Args:
Y
yangyaming 已提交
1038
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1039 1040 1041 1042
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1043
        label (Variable|list): the ground truth which is a 2-D tensor. When
1044 1045 1046 1047
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1048
        soft_label (bool): a flag indicating whether to
1049
                                           interpretate the given labels as soft
1050
                                           labels. Default: `False`.
M
minqiyang 已提交
1051 1052
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1053
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1054 1055 1056 1057 1058

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1059 1060 1061 1062 1063
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1064 1065 1066 1067 1068 1069

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1070
    """
F
fengjiayi 已提交
1071
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1072 1073 1074 1075 1076 1077
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1078 1079
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1080 1081 1082
    return out


F
fengjiayi 已提交
1083
def square_error_cost(input, label):
Y
Yu Yang 已提交
1084
    """
1085 1086
    **Square error cost layer**

1087 1088
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1103 1104
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1105 1106

    Returns:
G
guosheng 已提交
1107
        Variable: The tensor variable storing the element-wise squared error \
1108
                  difference of input and label.
1109 1110 1111 1112 1113 1114 1115 1116

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1117
    """
F
fengjiayi 已提交
1118
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1128 1129
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1130 1131 1132
    return square_out


Y
yi.wu 已提交
1133
@templatedoc()
Y
Yu Yang 已提交
1134 1135 1136 1137
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1138
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1139
    """
Y
yi.wu 已提交
1140
    **Chunk Evaluator**
Y
yi.wu 已提交
1141

Y
yangyaming 已提交
1142
    This function computes and outputs the precision, recall and
1143
    F1-score of chunk detection.
Y
yi.wu 已提交
1144

Y
yi.wu 已提交
1145 1146 1147 1148 1149 1150 1151 1152
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1153

Y
yi.wu 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1179

Y
yi.wu 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1204
    Args:
1205 1206 1207 1208 1209
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1210

Y
yi.wu 已提交
1211
    Returns:
Y
update  
yi.wu 已提交
1212 1213 1214
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1215

Y
yi.wu 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1228
    """
F
fengjiayi 已提交
1229
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1230 1231 1232 1233 1234

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1235 1236 1237
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1238 1239 1240 1241 1242 1243 1244 1245

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1246 1247 1248 1249
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1250 1251 1252
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1253 1254
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1255
        })
1256 1257
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1258 1259


1260
@templatedoc()
Y
Yu Yang 已提交
1261 1262 1263 1264 1265 1266 1267
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1268
                  act=None):
Y
Yu Yang 已提交
1269 1270 1271 1272
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1273 1274 1275 1276 1277 1278 1279

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduozh 已提交
1280
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
C
chengduozh 已提交
1281
            If it is set to False, no bias will be added to the output units.
C
chengduozh 已提交
1282 1283 1284
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduozh 已提交
1285
        param_attr (ParamAttr): The parameter attribute for learnable parameters/weights
C
chengduozh 已提交
1286 1287 1288
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
1289
        act (str): the activation type
F
fengjiayi 已提交
1290

1291 1292
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1311
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1312 1313 1314 1315 1316 1317
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduozh 已提交
1318
def sequence_softmax(input, use_cudnn=False):
1319 1320 1321
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1322
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1339
        library is installed. Default: False
1340

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduozh 已提交
1363
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1364
    """
1365
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1366
    has the same shape as the input.
Q
qiaolongfei 已提交
1367

1368 1369 1370 1371 1372 1373
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1374
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1375 1376 1377 1378 1379 1380 1381

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1382
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1415 1416 1417
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1418 1419
           stride=1,
           padding=0,
1420
           dilation=1,
Y
Yu Yang 已提交
1421 1422 1423
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1424
           use_cudnn=True,
1425 1426
           act=None,
           name=None):
Y
Yu Yang 已提交
1427
    """
C
chengduoZH 已提交
1428
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1429 1430
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1431
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1432 1433 1434 1435 1436 1437 1438
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1439 1440 1441
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1442

1443
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1444

C
chengduoZH 已提交
1445 1446
    .. math::

C
refine  
chengduoZH 已提交
1447
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1448

T
tensor-tang 已提交
1449
    Where:
C
chengduoZH 已提交
1450

1451 1452 1453 1454 1455
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1456
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1457 1458 1459

    Example:

1460 1461
        - Input:

W
weixing02 已提交
1462
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1463

W
weixing02 已提交
1464
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1465

1466
        - Output:
T
tensor-tang 已提交
1467

W
weixing02 已提交
1468
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1469

C
chengduoZH 已提交
1470
        Where
1471 1472

        .. math::
C
chengduoZH 已提交
1473

W
weixing02 已提交
1474 1475
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1476 1477

    Args:
1478
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1479
        num_filters(int): The number of filter. It is as same as the output
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduozh 已提交
1497
            connected to the second half of the input channels. Default: groups=1.
C
chengduozh 已提交
1498
        param_attr (ParamAttr): The parameter attribute for learnable parameters/weights
C
chengduozh 已提交
1499 1500 1501 1502 1503
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
C
chengduozh 已提交
1504
            If it is set to False, no bias will be added to the output units.
C
chengduozh 已提交
1505 1506 1507
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1508 1509
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduozh 已提交
1510 1511
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1512
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduozh 已提交
1513
            will be named automatically. Default: None
C
chengduoZH 已提交
1514 1515

    Returns:
G
guosheng 已提交
1516
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1517 1518
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1519
    Raises:
1520 1521
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1522

C
chengduoZH 已提交
1523 1524 1525
    Examples:
        .. code-block:: python

1526 1527
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1528 1529 1530
    """

    num_channels = input.shape[1]
C
chengduozh 已提交
1531
    assert param_attr is not False, "param_attr should not be False here."
1532
    l_type = 'conv2d'
X
xzl 已提交
1533 1534
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1535
        l_type = 'depthwise_conv2d'
1536 1537 1538 1539

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1540 1541 1542 1543 1544
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1545
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1546

C
chengduoZH 已提交
1547 1548 1549
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1550
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1551

C
chengduoZH 已提交
1552 1553
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1554 1555

    input_shape = input.shape
M
minqiyang 已提交
1556
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1557 1558

    def _get_default_param_initializer():
C
chengduozh 已提交
1559 1560
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1572
        type=l_type,
Y
Yu Yang 已提交
1573 1574 1575 1576 1577
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1578 1579 1580
        attrs={
            'strides': stride,
            'paddings': padding,
1581
            'dilations': dilation,
C
chengduoZH 已提交
1582
            'groups': groups,
1583
            'use_cudnn': use_cudnn,
1584
            'use_mkldnn': False
C
chengduoZH 已提交
1585
        })
Y
Yu Yang 已提交
1586 1587 1588 1589 1590 1591

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1609 1610 1611 1612 1613 1614
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1624 1625
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1626 1627 1628
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1629
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1655
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1656 1657
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1658
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1659 1660
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1661
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1662 1663
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1664
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1665 1666 1667 1668 1669 1670
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduozh 已提交
1671
        param_attr (ParamAttr): The parameter attribute for learnable parameters/weights
C
chengduozh 已提交
1672 1673 1674 1675 1676
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
C
chengduozh 已提交
1677
            If it is set to False, no bias will be added to the output units.
C
chengduozh 已提交
1678 1679 1680
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1681 1682
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduozh 已提交
1683 1684
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1685
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduozh 已提交
1686
            will be named automatically. Default: None.
C
chengduoZH 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1699 1700
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1701 1702 1703
    """

    l_type = 'conv3d'
C
chengduozh 已提交
1704
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1715
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduozh 已提交
1729 1730 1731
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1755
            'use_mkldnn': False
C
chengduoZH 已提交
1756 1757
        })

1758
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1759 1760 1761 1762

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1763
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1764
    """
Y
yangyaming 已提交
1765 1766 1767
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1779
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1780 1781 1782 1783 1784
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1785
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1786 1787 1788 1789 1790 1791 1792

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1793 1794
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1795

L
Luo Tao 已提交
1796 1797
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1798
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1799 1800 1801 1802 1803 1804 1805 1806
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1807

Y
yangyaming 已提交
1808
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1809 1810 1811 1812 1813
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1814 1815
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1816
    """
F
fengjiayi 已提交
1817
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1829 1830 1831 1832 1833
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1834 1835 1836
    return pool_out


C
add doc  
chengduoZH 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1862
def sequence_first_step(input):
L
Luo Tao 已提交
1863
    """
L
Luo Tao 已提交
1864
    This function gets the first step of sequence.
L
Luo Tao 已提交
1865 1866 1867 1868

    .. code-block:: text

       x is a 1-level LoDTensor:
1869
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1870 1871 1872 1873 1874
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1875
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1876
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1877

L
Luo Tao 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1887

Y
yangyaming 已提交
1888
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1889 1890 1891
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1892 1893 1894
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1895
def sequence_last_step(input):
L
Luo Tao 已提交
1896
    """
L
Luo Tao 已提交
1897
    This function gets the last step of sequence.
L
Luo Tao 已提交
1898 1899 1900 1901

    .. code-block:: text

       x is a 1-level LoDTensor:
1902
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1903 1904 1905 1906 1907
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1908
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1909
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1910

L
Luo Tao 已提交
1911 1912 1913 1914 1915 1916 1917 1918 1919
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1920

Y
yangyaming 已提交
1921
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1922 1923 1924
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1925 1926 1927
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1928
@templatedoc()
Y
Yu Yang 已提交
1929
def pool2d(input,
C
chengduoZH 已提交
1930 1931
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1932 1933
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1934
           global_pooling=False,
C
chengduoZH 已提交
1935
           use_cudnn=True,
1936
           ceil_mode=False,
C
caoying03 已提交
1937
           name=None):
Y
Yu Yang 已提交
1938
    """
F
fengjiayi 已提交
1939
    ${comment}
1940 1941

    Args:
1942 1943 1944
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1945
                          feature, and W is the width of the feature.
1946
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1947
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1948
        pool_type: ${pooling_type_comment}
1949 1950
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1951 1952 1953
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
1954
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1955 1956
                        layer will be named automatically.

1957
    Returns:
F
fengjiayi 已提交
1958
        Variable: The pooling result.
F
fengjiayi 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1972 1973 1974 1975
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1976
                            global_pooling=False)
Y
Yu Yang 已提交
1977 1978 1979 1980 1981
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1982

C
chengduoZH 已提交
1983 1984 1985 1986 1987
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1988 1989 1990 1991
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1992 1993
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1994

C
Add doc  
chengduoZH 已提交
1995
    l_type = 'pool2d'
1996 1997

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1998 1999 2000 2001
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2013
            "use_mkldnn": False
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2030
    pooling configurations mentioned in input parameters.
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2043

2044
    Returns:
2045
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2046 2047 2048 2049 2050
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2051

C
chengduoZH 已提交
2052 2053 2054 2055 2056
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2057 2058 2059
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2060

C
chengduoZH 已提交
2061 2062
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2063

2064 2065
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2066 2067 2068 2069
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2070
        type=l_type,
Y
Yu Yang 已提交
2071 2072 2073 2074 2075 2076 2077
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2078
            "paddings": pool_padding,
2079
            "use_cudnn": use_cudnn,
2080
            "ceil_mode": ceil_mode,
2081
            "use_mkldnn": False
Y
Yu Yang 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2094
               data_layout='NCHW',
Y
Yang Yang 已提交
2095
               in_place=False,
2096 2097
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2098
               moving_variance_name=None,
2099 2100
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2101
    """
Q
qiaolongfei 已提交
2102 2103 2104 2105
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2106

Q
qiaolongfei 已提交
2107
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2108

Q
qiaolongfei 已提交
2109 2110
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2111 2112 2113
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2126 2127

    Args:
Q
qiaolongfei 已提交
2128
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2129 2130 2131 2132
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2133 2134 2135
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2136
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2137 2138 2139 2140
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2141
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2142
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2143 2144

    Returns:
Q
qiaolongfei 已提交
2145
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2146 2147 2148 2149 2150 2151 2152

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2176
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2177

2178 2179
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2180 2181 2182
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2183
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2184
        shape=param_shape,
2185 2186 2187 2188 2189 2190 2191
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2192
            trainable=False,
W
wanghaoshuang 已提交
2193
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2194
        shape=param_shape,
2195 2196
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2197 2198 2199 2200 2201 2202

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2203 2204
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2205

2206
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2224 2225 2226 2227
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2228
            "use_mkldnn": False,
2229
            "fuse_with_relu": fuse_with_relu
2230
        })
Y
Yu Yang 已提交
2231 2232 2233 2234

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2235
@templatedoc()
G
guosheng 已提交
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2246
    ${comment}
G
guosheng 已提交
2247 2248 2249

    The formula is as follows:

Y
yuyang18 已提交
2250
    ..  math::
G
guosheng 已提交
2251 2252 2253 2254 2255 2256 2257

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2258 2259 2260 2261 2262 2263 2264 2265
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2266

G
guosheng 已提交
2267 2268
    Args:
        input(Variable): The input tensor variable.
2269
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2270
            normalization.
2271
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2272
            normalization.
2273
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2274
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2275
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2276 2277 2278 2279 2280 2281
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2282
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2283 2284

    Returns:
Y
yuyang18 已提交
2285
        ${y_comment}
G
guosheng 已提交
2286 2287 2288

    Examples:

Y
yuyang18 已提交
2289 2290 2291
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2307
    if shift:
G
guosheng 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2332 2333 2334 2335
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2336 2337 2338
                     padding=0,
                     stride=1,
                     dilation=1,
2339
                     groups=None,
C
caoying03 已提交
2340
                     param_attr=None,
2341
                     bias_attr=None,
C
chengduoZH 已提交
2342
                     use_cudnn=True,
2343
                     act=None,
C
caoying03 已提交
2344
                     name=None):
Y
Yu Yang 已提交
2345
    """
2346 2347 2348 2349 2350 2351 2352 2353
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2354 2355
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2356 2357 2358
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2359 2360 2361 2362 2363

    For each input :math:`X`, the equation is:

    .. math::

2364
        Out = \sigma (W \\ast X + b)
2365

2366
    Where:
2367 2368 2369

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2370 2371 2372 2373
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2374

2375 2376 2377 2378
    Example:

        - Input:

2379
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2380

2381
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2382 2383 2384

        - Output:

2385
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2386 2387

        Where
Y
Yu Yang 已提交
2388

2389 2390
        .. math::

2391 2392 2393 2394
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2395 2396

    Args:
2397 2398 2399 2400
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2401 2402 2403 2404
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduozh 已提交
2423 2424
            Default: groups = 1.
        param_attr (ParamAttr): The parameter attribute for learnable parameters/weights
C
chengduozh 已提交
2425 2426 2427 2428
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
C
chengduozh 已提交
2429
            If it is set to False, no bias will be added to the output units.
C
chengduozh 已提交
2430 2431 2432
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2433
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduozh 已提交
2434 2435 2436
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2437
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduozh 已提交
2438
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2439 2440

    Returns:
2441
        Variable: The tensor variable storing the convolution transpose result.
2442 2443

    Raises:
2444 2445
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2446 2447 2448 2449

    Examples:
       .. code-block:: python

2450 2451
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2452
    """
2453 2454 2455 2456 2457 2458 2459 2460 2461

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2462 2463 2464
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2465 2466 2467
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2468

C
chengduoZH 已提交
2469 2470
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2471

Y
Yu Yang 已提交
2472 2473 2474 2475 2476
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2477

Y
Yu Yang 已提交
2478 2479
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2480

C
chengduoZH 已提交
2481
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2482
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2483
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2484
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2485
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2486 2487 2488
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduozh 已提交
2489

2490 2491 2492 2493 2494 2495 2496
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2497
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2498
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduozh 已提交
2499

Y
Yu Yang 已提交
2500 2501 2502
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2503
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2504
    helper.append_op(
2505
        type=op_type,
Y
Yu Yang 已提交
2506 2507
        inputs={'Input': [input],
                'Filter': [img_filter]},
2508
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2509
        attrs={
2510
            'output_size': output_size,
2511 2512 2513 2514 2515
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2516 2517
        })

2518 2519 2520
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2521 2522


2523
def conv3d_transpose(input,
Y
Yu Yang 已提交
2524 2525 2526
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2527 2528 2529
                     padding=0,
                     stride=1,
                     dilation=1,
2530
                     groups=None,
C
caoying03 已提交
2531
                     param_attr=None,
2532
                     bias_attr=None,
C
chengduoZH 已提交
2533
                     use_cudnn=True,
2534
                     act=None,
C
caoying03 已提交
2535
                     name=None):
Y
Yu Yang 已提交
2536
    """
2537
    **Convlution3D transpose layer**
2538

2539
    The convolution3D transpose layer calculates the output based on the input,
2540
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2541 2542 2543 2544 2545 2546
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2547 2548 2549
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2550 2551 2552 2553 2554

    For each input :math:`X`, the equation is:

    .. math::

2555
        Out = \sigma (W \\ast X + b)
2556 2557 2558

    In the above equation:

2559 2560
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2561 2562 2563 2564
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2565

2566 2567 2568 2569
    Example:

        - Input:

2570
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2571

2572
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2573 2574 2575

        - Output:

2576
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2577 2578

        Where
Y
Yu Yang 已提交
2579

2580 2581
        .. math::

2582 2583 2584
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2585 2586

    Args:
2587
        input(Variable): The input image with [N, C, D, H, W] format.
2588 2589 2590
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2591
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2592 2593
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2594
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2595 2596 2597
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2598 2599
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2600
        stride(int|tuple): The stride size. If stride is a tuple, it must
2601 2602
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2603
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2604 2605 2606
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2607 2608 2609 2610 2611
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduozh 已提交
2612
        param_attr (ParamAttr): The parameter attribute for learnable parameters/weights
C
chengduozh 已提交
2613 2614 2615 2616
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
C
chengduozh 已提交
2617
            If it is set to False, no bias will be added to the output units.
C
chengduozh 已提交
2618 2619 2620
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2621 2622
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduozh 已提交
2623 2624
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2625 2626
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2627 2628

    Returns:
2629
        Variable: The tensor variable storing the convolution transpose result.
2630 2631

    Raises:
2632 2633
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2634 2635 2636 2637

    Examples:
       .. code-block:: python

2638 2639
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2640
    """
2641 2642
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2643
    if not isinstance(input, Variable):
2644
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2645 2646
    input_channel = input.shape[1]

2647 2648 2649
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2650

C
chengduoZH 已提交
2651 2652 2653
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2654 2655 2656 2657 2658 2659
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2660 2661 2662
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2663

2664
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2665
                         padding[0] - 1) // dilation[0] + 1
2666
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2667
                         padding[1] - 1) // dilation[1] + 1
2668
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2669
                         padding[2] - 1) // dilation[2] + 1
2670
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2671
    else:
2672 2673
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2674

2675
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2676
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2677 2678 2679
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2680
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2681
    helper.append_op(
2682
        type=l_type,
Y
Yu Yang 已提交
2683 2684
        inputs={'Input': [input],
                'Filter': [img_filter]},
2685
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2686 2687 2688 2689
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2690
            'groups': groups,
C
chengduoZH 已提交
2691 2692
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2693

2694 2695
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2696
    return out
Y
yangyaming 已提交
2697 2698


Y
yangyaming 已提交
2699
def sequence_expand(x, y, ref_level=-1, name=None):
2700
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2701 2702 2703 2704
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2705 2706 2707 2708 2709

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2710
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2711
                x.data = [[a], [b], [c], [d]]
2712 2713 2714
                x.dims = [4, 1]

            y is a LoDTensor:
2715 2716
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2717

Y
yangyaming 已提交
2718
            ref_level: 0
2719

Y
yangyaming 已提交
2720
            then output is a 1-level LoDTensor:
2721
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2722
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2723 2724 2725 2726
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2727
                x.data = [[a], [b], [c]]
2728 2729 2730
                x.dims = [3, 1]

            y is a LoDTensor:
2731
                y.lod = [[2, 0, 3]]
2732

Y
yangyaming 已提交
2733
            ref_level: -1
2734

Y
yangyaming 已提交
2735 2736 2737
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2738 2739 2740
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2741 2742
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2743
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2744
                        will be named automatically.
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2755
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2756
    """
Y
yangyaming 已提交
2757
    helper = LayerHelper('sequence_expand', input=x, **locals())
2758 2759 2760
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2761 2762 2763 2764 2765
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2766
    return tmp
2767 2768


C
chengduo 已提交
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2834 2835 2836 2837 2838 2839 2840
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2841 2842 2843
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2844
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
2845 2846 2847 2848
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
F
fengjiayi 已提交
2849
            longest original sequence."
M
minqiyang 已提交
2850

F
fengjiayi 已提交
2851
    Returns:
M
minqiyang 已提交
2852
        Variable: The padded sequence batch and the original lengths before
2853
                  padding. All sequences has the same length.
M
minqiyang 已提交
2854

F
fengjiayi 已提交
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2869 2870 2871 2872 2873
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2874 2875 2876 2877 2878 2879
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2880 2881
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2882
        attrs={'padded_length': maxlen})
2883
    return out, length
F
fengjiayi 已提交
2884 2885


2886 2887 2888 2889 2890 2891 2892 2893 2894
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2895 2896
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2897 2898 2899

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2900 2901

    This layer does the search in beams for one time step. Specifically, it
2902 2903 2904 2905 2906 2907
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2908

2909 2910 2911 2912 2913 2914 2915 2916
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2917

2918
    Args:
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2944

2945
    Returns:
2946 2947
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2948 2949 2950 2951

    Examples:
        .. code-block:: python

2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2980
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2998 2999 3000 3001 3002 3003 3004
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3005

3006 3007 3008 3009 3010 3011 3012 3013 3014
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3015

3016 3017 3018 3019 3020 3021
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3022

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3048 3049 3050 3051
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3052
              param_attr=None,
C
caoying03 已提交
3053 3054
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3055 3056 3057 3058
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3059
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3060

3061
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3062

3063
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3064

3065
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3066 3067 3068

            h_t & = o_t tanh(c_t)

3069 3070 3071 3072 3073 3074
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3075 3076 3077

        .. math::

3078
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3079 3080 3081 3082 3083 3084 3085 3086

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3087
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3088 3089

    Args:
Y
yangyaming 已提交
3090 3091 3092 3093 3094 3095
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3096
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
3097 3098
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
3099 3100
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
3101 3102
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3103 3104

    Returns:
Y
yangyaming 已提交
3105
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3106 3107

    Raises:
3108 3109 3110 3111
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3112 3113 3114 3115 3116 3117

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3118
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3119
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3120
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3137
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3138 3139 3140 3141
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3142 3143
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3144 3145 3146
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3147
    size = cell_t_prev.shape[1]
3148
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3149 3150
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3151
                param_attr=param_attr,
3152
                bias_attr=bias_attr)
Y
yangyaming 已提交
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3165
    return h, c
G
guosheng 已提交
3166 3167


C
caoying03 已提交
3168
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3169
    """
Y
yangyaming 已提交
3170
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3171 3172 3173

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3174
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3175 3176
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3177 3178
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3179
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3180
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3181
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3182 3183
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3184 3185 3186

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3187

G
guosheng 已提交
3188 3189 3190 3191 3192 3193
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3194
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3195 3196 3197 3198
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3199 3200 3201 3202

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3203
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3204 3205 3206
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3207 3208 3209
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3210 3211
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3212 3213 3214 3215 3216
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3217
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3218 3219 3220 3221
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3222 3223


C
caoying03 已提交
3224
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3225
    """
Y
Yibing Liu 已提交
3226
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3227 3228 3229

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3230 3231 3232
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3233
            must be in the range :math:`[-rank(input), rank(input))`. If
3234
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3235
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3236 3237
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3238
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3239
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3240
                       will be named automatically.
G
guosheng 已提交
3241 3242

    Returns:
Y
Yibing Liu 已提交
3243
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3244

G
guosheng 已提交
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3255 3256
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3257 3258 3259 3260 3261 3262 3263

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3264 3265 3266
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3267 3268
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3269 3270 3271 3272 3273
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3274
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3275 3276 3277 3278
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3279 3280


C
caoying03 已提交
3281
def reduce_max(input, dim=None, keep_dim=False, name=None):
3282
    """
Y
yangyaming 已提交
3283
    Computes the maximum of tensor elements over the given dimension.
3284 3285 3286

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3287
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3288 3289 3290
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3291
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3292 3293
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3294
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3295 3296
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3297 3298 3299

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3300

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3312 3313 3314 3315 3316 3317 3318

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3319 3320 3321
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3322 3323
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3324 3325 3326 3327 3328
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3329
            'dim': dim if dim != None else [0],
3330 3331 3332 3333 3334 3335
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3336
def reduce_min(input, dim=None, keep_dim=False, name=None):
3337
    """
Y
yangyaming 已提交
3338
    Computes the minimum of tensor elements over the given dimension.
3339 3340 3341

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3342
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3343 3344 3345
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3346
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3347 3348
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3349
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3350 3351
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3352 3353 3354

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3355

3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3367 3368 3369 3370 3371 3372 3373

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3374 3375 3376
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3377 3378
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3379 3380 3381 3382 3383
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3384
            'dim': dim if dim != None else [0],
3385 3386 3387 3388
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3389 3390


3391 3392 3393 3394 3395 3396
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3397
        dim (list|int|None): The dimensions along which the product is performed. If
3398 3399
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3400 3401
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3402 3403 3404
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3405
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3406
            layer will be named automatically.
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3421
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3422
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3423 3424 3425 3426 3427 3428 3429

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3430 3431 3432
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3433 3434
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3435 3436 3437 3438 3439
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3440
            'dim': dim if dim != None else [0],
3441 3442 3443 3444 3445 3446
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3447
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3448
    """
C
caoying03 已提交
3449
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3450 3451 3452

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3453 3454 3455 3456 3457
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3458
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3459
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3460
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3461 3462
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3463 3464

    Returns:
D
dzhwinter 已提交
3465
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3466 3467 3468 3469 3470 3471 3472 3473 3474

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3475 3476
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3506 3507 3508 3509 3510 3511 3512 3513 3514


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3515
    .. math::
3516 3517

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3518 3519 3520 3521 3522

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3523
        x(Variable|list): The input tensor to l2_normalize layer.
3524
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3525 3526
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3527
        epsilon(float): The epsilon value is used to avoid division by zero, \
3528
            the defalut value is 1e-10.
3529
        name(str|None): A name for this layer(optional). If set None, the layer \
3530
            will be named automatically.
C
caoying03 已提交
3531 3532

    Returns:
3533
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3534 3535

    Examples:
3536

C
caoying03 已提交
3537 3538
        .. code-block:: python

3539 3540 3541 3542
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3543 3544
    """

F
fengjiayi 已提交
3545 3546
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3547 3548
    helper = LayerHelper("l2_normalize", **locals())

3549 3550
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3551
    helper.append_op(
3552 3553 3554 3555
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3556
        attrs={
3557 3558
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3559 3560
        })
    return out
3561 3562


S
sneaxiy 已提交
3563
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3564
    """
Y
ying 已提交
3565 3566 3567 3568
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3569

C
chengduoZH 已提交
3570
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3571
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3572

3573 3574 3575 3576 3577
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3578
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3579

C
chengduoZH 已提交
3580
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3581
      performs in the following way.
G
guosheng 已提交
3582

3583
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3584
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3585
        last two dimensions and a batched matrix multiply supporting broadcast
3586
        applies on the two tensors.
G
guosheng 已提交
3587

Y
ying 已提交
3588 3589
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3590
    removed after matrix multiplication.
G
guosheng 已提交
3591 3592 3593

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3594 3595 3596
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3597
        alpha (float): The scale of output. Default 1.0.
3598
        name(str|None): A name for this layer(optional). If set None, the layer
3599
            will be named automatically.
G
guosheng 已提交
3600 3601

    Returns:
3602
        Variable: The product Tensor variable.
G
guosheng 已提交
3603

G
guosheng 已提交
3604 3605 3606
    Examples:
        .. code-block:: python

3607
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3608 3609
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3610

3611 3612
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3613

3614 3615
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3616

3617 3618
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3619 3620 3621 3622

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3623 3624
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3625

Y
ying 已提交
3626
            # x: [M], y: [N]
3627
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3628
    """
Y
ying 已提交
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3641
            y_shape = y_shape + [1]
Y
ying 已提交
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3658
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3659
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3660
    helper.append_op(
3661 3662 3663 3664
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3665 3666 3667
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3668
            'alpha': float(alpha),
S
sneaxiy 已提交
3669
        })
3670
    return out
3671 3672


3673
def topk(input, k, name=None):
Q
qingqing01 已提交
3674 3675 3676 3677
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3678
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3679 3680 3681 3682 3683 3684
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3706 3707 3708
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3709
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3710
                 of input.
3711
        name(str|None): A name for this layer(optional). If set None, the layer
3712
                       will be named automatically.
F
fengjiayi 已提交
3713
                       Default: None
Q
qingqing01 已提交
3714 3715

    Returns:
3716 3717 3718
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3719
        within the last dimension of input.
Q
qingqing01 已提交
3720

F
fengjiayi 已提交
3721 3722
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3743
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3744
    """
Y
ying 已提交
3745 3746 3747 3748 3749 3750 3751 3752 3753
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3754

Y
ying 已提交
3755
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3756

3757
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3758 3759
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3760
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3761

3762
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3763 3764
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3765

3766 3767 3768
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3769
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3770
                          the length of reference string.
3771
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3772
                                     calculating edit distance.
3773
        name (str): The name of this layer. It is optional.
3774

W
wanghaoshuang 已提交
3775
    Returns:
W
wanghaoshuang 已提交
3776
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3777 3778 3779 3780 3781

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3782
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3783
            cost = fluid.layers.edit_distance(input=x,label=y)
3784
    """
3785
    helper = LayerHelper("edit_distance", **locals())
3786

3787
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3788
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3789 3790 3791 3792 3793 3794 3795
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3796
            attrs={"tokens": ignored_tokens})
3797 3798 3799 3800 3801
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3802
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3803
            attrs={"tokens": ignored_tokens})
3804 3805
        label = erased_label

3806 3807
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3808
    sequence_num = helper.create_tmp_variable(dtype="int64")
3809 3810 3811 3812
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3813 3814
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3815 3816
        attrs={"normalized": normalized})

3817
    return edit_distance_out, sequence_num
3818 3819 3820 3821 3822


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3823

Y
ying 已提交
3824 3825 3826 3827
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3845
        input.lod = [[4, 4]]
3846 3847 3848 3849 3850 3851 3852

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3853
        output.lod = [[2, 1]]
3854 3855 3856

    Args:

Y
ying 已提交
3857 3858 3859 3860 3861 3862 3863 3864 3865
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3866
        name (str): The name of this layer. It is optional.
3867 3868

    Returns:
3869
        Variable: CTC greedy decode result. If all the sequences in result were
3870
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3871 3872 3873 3874 3875

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3876

3877
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3878
    """
3879
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3880
    _, topk_indices = topk(input, k=1)
3881 3882 3883 3884 3885 3886

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3887
        outputs={"Output": [ctc_out]},
3888 3889
        attrs={"merge_repeated": True,
               "blank": blank})
3890
    return ctc_out
3891 3892


F
fengjiayi 已提交
3893
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3894
    """
3895 3896
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3897
    to compute Connectionist Temporal Classification (CTC) loss.
3898 3899
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3900 3901 3902
    input tensor.

    Args:
3903
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3904 3905 3906 3907
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3908
       label (Variable): The ground truth of variable-length sequence,
3909 3910 3911
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3912 3913
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3914 3915 3916
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3917
         follewed by a mean_op.
W
wanghaoshuang 已提交
3918 3919

    Returns:
3920 3921
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3922 3923

    Examples:
3924

W
wanghaoshuang 已提交
3925
        .. code-block:: python
3926

3927 3928 3929
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3930 3931

    """
F
fengjiayi 已提交
3932
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3959 3960 3961
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3962 3963 3964 3965 3966
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3967

3968
            out.lod  = [[0, 1, 3]]
3969 3970 3971 3972

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3973 3974 3975 3976 3977 3978 3979
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3980 3981 3982

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3983 3984

    Returns:
3985

3986 3987 3988 3989 3990
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3991
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3992
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3993 3994 3995 3996 3997 3998 3999 4000 4001
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4002 4003


4004 4005 4006 4007
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4008 4009 4010 4011 4012 4013 4014
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
4015 4016 4017 4018 4019 4020 4021
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4022 4023
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4024
            sample is 1.0.
4025 4026 4027
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
4028

4029
    Returns:
Y
Yibing Liu 已提交
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4057
    """
Y
Yang Yu 已提交
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
4077 4078 4079 4080 4081 4082 4083 4084 4085
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4102
    return cost / (num_neg_samples + 1)
4103 4104


G
guosheng 已提交
4105
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
4106 4107
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4108
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4109 4110 4111 4112 4113 4114 4115 4116 4117
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4118

W
weixing02 已提交
4119
    Args:
M
minqiyang 已提交
4120
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4121 4122 4123 4124 4125
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
4126 4127
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4128
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4129 4130
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4131 4132 4133 4134 4135 4136 4137 4138

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4139 4140 4141
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4142 4143 4144 4145 4146 4147 4148 4149
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4150
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4151 4152 4153 4154 4155
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4156 4157 4158 4159 4160 4161 4162 4163
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4164 4165
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4166
        inputs=inputs,
W
weixing02 已提交
4167 4168 4169 4170 4171 4172
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4173
def transpose(x, perm, name=None):
Y
ying 已提交
4174 4175 4176 4177 4178 4179 4180
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4181 4182 4183
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4184 4185 4186 4187 4188 4189 4190 4191

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4192
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4193 4194
    """

Y
fix ci.  
ying 已提交
4195
    if len(perm) != len(x.shape):
Y
ying 已提交
4196 4197 4198
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4199 4200 4201 4202 4203 4204
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4205 4206

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4207
    out = helper.create_tmp_variable(x.dtype)
4208
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4209
    helper.append_op(
4210
        type='transpose2',
Y
fix ci.  
ying 已提交
4211
        inputs={'X': [x]},
4212 4213
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4214 4215
        attrs={'axis': perm})
    return out
4216 4217


4218 4219 4220 4221 4222 4223 4224
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4225
    """
4226 4227 4228 4229 4230 4231 4232
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4261 4262 4263 4264 4265 4266 4267 4268 4269
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4270 4271 4272
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4273 4274 4275 4276 4277
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4305 4306 4307
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4320
            output.dims = {8, 8}
4321

4322
            output.lod = [[4, 4]]
4323

D
dzhwinter 已提交
4324
     Examples:
4325 4326 4327

        .. code-block:: python

4328 4329
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4330 4331

    """
W
wanghaoshuang 已提交
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4342 4343 4344 4345 4346 4347 4348
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4349
    helper = LayerHelper('im2sequence', **locals())
4350 4351
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4352
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4353
    return out
4354 4355


Y
yuyang18 已提交
4356
@templatedoc()
4357
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4358 4359
    """
    ${comment}
4360 4361

    Args:
Y
yuyang18 已提交
4362
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4363 4364
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4365 4366 4367 4368 4369
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4370
        ${out_comment}.
4371 4372

    Examples:
Y
yuyang18 已提交
4373 4374 4375 4376
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4389
    return helper.append_activation(out)
4390 4391


Y
yuyang18 已提交
4392
@templatedoc()
4393 4394
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4395 4396 4397 4398 4399 4400 4401
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4402 4403

    Args:
Y
yuyang18 已提交
4404 4405
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4406 4407

    Returns:
Y
yuyang18 已提交
4408
        ${out_comment}.
4409 4410
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4411 4412 4413 4414 4415 4416

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4417 4418 4419 4420 4421 4422
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4423 4424


4425 4426 4427 4428
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4429 4430
    """
    **Softmax With Cross Entropy Operator.**
4431

4432 4433 4434 4435
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4436

4437 4438 4439
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4440

4441 4442 4443
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4444

4445
    The equation is as follows:
4446

4447
    1) Hard label (one-hot label, so every sample has exactly one class)
4448

4449 4450 4451 4452
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4453

4454 4455 4456
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4457

4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4470 4471
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4472 4473
                            if soft_label is set to False. Default: -100

4474 4475 4476 4477 4478 4479 4480 4481 4482
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4483 4484
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4495 4496
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4497 4498 4499 4500 4501
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4502 4503
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4504
    For each instance, it computes the smooth L1 loss element by element first
4505
    and then sums all the losses. So the shape of ouput Variable is
4506
    [batch_size, 1].
4507

4508 4509
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4510
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4511
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4512
            L1 loss op with same shape as :attr:`x`.
4513
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4514 4515
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4516
            by this tensor element by element.
4517
        outside_weight (Variable|None): A tensor with rank at least 2. This
4518 4519
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4520
            element by element.
4521
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4522 4523
           scalar with default value 1.0.

4524
    Returns:
4525
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4526 4527 4528 4529 4530

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4531 4532
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4533
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4534
            out = fluid.layers.smooth_l1(x=fc, y=label)
4535
    """
4536

4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4552 4553 4554 4555


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4556
    This layer creates the one-hot representations for input indices.
4557 4558

    Args:
Y
Yibing Liu 已提交
4559 4560
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4561 4562

    Returns:
Y
Yibing Liu 已提交
4563
        Variable: The one-hot representations of input.
4564 4565

    Examples:
C
caoying03 已提交
4566
        .. code-block:: python
4567

Y
Yibing Liu 已提交
4568 4569
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4570 4571 4572 4573 4574 4575 4576 4577 4578
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4579 4580


Y
Yu Yang 已提交
4581
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4582
    """
Y
yi.wu 已提交
4583 4584 4585
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4586 4587 4588 4589 4590 4591

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4592 4593
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4594 4595 4596 4597 4598 4599

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4600 4601
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4602 4603
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4604 4605 4606 4607 4608
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4609
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4610
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4611 4612
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4613 4614
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4615 4616 4617
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4618 4619


4620
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4621
    """
C
caoying03 已提交
4622 4623
    Gives a new shape to the input Tensor without changing its data.

4624 4625 4626 4627 4628
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4629

4630
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4631

4632 4633 4634 4635
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4636
    2. 0 means the actual dimension value is going to be copied from the
4637 4638 4639 4640
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4641 4642

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4643
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4644
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4645

4646
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4647 4648
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4649 4650
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4651
    dimensions.
C
caoying03 已提交
4652

4653
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4654 4655 4656 4657
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4658 4659

    Args:
4660
        x(variable): The input tensor.
C
caoying03 已提交
4661 4662
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4663 4664 4665 4666 4667
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4668
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4669 4670 4671 4672
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4673
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4674

4675 4676
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4677

X
Xin Pan 已提交
4678 4679 4680
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4681 4682
    Examples:
        .. code-block:: python
G
guosheng 已提交
4683

4684
            data = fluid.layers.data(
4685
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4686
            reshaped = fluid.layers.reshape(
4687
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4688 4689 4690
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4691
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4692 4693 4694 4695 4696
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4697

4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4713
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4714
    out = helper.create_tmp_variable(dtype=x.dtype)
4715
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4716
    helper.append_op(
4717
        type="reshape2",
X
Xin Pan 已提交
4718
        inputs=inputs,
D
dzhwinter 已提交
4719
        attrs={"shape": shape},
4720 4721
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4722

D
dzhwinter 已提交
4723
    return helper.append_activation(out)
4724

4725

4726
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4727
    """
M
minqiyang 已提交
4728 4729 4730
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4731
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4732

Y
Yibing Liu 已提交
4733 4734
    Examples:
    Case 1:
M
minqiyang 已提交
4735
      Given
Y
Yibing Liu 已提交
4736 4737 4738 4739 4740 4741 4742 4743
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
4744
        and
Y
Yibing Liu 已提交
4745 4746 4747
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
4748

Y
Yibing Liu 已提交
4749
    Args:
4750
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4751
        axes (list): List of integers, indicating the dimensions to be squeezed.
4752
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4753 4754 4755 4756 4757 4758 4759 4760

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4761
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4762 4763
    """
    helper = LayerHelper("squeeze", **locals())
4764
    out = helper.create_tmp_variable(dtype=input.dtype)
4765
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4766
    helper.append_op(
4767
        type="squeeze2",
4768
        inputs={"X": input},
Y
Yibing Liu 已提交
4769
        attrs={"axes": axes},
4770 4771
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4772

4773 4774 4775
    return out


4776
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4777
    """
M
minqiyang 已提交
4778 4779 4780
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
4781

M
minqiyang 已提交
4782 4783
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
4784
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
4785

Y
Yibing Liu 已提交
4786
    Args:
4787
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4788
        axes (list): List of integers, indicating the dimensions to be inserted.
4789
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4790 4791 4792 4793 4794 4795 4796 4797

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4798
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4799 4800
    """
    helper = LayerHelper("unsqueeze", **locals())
4801
    out = helper.create_tmp_variable(dtype=input.dtype)
4802
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4803
    helper.append_op(
4804
        type="unsqueeze2",
4805
        inputs={"X": input},
Y
Yibing Liu 已提交
4806
        attrs={"axes": axes},
4807 4808
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4809

4810 4811
    return out

4812

Y
yangyaming 已提交
4813
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4814
    """
Y
Yibing Liu 已提交
4815
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4816 4817 4818 4819
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4820
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4821 4822 4823 4824 4825 4826

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4827
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4828 4829 4830
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4831
            target_lod: [4, 2]
Y
yangyaming 已提交
4832 4833

            then we get a 1-level LoDTensor:
4834
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4835 4836 4837 4838 4839 4840
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4841
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4842 4843 4844 4845
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4846
                y.data = [[2, 4]]
Y
yangyaming 已提交
4847 4848 4849
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4850
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4851 4852 4853 4854 4855 4856
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4857
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4858 4859 4860 4861
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4862
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4863 4864 4865 4866
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4867
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4868 4869 4870 4871 4872
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4873
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4874
                           from :attr:`y`.
Y
yangyaming 已提交
4875
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4876
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4877 4878

    Returns:
Y
Yibing Liu 已提交
4879
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4880 4881

    Raises:
Y
Yibing Liu 已提交
4882
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4918
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4947 4948
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4976 4977 4978 4979


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4980
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4981
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4982

G
guosheng 已提交
4983 4984 4985 4986
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5009
                         The length of :attr:paddings must be
G
guosheng 已提交
5010 5011 5012 5013 5014 5015 5016 5017 5018 5019
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5020

G
guosheng 已提交
5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5035 5036


C
chengduo 已提交
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5117 5118 5119 5120 5121 5122 5123
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5124 5125
    called label-smoothing regularization (LSR).

5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5149
                              be :math:`(1, class\_num)`.
5150 5151
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5152
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5180 5181


Y
yi.wu 已提交
5182
@templatedoc()
5183 5184
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5185
    ${comment}
5186 5187

    Args:
Y
yi.wu 已提交
5188 5189
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5190 5191 5192
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5193 5194

    Returns:
Y
update  
yi.wu 已提交
5195
        Variable: ${out_comment}.
5196 5197

    Examples:
5198 5199
        .. code-block:: python

5200
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5246 5247
        .. code-block:: python

W
whs 已提交
5248 5249 5250 5251
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5252
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5253 5254 5255 5256 5257 5258
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5259 5260


5261 5262 5263 5264 5265
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5266
    """
Q
qiaolongfei 已提交
5267
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5268

5269
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5270 5271 5272
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5273

5274
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5275

5276
    Args:
5277
        input (Variable): The input tensor of image resize layer,
5278 5279
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5280
        out_shape(list|tuple|Variable|None): Output shape of image resize
5281 5282
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5283
        scale(float|None): The multiplier for the input height or width.
5284 5285 5286
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5287 5288
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5289 5290
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5291 5292

    Returns:
Q
update  
qiaolongfei 已提交
5293 5294
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5295

5296 5297 5298
    Examples:
        .. code-block:: python

5299
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5300
    """
5301 5302 5303 5304
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5305 5306
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5307 5308
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5309 5310 5311 5312

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5313 5314 5315
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5316
    if out_shape is not None:
B
baiyf 已提交
5317 5318 5319
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5320 5321 5322 5323 5324 5325
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5326 5327 5328 5329
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5330 5331
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5332
        type=resample_methods[resample],
5333
        inputs=inputs,
5334 5335 5336 5337
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5338 5339


Y
yuyang18 已提交
5340
@templatedoc(op_type="bilinear_interp")
5341 5342
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5343 5344 5345 5346 5347 5348
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5349

Y
yuyang18 已提交
5350 5351 5352 5353 5354 5355 5356 5357
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5358 5359 5360 5361 5362 5363 5364
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5365 5366 5367
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5368 5369 5370 5371 5372 5373 5374
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5375
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5376

5377
    Returns:
Q
update  
qiaolongfei 已提交
5378
        Variable: The output is a 4-D tensor of the shape
5379
        (num_batches, channls, out_h, out_w).
5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5390 5391 5392
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5393 5394 5395
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5396 5397
def gather(input, index):
    """
Q
qiaolongfei 已提交
5398 5399
    **Gather Layer**

5400
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5401 5402 5403 5404
    of X indexed by `index` and concatenate them together.

    .. math::

5405
        Out = X[Index]
W
whs 已提交
5406 5407 5408 5409 5410 5411 5412


    .. code-block:: text


                Given:

5413 5414
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5425
        input (Variable): The source input with rank>=1.
W
whs 已提交
5426 5427 5428 5429 5430 5431
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5432

W
whs 已提交
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5562

5563 5564 5565
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5566
    """
F
stash  
fengjiayi 已提交
5567
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5568
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5569
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5570
    if seed is None:
5571
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5572
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5573
    if isinstance(seed, int):
F
fengjiayi 已提交
5574 5575 5576 5577 5578
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5579 5580 5581 5582
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5583
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5584 5585
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5586 5587
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5588
    return out
W
whs 已提交
5589 5590


5591
def log(x, name=None):
W
wanghaoshuang 已提交
5592 5593 5594 5595 5596
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5597
        Out = \\ln(x)
W
wanghaoshuang 已提交
5598 5599

    Args:
5600
        x (Variable): Input tensor.
5601 5602
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5603 5604 5605 5606 5607 5608 5609 5610

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5611
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5612 5613
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5614
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5615
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5616
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5617 5618 5619
    return out


5620
def relu(x, name=None):
W
wanghaoshuang 已提交
5621 5622
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5623
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5624 5625 5626 5627
    the tensor elementwise.

    .. math::

5628
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5629 5630

    Args:
5631
        x (Variable): The input tensor.
5632 5633
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5634 5635 5636 5637 5638 5639 5640 5641

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5642
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5643 5644
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5645
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5646
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5647
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5648
    return out
5649 5650


W
whs 已提交
5651 5652 5653
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5654 5655 5656 5657
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5658
    .. math::
5659 5660

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5661

5662
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5663 5664 5665 5666 5667
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5668
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5669
                           Its shape should be the same as input.
5670
        num_classes (int): The possible number of labels.
W
whs 已提交
5671 5672 5673 5674

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5675
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5676 5677 5678 5679

    Examples:

        .. code-block:: python
5680

W
whs 已提交
5681 5682 5683 5684 5685 5686 5687 5688 5689
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5690 5691
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5692
        outputs={
W
whs 已提交
5693 5694 5695
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5696 5697 5698
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5773
                    isinstance(shape, Variable)):
5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5807

5808 5809
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5810

5811 5812 5813 5814
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5815

5816 5817 5818 5819 5820
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5821 5822 5823

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5868 5869


W
whs 已提交
5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
5884

W
whs 已提交
5885 5886
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
5887

W
whs 已提交
5888
      Case 0:
M
minqiyang 已提交
5889

W
whs 已提交
5890 5891 5892
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
5893

W
whs 已提交
5894 5895 5896
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
5897

W
whs 已提交
5898
      Case 1:
M
minqiyang 已提交
5899

W
whs 已提交
5900 5901
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
5902

W
whs 已提交
5903 5904 5905
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
5906

W
whs 已提交
5907
      Case 2:
M
minqiyang 已提交
5908

W
whs 已提交
5909 5910
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
5911

W
whs 已提交
5912 5913 5914
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
5915 5916


W
whs 已提交
5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6114
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6115
                        will be named automatically.
J
jerrywgz 已提交
6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6234

6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6245 6246
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6262
        ValueError: If axis is not in range [0, rank(x)].
6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6280
    x_shape = helper.create_tmp_variable(x.dtype)
6281
    helper.append_op(
6282
        type='flatten2',
6283
        inputs={"X": x},
6284 6285
        outputs={'Out': out,
                 'XShape': x_shape},
6286 6287
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6288 6289


C
chenweihang 已提交
6290
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6291
    """
C
chenweihang 已提交
6292
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6293
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6294 6295
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6296

C
chenweihang 已提交
6297 6298 6299 6300
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6301
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6302 6303 6304 6305 6306 6307
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6308
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6309 6310 6311
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6312 6313 6314
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6326
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6327 6328 6329 6330 6331 6332
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
6333

6334

S
sneaxiy 已提交
6335 6336 6337 6338 6339 6340 6341 6342 6343
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6344

S
sneaxiy 已提交
6345
    .. math::
6346

S
sneaxiy 已提交
6347 6348 6349
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6350
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6351 6352 6353 6354
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6355 6356 6357
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6358 6359
    Returns:
        Variable: The output sequence mask.
6360

S
sneaxiy 已提交
6361 6362
    """

Q
qingqing01 已提交
6363
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6364 6365 6366 6367 6368
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6369 6370 6371
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6372 6373
        outputs={'Y': out},
        attrs={
6374
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6375 6376 6377
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6378 6379


X
Xin Pan 已提交
6380
def stack(x, axis=0):
S
sneaxiy 已提交
6381 6382 6383 6384
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6385 6386 6387 6388 6389 6390 6391

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6392
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6393
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6394 6395

    Args:
6396
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6397
        axis (int|None): The axis along which all inputs are stacked.
6398

S
sneaxiy 已提交
6399 6400
    Returns:
        Variable: The stacked variable.
6401

S
sneaxiy 已提交
6402 6403
    """

X
Xin Pan 已提交
6404 6405 6406 6407 6408 6409
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

S
sneaxiy 已提交
6410
    out = helper.create_tmp_variable(dtype=x[0].dtype)
X
Xin Pan 已提交
6411
    helper.append_op(
S
sneaxiy 已提交
6412 6413
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6414

X
Xin Pan 已提交
6415
    return out
D
dzhwinter 已提交
6416 6417 6418 6419 6420 6421 6422


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6423

D
dzhwinter 已提交
6424 6425 6426
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6427
    raised.
D
dzhwinter 已提交
6428 6429

    Args:
M
minqiyang 已提交
6430
        x (Variable): Input variable.
D
dzhwinter 已提交
6431 6432
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6433

D
dzhwinter 已提交
6434 6435
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6436

D
dzhwinter 已提交
6437 6438 6439 6440 6441 6442 6443 6444 6445 6446
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
S
sneaxiy 已提交
6447 6448
    for _ in xrange(num):
        outs.append(helper.create_tmp_variable(dtype=x.dtype))
D
dzhwinter 已提交
6449 6450 6451 6452 6453 6454 6455 6456

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6469

W
whs 已提交
6470 6471 6472 6473
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6474

W
whs 已提交
6475
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6476

W
whs 已提交
6477
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6478

W
whs 已提交
6479 6480 6481 6482
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6483

W
whs 已提交
6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
G
fix  
gongweibao 已提交
6507 6508 6509 6510 6511


from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6512
@templatedoc()
G
fix  
gongweibao 已提交
6513 6514 6515 6516 6517 6518 6519 6520 6521
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6522
    ${comment}
G
fix  
gongweibao 已提交
6523 6524

    Args:
G
gongweibao 已提交
6525 6526 6527
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6528
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6529 6530 6531
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6532 6533
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6534
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6556 6557


G
gongweibao 已提交
6558
@templatedoc()
6559
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6560
    """
G
gongweibao 已提交
6561
    ${comment}
G
fix  
gongweibao 已提交
6562 6563

    Args:
G
gongweibao 已提交
6564 6565 6566 6567
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6568 6569 6570
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6571
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586

    """

    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
6587
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6588 6589 6590 6591 6592
        })

    return out


G
gongweibao 已提交
6593
@templatedoc()
G
fix  
gongweibao 已提交
6594
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6595
    """
G
gongweibao 已提交
6596
    ${comment}
G
fix  
gongweibao 已提交
6597 6598

    Args:
G
gongweibao 已提交
6599 6600 6601 6602
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6603
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6604 6605

    Returns:
G
gongweibao 已提交
6606
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6607 6608 6609 6610

    """

    helper = LayerHelper('sampling_id', **locals())
G
fix  
gongweibao 已提交
6611
    out = helper.create_tmp_variable(dtype)
G
fix  
gongweibao 已提交
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6623
@templatedoc()
G
fix  
gongweibao 已提交
6624 6625 6626 6627 6628 6629 6630 6631 6632
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6633
    ${comment}
G
fix  
gongweibao 已提交
6634 6635

    Args:
G
gongweibao 已提交
6636 6637
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6638
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6639 6640 6641 6642
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6643
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6644 6645

    Returns:
G
gongweibao 已提交
6646
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
6669
@templatedoc()
6670
def sum(x):
G
fix  
gongweibao 已提交
6671
    """
G
gongweibao 已提交
6672
    ${comment}
G
fix  
gongweibao 已提交
6673 6674

    Args:
G
gongweibao 已提交
6675
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
6676 6677

    Returns:
G
gongweibao 已提交
6678
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6679 6680 6681
    """

    helper = LayerHelper('sum', **locals())
G
fix  
gongweibao 已提交
6682
    out = helper.create_tmp_variable(dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
6683 6684 6685 6686
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
6687
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
6688 6689 6690 6691

    return out


G
gongweibao 已提交
6692
@templatedoc()
G
fix  
gongweibao 已提交
6693 6694
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
6695
    ${comment}
G
fix  
gongweibao 已提交
6696 6697

    Args:
G
gongweibao 已提交
6698 6699 6700 6701
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
6702 6703

    Returns:
G
gongweibao 已提交
6704
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6705 6706 6707 6708

    """

    helper = LayerHelper('slice', **locals())
G
fix  
gongweibao 已提交
6709
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
6721
@templatedoc()
G
fix  
gongweibao 已提交
6722 6723
def shape(input):
    """
G
gongweibao 已提交
6724
    ${comment}
G
fix  
gongweibao 已提交
6725 6726

    Args:
G
gongweibao 已提交
6727
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
6728 6729

    Returns:
G
gongweibao 已提交
6730
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6731 6732 6733 6734

    """

    helper = LayerHelper('shape', **locals())
G
fix  
gongweibao 已提交
6735
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6736
    helper.append_op(
G
fix  
gongweibao 已提交
6737
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
6738 6739

    return out
G
merge  
gongweibao 已提交
6740 6741


S
sneaxiy 已提交
6742 6743 6744 6745 6746 6747 6748 6749
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
6750 6751 6752 6753 6754 6755
    name = helper.kwargs.get('name', None)
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6756

S
sneaxiy 已提交
6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
6768
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
6769 6770 6771 6772 6773 6774 6775 6776
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
6777
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
6778
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
6779 6780 6781 6782 6783 6784

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
6785 6786 6787 6788 6789
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6790 6791 6792 6793 6794 6795 6796 6797 6798 6799

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
6800
    return helper.append_activation(out)
S
sneaxiy 已提交
6801 6802


6803
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6804 6805 6806
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


6807
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6808 6809 6810
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


6811
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6812 6813 6814
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


6815
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6816 6817 6818
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


6819
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6820 6821 6822
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


6823
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6824 6825 6826
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


6827
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
6839 6840
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
6841
        ])
M
minqiyang 已提交
6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003


def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
    helper = LayerHelper(op_name, **locals())

    if binary_op:
        assert x.dtype == y.dtype

    if out is None:
        if name is None:
            out = helper.create_tmp_variable(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
def logical_and(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_or(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_xor(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_not(x, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out