framework.py 205.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
S
sneaxiy 已提交
50 51
    'cuda_places',
    'cpu_places',
52
    'xpu_places',
S
sneaxiy 已提交
53
    'cuda_pinned_places',
L
lujun 已提交
54
    'in_dygraph_mode',
C
chengduo 已提交
55
    'is_compiled_with_cuda',
56
    'is_compiled_with_xpu',
57
    'Variable',
58
    'require_version',
59
    'device_guard',
G
guofei 已提交
60 61
    'set_flags',
    'get_flags',
62
]
Y
Yu Yang 已提交
63

Q
qiaolongfei 已提交
64 65 66 67
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
68 69
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
70
_dygraph_tracer_ = None
71
_global_expected_place_ = None
72
_current_device = None
73 74
global_prog_seed = 0

75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
183
def in_dygraph_mode():
L
lujun 已提交
184
    """
185

186 187 188 189 190 191 192
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
193 194

    Returns:
195
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
196 197 198 199

    Examples:
        .. code-block:: python

200 201 202 203 204 205 206 207
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
208 209

    """
L
lujun 已提交
210
    return _dygraph_tracer_ is not None
211 212


213 214 215
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
216
        ), "We don't support %s in imperative mode" % func.__name__
217 218 219 220 221 222 223 224
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
225 226 227 228 229 230 231 232 233
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
234
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
235 236 237 238 239
        return func(*args, **kwargs)

    return __impl__


240 241 242 243 244 245
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
246
# same base class.
247 248 249
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
250 251 252 253 254
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
255 256 257 258

    return __impl__


T
tangwei12 已提交
259 260
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


278 279
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
280
static_only = wrap_decorator(_static_only_)
281
fake_interface_only = wrap_decorator(_fake_interface_only_)
282 283


L
lujun 已提交
284 285
def _dygraph_tracer():
    return _dygraph_tracer_
286

W
Wu Yi 已提交
287

M
minqiyang 已提交
288
def _current_expected_place():
289 290 291
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
292 293 294 295 296 297 298 299 300 301 302
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
319 320


L
Leo Chen 已提交
321 322 323 324
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
325

L
Leo Chen 已提交
326 327 328 329 330 331 332 333 334 335 336 337
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
338
def _cpu_num():
339
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
340 341 342 343 344 345 346 347
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
348
        os.environ['CPU_NUM'] = str(1)
349
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
350 351 352 353 354 355 356 357 358 359
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
360 361


362 363 364 365 366 367 368 369 370
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
386 387 388 389
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

390
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
391 392 393 394

    Examples:
        .. code-block:: python

395 396
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
397 398 399 400
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
401
def cuda_places(device_ids=None):
L
lujun 已提交
402
    """
403 404 405 406
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
407
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
408 409

    If :code:`device_ids` is None, environment variable of
410
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
411
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
412
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
413
    If :code:`FLAGS_selected_gpus` is not set, all visible
414
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
415 416

    If :code:`device_ids` is not None, it should be the device
417
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
418
    the returned list would be 
C
Chen Weihang 已提交
419
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
420

421
    Parameters:
422
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
423 424

    Returns:
C
Chen Weihang 已提交
425
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
426 427 428 429

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
430 431
            import paddle
            import paddle.static as static
T
tangwei12 已提交
432

433 434
            # required: gpu
            
C
Chen Weihang 已提交
435 436 437
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
438 439

    """
S
sneaxiy 已提交
440 441 442
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
443
        device_ids = _cuda_ids()
S
sneaxiy 已提交
444 445 446 447 448
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
    This function creates a list of :code:`paddle.XPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_xpus` would be checked first. For example, if
    :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
    be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    If :code:`FLAGS_selected_xpus` is not set, all visible
    xpu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
471
        
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
487
def cpu_places(device_count=None):
L
lujun 已提交
488
    """
C
Chen Weihang 已提交
489
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
490

S
add doc  
sneaxiy 已提交
491 492
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
493 494
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
495 496
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
497

498 499
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
500 501

    Returns:
C
Chen Weihang 已提交
502
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
503 504 505 506

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
507 508
            import paddle
            import paddle.static as static
T
tangwei12 已提交
509

C
Chen Weihang 已提交
510 511 512
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
513 514
    """

S
sneaxiy 已提交
515 516 517 518 519 520
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
521
    """
522
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
523 524 525

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
526 527 528 529
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
530

531 532
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
533 534

    Returns:
535
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
536 537 538 539

    Examples:
        .. code-block:: python

540
            import paddle.fluid as fluid
L
lujun 已提交
541 542 543 544 545
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
546 547 548
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
549 550
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
551 552


553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
579
@signature_safe_contextmanager
580 581
def name_scope(prefix=None):
    """
582 583
    :api_attr: Static Graph

584
    Generate hierarchical name prefix for the operators in Static Graph.
585

T
Tao Luo 已提交
586 587 588
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
589
        Don't use it in dygraph, since it will cause memory leak.
590 591

    Args:
T
Tao Luo 已提交
592
        prefix(str, optional): prefix. Default is none.
593 594 595

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
596

597 598 599
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
600
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
601
             b = a + 1
602
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
603
                c = b * 1
604
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
605
                d = c / 1
606 607 608
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
609 610 611
                g = f - 1

          # Op are created in the default main program.  
612
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
628 629
    """
    # TODO(panyx0718): Only [0-9a-z].
630
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
631 632 633
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
634
        assert prefix, "namescope prefix can not be empty."
635 636
        global _name_scope
        _name_scope = _name_scope.child(prefix)
637 638 639 640
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
641 642 643 644 645 646 647 648 649 650 651 652


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
653 654 655
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
656 657 658 659


def grad_var_name(var_name):
    """
660 661
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
662 663 664
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
665

666
def convert_np_dtype_to_dtype_(np_dtype):
667 668
    """
    Convert the data type in numpy to the data type in Paddle
669

670
    Args:
671
        np_dtype(np.dtype): the data type in numpy.
672

673 674
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
675 676

    """
677 678
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
679
        return core.VarDesc.VarType.FP32
680
    elif dtype == np.float64:
681
        return core.VarDesc.VarType.FP64
682
    elif dtype == np.float16:
683
        return core.VarDesc.VarType.FP16
684
    elif dtype == np.int32:
685
        return core.VarDesc.VarType.INT32
686
    elif dtype == np.int16:
687
        return core.VarDesc.VarType.INT16
688
    elif dtype == np.int64:
689
        return core.VarDesc.VarType.INT64
690
    elif dtype == np.bool:
691
        return core.VarDesc.VarType.BOOL
692
    elif dtype == np.uint16:
693 694 695
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
696 697
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
698 699
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
700 701 702 703
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
704
    else:
M
minqiyang 已提交
705
        raise ValueError("Not supported numpy dtype %s" % dtype)
706 707 708


def dtype_is_floating(dtype):
709 710 711
    """
    Check the data type is floating or not.
    Args:
712
        dtype(np.dtype|core.VarDesc.VarType): data type.
713 714 715 716 717
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
718
    if not isinstance(dtype, core.VarDesc.VarType):
719 720
        dtype = convert_np_dtype_to_dtype_(dtype)

721 722 723 724
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
725 726


Y
Yang Yang(Tony) 已提交
727
def _debug_string_(proto, throw_on_error=True):
728 729 730 731 732 733 734 735 736 737 738
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
739
    error_fields = list()
Y
Yang Yang(Tony) 已提交
740
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
741 742
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
743 744 745
    return proto.__str__()


746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
783
class Variable(object):
784
    """
J
Jiabin Yang 已提交
785
    **Notes**:
786
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
787

788 789
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
790 791 792
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
793
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
794 795
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
796

797
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
798
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
799

T
tianshuo78520a 已提交
800
    Most of a Variable's member variables can be set to be None. It mean
801
    it is not available or will be specified later.
802

803
    Examples:
804 805
        In Static Graph Mode:

806 807
        .. code-block:: python

808
            import paddle.fluid as fluid
809
            cur_program = fluid.Program()
810 811 812 813
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
814
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
815 816 817 818 819 820 821 822 823

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

824 825
    """

Y
Yu Yang 已提交
826 827
    def __init__(self,
                 block,
Y
Yu Yang 已提交
828
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
829 830 831 832
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
833
                 capacity=None,
Q
QI JUN 已提交
834
                 persistable=None,
F
fengjiayi 已提交
835
                 error_clip=None,
Y
Yu Yang 已提交
836
                 stop_gradient=False,
F
fengjiayi 已提交
837
                 is_data=False,
H
Huihuang Zheng 已提交
838
                 need_check_feed=False,
H
hong 已提交
839
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
840
                 **kwargs):
Y
Yu Yang 已提交
841 842
        self.block = block
        if name is None:
Y
Yu Yang 已提交
843
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
844

Y
Yu Yang 已提交
845
        if dtype is not None:
846
            if not isinstance(dtype, core.VarDesc.VarType):
847
                dtype = convert_np_dtype_to_dtype_(dtype)
848

H
hong 已提交
849 850
        self.belong_to_optimizer = belong_to_optimizer

851 852 853 854 855
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
856

857 858 859
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
860

861 862 863
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
864 865
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
866 867
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
868

869
        if shape is not None:
870
            if is_new_var:
871 872 873 874 875 876
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
877 878
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
879 880 881 882 883 884 885
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
886 887
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
888 889 890 891 892 893 894 895 896
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
897 898
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
899 900 901 902 903 904 905 906 907
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
908 909
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
910 911
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
912

913 914
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
915

916 917 918 919 920 921 922
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
923

924 925 926 927
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
928

929
    @fake_interface_only
930 931
    def detach(self):
        """
J
Jiabin Yang 已提交
932
        **Notes**:
T
tianshuo78520a 已提交
933
            **This API is ONLY available in Dygraph mode**
934

935
        Returns a new Variable, detached from the current graph.
936

937
        Returns:
J
Jiabin Yang 已提交
938
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
939

940

941 942 943 944 945
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
946
                from paddle.fluid.dygraph import Linear
947 948 949 950
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
951
                    linear = Linear(32, 64)
952
                    data = to_variable(data)
953
                    x = linear(data)
954 955 956
                    y = x.detach()

        """
957
        pass
958

959
    @fake_interface_only
960
    def numpy(self):
961
        """
J
Jiabin Yang 已提交
962
        **Notes**:
T
tianshuo78520a 已提交
963
            **This API is ONLY available in Dygraph mode**
964

J
Jiabin Yang 已提交
965
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
966 967 968 969 970

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
971
            ndarray: dtype is same as current Variable
972 973 974 975 976 977

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
978
                from paddle.fluid.dygraph import Linear
979 980 981 982
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
983
                    linear = Linear(32, 64)
984
                    data = to_variable(data)
985
                    x = linear(data)
986 987 988
                    print(x.numpy())

        """
989
        pass
990

991
    @fake_interface_only
992
    def backward(self, retain_graph=False):
993
        """
J
Jiabin Yang 已提交
994
        **Notes**:
T
tianshuo78520a 已提交
995
            **This API is ONLY available in Dygraph mode**
996

997
        Run backward of current Graph which starts from current Tensor.
998

J
Jiabin Yang 已提交
999
        Args:
1000 1001 1002 1003
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1004

J
Jiabin Yang 已提交
1005 1006
        Returns:
            NoneType: None
1007 1008 1009 1010 1011

        Examples:
            .. code-block:: python

                import numpy as np
1012 1013
                import paddle
                paddle.disable_static()
1014 1015

                x = np.ones([2, 2], np.float32)
1016 1017 1018 1019 1020 1021 1022
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1023 1024
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1025
                loss.backward()
1026 1027

        """
1028
        pass
1029

1030
    @fake_interface_only
1031
    def gradient(self):
1032
        """
J
Jiabin Yang 已提交
1033
        **Notes**:
T
tianshuo78520a 已提交
1034
            **This API is ONLY available in Dygraph mode**
1035 1036 1037

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1038
        Returns:
1039
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1040 1041 1042 1043 1044 1045 1046

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1047
                # example1: return ndarray
1048 1049 1050 1051 1052 1053 1054 1055 1056
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1057
                    loss2.backward()
1058 1059
                    print(loss2.gradient())

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1073
        """
1074
        pass
1075

1076
    @fake_interface_only
1077
    def clear_gradient(self):
1078
        """
J
Jiabin Yang 已提交
1079
        **Notes**:
T
tianshuo78520a 已提交
1080
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1081 1082

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1083

J
Jiabin Yang 已提交
1084
        Clear  (set to ``0`` ) the Gradient of Current Variable
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1103
                    loss2.backward()
1104 1105 1106 1107 1108
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1109
        pass
X
Xin Pan 已提交
1110

1111 1112 1113 1114
    @fake_interface_only
    def register_hook(self, hook):
        pass

1115
    def __str__(self):
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1132 1133
                import paddle
                import paddle.static as static
1134

1135 1136 1137
                paddle.enable_static()

                cur_program = static.Program()
1138 1139 1140 1141 1142 1143
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1144 1145
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1146
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1147 1148
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1149 1150
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1151
        else:
1152 1153
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1167

F
update  
fengjiayi 已提交
1168
    def to_string(self, throw_on_error, with_details=False):
1169 1170 1171
        """
        Get debug string.

J
Jiabin Yang 已提交
1172 1173 1174 1175 1176
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1177

1178 1179
        Returns:
            str: The debug string.
1180 1181 1182 1183 1184

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1185
                import paddle
1186

1187
                paddle.enable_static()
1188 1189 1190 1191 1192
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1193
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1194
                print("=============with detail===============")
1195
                print(new_variable.to_string(True, True))
1196
        """
F
update  
fengjiayi 已提交
1197 1198
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1199
        protostr = self.desc.serialize_to_string()
1200
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1201 1202 1203 1204
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1205 1206 1207
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1208
        return res_str
1209 1210 1211

    __repr__ = __str__

1212
    @property
1213
    def stop_gradient(self):
J
Jiabin Yang 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1229 1230
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1231 1232 1233
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1234 1235
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1236 1237 1238 1239
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1240
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1241 1242
                assert (out1.gradient() == 0).all()
        """
1243
        return self._stop_gradient
1244

1245 1246
    @stop_gradient.setter
    def stop_gradient(self, s):
1247
        self._stop_gradient = s
1248

1249 1250
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1272
        return self.desc.persistable()
1273

Y
Yu Yang 已提交
1274 1275
    @persistable.setter
    def persistable(self, p):
1276
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1277

Y
Yu Yang 已提交
1278 1279
    @property
    def name(self):
J
Jiabin Yang 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1296
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1297

1298 1299 1300 1301 1302 1303 1304 1305
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
T
tangwei12 已提交
1306

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1318 1319
    @name.setter
    def name(self, new_name):
1320
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1321

Y
Yu Yang 已提交
1322 1323
    @property
    def shape(self):
J
Jiabin Yang 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1341
        # convert to tuple, make it as same as numpy API.
1342
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1343 1344

    @property
F
fengjiayi 已提交
1345
    def dtype(self):
J
Jiabin Yang 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1362
        return self.desc.dtype()
Y
Yu Yang 已提交
1363 1364 1365

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1387 1388 1389
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1390
        return self.desc.lod_level()
Y
Yu Yang 已提交
1391

Y
Yu Yang 已提交
1392 1393
    @property
    def type(self):
J
Jiabin Yang 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1410
        return self.desc.type()
Y
Yu Yang 已提交
1411

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1446
    def _set_error_clip(self, error_clip):
1447 1448 1449 1450 1451 1452 1453 1454 1455
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1456 1457
        self.error_clip = error_clip

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1498
            raise ValueError("slice step can not be zero")
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1574
    def _cloneVar(self, copy=False):
1575 1576
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1577 1578
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1579 1580 1581 1582
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1583
        new_var = self._cloneVar()
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1594
        new_var = self._cloneVar()
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1605
                return self._cloneVar(True)
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1624
                return self._cloneVar(True)
1625
            index = int(item)
1626
            if (index > 0 and index >= self.shape[axis]) \
1627 1628 1629 1630 1631 1632 1633
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1634
        return _getitem_impl_(self, item)
1635

1636
    def __setitem__(self, item, value):
1637
        return _setitem_impl_(self, item, value)
1638

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

Y
Yu Yang 已提交
1792

F
fengjiayi 已提交
1793 1794 1795
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1796

1797 1798
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1799 1800 1801 1802
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1803
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1804 1805 1806 1807 1808
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1809 1810 1811 1812
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1813 1814 1815 1816 1817 1818 1819 1820 1821
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1822
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1823 1824 1825 1826 1827 1828
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1829 1830 1831 1832 1833 1834 1835 1836
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1837 1838
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1839 1840
        return self.op_proto_map[type]

1841 1842
    def update_op_proto(self):
        op_protos = get_all_op_protos()
1843
        custom_op_names = []
1844 1845 1846
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
1847 1848 1849
                custom_op_names.append(proto.type)

        return custom_op_names
1850

1851 1852 1853 1854
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1855
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1856
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1857 1858
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1859 1860
        }

F
fengjiayi 已提交
1861

X
Xin Pan 已提交
1862
class Operator(object):
1863
    """
1864 1865 1866 1867 1868 1869 1870
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1871
        type(str): The type of operator. Default None.
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1892
        Block.append_op or Block._prepend_op instead.
1893 1894 1895 1896

    Examples:
        .. code-block:: python

1897
            import paddle.fluid as fluid
1898
            cur_program = fluid.Program()
1899 1900 1901 1902 1903
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1904
    """
1905
    OP_WITHOUT_KERNEL_SET = {
1906 1907
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1908
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
1909 1910
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
1911
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
1912 1913
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
1914
    }
1915

Y
Yu Yang 已提交
1916 1917
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1918
                 desc,
Y
Yu Yang 已提交
1919 1920 1921
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1922
                 attrs=None):
L
lujun 已提交
1923
        if in_dygraph_mode():
1924 1925
            if type is None:
                raise ValueError(
1926
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1927
            self._type = type
M
minqiyang 已提交
1928
            self.attrs = attrs if attrs else {}
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1943
                )] = self.block.program._op_role
1944 1945 1946

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1947 1948
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1949 1950 1951 1952 1953 1954 1955 1956

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1957
                    "`type` to initialized an Operator can not be None.")
1958 1959
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
1960 1961 1962 1963 1964 1965 1966
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
1967 1968 1969 1970 1971 1972 1973

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2005
                        if not isinstance(in_args, (list, tuple)):
2006 2007 2008 2009 2010 2011
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2012
                        for index, arg in enumerate(in_args):
2013 2014 2015 2016
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2017
                            elif isinstance(arg, (Variable, core.VarBase)):
2018
                                in_arg_names.append(cpt.to_text(arg.name))
2019
                            else:
2020 2021 2022 2023
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2024 2025
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2050 2051 2052 2053
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2054
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2055
                        if not in_dygraph_mode():
2056 2057 2058 2059
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2078
    def _has_kernel(self, op_type):
2079 2080
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2081
    def to_string(self, throw_on_error):
2082
        """
2083 2084
        Get debug string.

2085
        Args:
2086 2087
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2088

2089 2090
        Returns:
            str: The debug string.
2091 2092

        """
2093
        protostr = self.desc.serialize_to_string()
2094
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2095 2096
        return _debug_string_(proto, throw_on_error)

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2184 2185
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2186 2187 2188 2189 2190
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2191
    def __str__(self):
2192
        return self._to_readable_code()
2193 2194 2195

    __repr__ = __str__

F
fengjiayi 已提交
2196 2197
    @property
    def type(self):
2198
        return self.desc.type()
F
fengjiayi 已提交
2199 2200

    def input(self, name):
2201
        r"""
2202
        Get the input arguments according to the input parameter name.
2203

2204 2205
        Args:
            name(str): The input parameter name.
2206

2207 2208 2209
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2210
        """
F
fengjiayi 已提交
2211 2212
        return self.desc.input(name)

W
Wu Yi 已提交
2213
    def _rename_input(self, old_name, new_name):
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2224
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2225

W
Wu Yi 已提交
2226
    def _rename_output(self, old_name, new_name):
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2237
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2238

F
fengjiayi 已提交
2239 2240 2241 2242
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2243 2244 2245 2246 2247 2248 2249 2250
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2251
    def output(self, name):
2252
        r"""
2253
        Get output arguments by the output parameter name.
2254

2255 2256
        Args:
            name(str): The output parameter name.
2257

2258 2259 2260
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2261
        """
F
fengjiayi 已提交
2262 2263 2264 2265 2266 2267
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2268 2269 2270 2271 2272 2273 2274 2275
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2276
    def has_attr(self, name):
2277
        """
2278 2279
        Whether this Operator has the attribute with name or not.

2280
        Args:
2281
            name(str): the attribute name.
2282

2283 2284
        Returns:
            bool: True if has this attribute.
2285 2286

        """
F
fengjiayi 已提交
2287 2288 2289
        return self.desc.has_attr(name)

    def attr_type(self, name):
2290
        """
2291
        Get the type of attribute by attribute's name.
2292

2293 2294
        Args:
            name(str): the attribute name.
2295

2296 2297
        Returns:
            core.AttrType: the attribute type.
2298
        """
F
fengjiayi 已提交
2299 2300
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2301
    def _set_attr(self, name, val):
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2312 2313
        self._update_desc_attr(name, val)

2314 2315 2316
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2328 2329
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2330 2331
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2332
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2333 2334 2335 2336
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2337
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2338

F
fengjiayi 已提交
2339 2340 2341 2342 2343
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2344
        """
2345 2346
        Get the attribute by name.

2347
        Args:
2348
            name(str): the attribute name.
2349

2350 2351
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2352 2353
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2354
        return self.desc.attr(name)
Y
Yu Yang 已提交
2355

W
Wu Yi 已提交
2356
    def _block_attr_id(self, name):
2357
        """
G
gongweibao 已提交
2358
        Get the block attribute's id by name.
2359

2360 2361
        Args:
            name(str): the attribute name.
2362

2363 2364
        Returns:
            int: the block index.
2365
        """
W
Wu Yi 已提交
2366
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2367

W
Wu Yi 已提交
2368
    def _block_attr(self, name):
G
gongweibao 已提交
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2379
        id = self._block_attr_id(name)
G
gongweibao 已提交
2380 2381 2382
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2383
    def _blocks_attr(self, name):
G
gongweibao 已提交
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2394
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2395 2396 2397 2398 2399
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2400
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2411
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2412

J
JiayiFeng 已提交
2413
    def all_attrs(self):
F
fengjiayi 已提交
2414
        """
2415 2416 2417
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2418
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2419 2420 2421 2422
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2423 2424
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2425
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2426 2427 2428
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2429
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2430 2431 2432 2433
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2434 2435
        return attr_map

2436 2437 2438
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2439 2440 2441 2442

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2443 2444 2445
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2446 2447 2448 2449 2450 2451 2452 2453

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2454 2455
            return False

2456 2457 2458 2459 2460 2461
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2462

Y
Yu Yang 已提交
2463
class Block(object):
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2478
        use `Program._create_block()` to create a block.
2479 2480 2481 2482

    Examples:
        .. code-block:: python

2483 2484 2485
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2486 2487 2488 2489 2490 2491 2492 2493 2494
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2495
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2496
        self.desc = program.desc.block(idx)
2497
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2498
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2499
        self.program = program
2500
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2501

2502
    def __str__(self):
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2549

F
fengjiayi 已提交
2550 2551
    def to_string(self, throw_on_error, with_details=False):
        """
2552 2553
        Get debug string.

F
fengjiayi 已提交
2554 2555
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2556
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2557
            with_details(bool): more details about variables and parameters
2558 2559
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2560

2561 2562
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2563 2564 2565 2566
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2567
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2568 2569
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2570
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2571
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2572
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2573
            for op in self.ops:
F
fengjiayi 已提交
2574 2575
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2576 2577 2578
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2579 2580
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2581 2582
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2583 2584 2585

    __repr__ = __str__

Y
Yu Yang 已提交
2586 2587
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2588
        return self.desc.parent
Y
Yu Yang 已提交
2589

Y
Yu Yang 已提交
2590 2591 2592 2593
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2594
    def _set_forward_block_idx(self, idx):
2595 2596 2597 2598 2599 2600 2601 2602 2603
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2604
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2605

2606 2607 2608 2609 2610 2611 2612 2613
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2614 2615
    @property
    def idx(self):
Y
Yu Yang 已提交
2616
        return self.desc.id
Y
Yu Yang 已提交
2617

Q
Qiao Longfei 已提交
2618
    def var(self, name):
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2632
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2633 2634 2635
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2636 2637
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2638
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2639
        return v
Q
Qiao Longfei 已提交
2640

X
Xin Pan 已提交
2641
    def _find_var_recursive(self, name):
2642 2643 2644 2645 2646 2647 2648
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2649
            Variable: the Variable with the giving name. Or None if not found.
2650
        """
Y
Yu Yang 已提交
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2675
        return None
Y
Yu Yang 已提交
2676

X
Xin Pan 已提交
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2696

Q
Qiao Longfei 已提交
2697
    def all_parameters(self):
2698
        return list(self.iter_parameters())
2699

2700
    def iter_parameters(self):
M
minqiyang 已提交
2701
        return (item[1] for item in six.iteritems(self.vars)
2702
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2703

Y
Yu Yang 已提交
2704
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2705 2706 2707
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2708 2709 2710
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2711
        return var
Y
Yu Yang 已提交
2712

Q
Qiao Longfei 已提交
2713 2714 2715
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2716
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2717 2718
        """
        Rename variable in vars and ops' inputs and outputs
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2731
        """
M
minqiyang 已提交
2732 2733
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2734

T
typhoonzero 已提交
2735
        if not self.has_var(name):
2736
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2737 2738
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2739
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2740 2741 2742 2743 2744 2745
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2746
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2747 2748 2749 2750
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2751
        orig_var_type = v.type
M
minqiyang 已提交
2752
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2753
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2754
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2755
        if var_type == "Parameter":
L
Leo Chen 已提交
2756 2757
            if in_dygraph_mode():
                var = ParamBase(
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2768 2769
                var = Parameter(
                    self,
2770 2771 2772 2773 2774 2775 2776 2777 2778
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2779
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2780 2781
            var = Variable(
                self,
T
typhoonzero 已提交
2782
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2783 2784 2785 2786
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2787
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2788 2789 2790
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2791
        self._sync_with_cpp()
2792
        return var
T
typhoonzero 已提交
2793

2794 2795 2796
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
2797
        self.desc._remove_var(cpt.to_bytes(name))
2798 2799
        del self.vars[name]

Y
Yu Yang 已提交
2800 2801
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2802
        param = None
L
Leo Chen 已提交
2803
        if in_dygraph_mode():
2804
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2805 2806
        else:
            param = Parameter(global_block, *args, **kwargs)
2807 2808 2809 2810 2811 2812
            # NOTE: Why only set stop_gradient=False in static mode
            # Because in dygraph mode, the `stop_gradient` and `trainable`
            # are related, and `trainable` default vallue is `True` or
            # it is specified by users, there is no need to set
            # `stop_gradient` for ParamBase here.
            param.stop_gradient = False
2813
        if 'initializer' in kwargs:
2814 2815 2816 2817 2818

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2819
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
2820
                        # are treated as initialization ops that cause error.
2821
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
2822 2823 2824 2825 2826
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
2827
                            continue
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2839
                # TODO already inited, do nothing, should log a warning
2840 2841 2842
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
2843
        return param
Y
Yu Yang 已提交
2844

Y
Yu Yang 已提交
2845
    def append_op(self, *args, **kwargs):
2846 2847 2848 2849 2850 2851
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2852
        if in_dygraph_mode():
2853
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2854
            type = kwargs.get("type", None)
2855 2856 2857
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2858
                type=type,
M
minqiyang 已提交
2859 2860
                inputs=None,
                outputs=None,
2861
                attrs=attrs)
2862

M
minqiyang 已提交
2863 2864 2865
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2866
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2867 2868

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2869
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2870 2871
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2872
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2873
        else:
2874 2875
            from paddle.fluid.dygraph.base import param_guard

2876
            op_desc = self.desc.append_op()
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
2890

M
minqiyang 已提交
2891
            self.ops.append(op)
M
minqiyang 已提交
2892

2893 2894
        return op

W
Wu Yi 已提交
2895
    def _insert_op(self, index, *args, **kwargs):
2896 2897 2898 2899 2900 2901 2902 2903 2904
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2905
        self._sync_with_cpp()
F
fangshuixun007 已提交
2906
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
2907

2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
2925 2926 2927 2928 2929 2930 2931 2932 2933
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
2934 2935
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
2936
        self.desc._remove_op(index, index + 1)
2937 2938
        del self.ops[index]

W
Wu Yi 已提交
2939
    def _slice_ops(self, start, end):
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2950
        return self.ops[start:end]
Y
Yancey1989 已提交
2951

W
Wu Yi 已提交
2952
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2953
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2954 2955
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2956
            op = Operator(
J
Jiabin Yang 已提交
2957
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2958

J
Jiabin Yang 已提交
2959
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2960
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2961 2962
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2963
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2964
        else:
2965 2966 2967 2968 2969 2970 2971 2972
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2973
            self.ops.insert(0, op)
2974

Y
Yu Yang 已提交
2975 2976
        return op

W
Wu Yi 已提交
2977
    def _sync_with_cpp(self):
2978
        """
2979 2980
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2981
        """
Q
Qiao Longfei 已提交
2982 2983 2984 2985 2986
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2987
        # sync variables removed from c++ end
2988
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2989
            if not self.desc.find_var(cpt.to_bytes(var)):
2990 2991
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2992
        # sync operators from cpp
2993 2994 2995 2996
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3013 3014 3015 3016 3017

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3018
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3019 3020 3021 3022 3023 3024 3025

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3039 3040 3041 3042
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3043
    def _copy_param_info_from(self, other):
3044
        """
3045 3046
        Copy the information of parameters from the other block.

3047
        Args:
3048 3049 3050 3051 3052
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3053 3054 3055 3056 3057

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3058 3059
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3060
        for p in other.iter_parameters():
3061 3062 3063
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3064 3065
                # if the Parameter is pruned, v may be None
                continue
3066
            assert isinstance(v, Variable)
3067
            new_p = None
L
Leo Chen 已提交
3068 3069
            if in_dygraph_mode():
                new_p = ParamBase(
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3081 3082
                new_p = Parameter(
                    block=self,
3083 3084 3085
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3086 3087
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3088 3089 3090 3091 3092 3093
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3094 3095
            self.vars[new_p.name] = new_p

3096
    def _clone_variable(self, var, force_persistable=True):
3097 3098
        """
        Clone a variable into current block.
3099

3100 3101
        Args:
            var: the variable to be cloned.
3102 3103 3104
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3105 3106

        Returns:
3107
            Variable: the new  variable cloned from 'var' in current block.
3108 3109
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3110 3111 3112 3113 3114
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3115 3116
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3117
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3118 3119 3120 3121 3122 3123
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3124
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3125 3126
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3127 3128 3129 3130 3131 3132 3133
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3134
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3135 3136
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3137
        return ret_var
3138

Y
Yu Yang 已提交
3139

3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3235
    def remove_input_by_id(self, node_id):
3236 3237 3238 3239 3240 3241
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3242
        self.node.remove_input(node_id)
3243

3244
    def remove_input(self, node):
3245 3246 3247 3248
        """
        Remove a node from inputs.

        Args:
3249
            node(IrNode): the node being removed.
3250
        """
3251
        self.node.remove_input(node.node)
3252

3253
    def append_input(self, node):
3254 3255 3256 3257
        """
        Append a node in inputs.

        Args:
3258
            node(IrNode): the node being appended.
3259
        """
3260
        self.node.append_input(node.node)
3261 3262 3263 3264 3265 3266 3267 3268

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3269
    def remove_output_by_id(self, node_id):
3270 3271 3272 3273 3274 3275
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3276
        self.node.remove_output(node_id)
3277

3278
    def remove_output(self, node):
3279 3280 3281 3282
        """
        Remove a node from outputs.

        Args:
3283
            node(IrNode): the node being removed.
3284
        """
3285
        self.node.remove_output(node.node)
3286

3287
    def append_output(self, node):
3288 3289 3290 3291
        """
        Append a node in outputs.

        Args:
3292
            node(IrNode): the node being appended.
3293
        """
3294
        self.node.append_output(node.node)
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3342
            "The node variable description can not be None."
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3353
            "The node variable description can not be None."
3354 3355
        return self.node.var().persistable()

3356 3357 3358 3359 3360 3361 3362 3363
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3364
            "The node variable description can not be None."
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3375
            "The node variable description can not be None."
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3386
            "The node variable description can not be None."
3387 3388
        return self.node.var().shape()

3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3436
            "The node operator description can not be None."
3437 3438
        self.node.op()._rename_input(old_input_name, new_input_name)

3439 3440 3441 3442 3443 3444 3445 3446 3447
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3448
            "The node operator description can not be None."
3449 3450
        self.node.op()._rename_output(old_output_name, new_output_name)

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3462
            "The node operator description can not be None."
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3476
            "The node operator description can not be None."
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3487
            "The node operator description can not be None."
3488 3489
        return self.node.op().set_type(new_type)

3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3505
            "The node operator description can not be None."
3506 3507 3508 3509
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3510
                all(isinstance(v, Block) for v in val):
3511 3512
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3513
                isinstance(val, core.ProgramDesc):
3514 3515 3516 3517
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3518 3519 3520 3521 3522 3523 3524 3525
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3526
            "The node operator description can not be None."
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3537
            "The node operator description can not be None."
3538 3539
        return self.node.op().output_arg_names()

3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3561 3562
class IrGraph(object):
    """
3563
    Python IrGraph. Beneath it is a core.Graph, which is used for
3564
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3565 3566
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3567 3568 3569 3570
    """

    def __init__(self, graph, for_test=False):
        """
3571 3572
        Construct an IrGraph using core.Graph.

3573 3574 3575 3576 3577 3578 3579 3580 3581
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3582 3583 3584 3585
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3586 3587 3588
        Warns:
            The method only clones the graph structure, not its attributes.

3589 3590 3591
        Returns:
            IrGraph: A new and duplicated graph.
        """
3592
        g = self.graph.clone()
3593 3594
        return IrGraph(g, self._for_test)

3595
    def is_test(self):
3596 3597 3598
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3599 3600
        return self._for_test

W
WangZhen 已提交
3601
    def all_nodes(self):
3602 3603 3604
        """
        Return all nodes included in the graph as a set.
        """
3605
        return {IrNode(node) for node in self.graph.nodes()}
3606

3607
    def all_var_nodes(self):
3608 3609 3610
        """
        Return all variable nodes included in the graph as a set.
        """
3611
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3612

3613
    def all_persistable_nodes(self):
3614 3615 3616
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3617 3618 3619 3620 3621
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3622
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3623

3624
    def all_op_nodes(self):
3625 3626 3627
        """
        Return all operator nodes included in the graph as a set.
        """
3628
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3629

3630
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3642
            IrVarNode: the created persistable variable node.
3643
        """
3644 3645 3646 3647 3648
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3649
        return IrVarNode(self.graph.create_var_node(var_desc))
3650 3651

    def create_var_node(self, name, var_type, shape, var_dtype):
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3663
            IrVarNode: the created variable node.
3664 3665
        """

3666 3667 3668 3669
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3670
        return IrVarNode(self.graph.create_var_node(var_desc))
3671

3672 3673 3674 3675 3676 3677
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3678
    def create_var_node_from_desc(self, var_desc):
3679 3680 3681 3682 3683 3684 3685 3686
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3687
            IrVarNode: the created variable node.
3688
        """
3689
        return IrVarNode(self.graph.create_var_node(var_desc))
3690 3691

    def create_op_node(self, op_type, attrs, inputs, outputs):
3692 3693 3694 3695 3696 3697 3698
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3699
            outputs(dict): the outputs of the operator node.
3700 3701

        Returns:
3702
            IrOpNode: the created operator node.
3703
        """
3704 3705
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3706
        for attr, value in six.iteritems(attrs):
3707
            self._update_desc_attr(op_desc, attr, value)
3708
        for input_name, var_nodes in six.iteritems(inputs):
3709 3710 3711 3712
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3713
        for output_name, var_nodes in six.iteritems(outputs):
3714 3715 3716 3717
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3718
        return IrOpNode(self.graph.create_op_node(op_desc))
3719 3720

    def create_op_node_from_desc(self, op_desc):
3721 3722 3723 3724 3725 3726 3727
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3728
            IrOpNode: the created operator node.
3729
        """
3730
        return IrOpNode(self.graph.create_op_node(op_desc))
3731 3732

    def update_input_link(self, old_input_node, new_input_node, op_node):
3733 3734 3735 3736
        """
        Update the input's link of a operator node.

        Args:
3737 3738 3739
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3740
        """
3741
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
3742
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3743
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3744 3745 3746 3747
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3748
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3749

3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
3760
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3761
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3762 3763 3764 3765 3766 3767
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3768
    def link_to(self, node_in, node_out):
3769 3770 3771 3772
        """
        Connect two nodes.

        Args:
3773 3774
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3775
        """
3776
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3777
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3778 3779
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3780 3781

    def safe_remove_nodes(self, remove_nodes):
3782 3783 3784 3785 3786 3787 3788
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3789
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3790 3791 3792 3793
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3794 3795
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3796

Z
Zhen Wang 已提交
3797 3798 3799 3800 3801 3802 3803 3804
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3805
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3806 3807 3808 3809
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3810
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3811 3812 3813
                        ]
                    else:
                        var_nodes[each_var_name].append(
3814 3815
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3816 3817
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3818
    def has_circle(self):
3819 3820 3821 3822 3823 3824
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3825 3826 3827
        return core.has_circle(self.graph)

    def graph_num(self):
3828 3829 3830 3831 3832 3833
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3834 3835 3836
        return core.graph_num(self.graph)

    def topology_sort(self):
3837 3838 3839
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3840
        Notes: the `graph` can not contain a circle.
3841 3842

        Returns:
Z
Zhen Wang 已提交
3843
            list(IrNode): nodes in topology order.
3844
        """
3845
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3846
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3847 3848

    def build_adjacency_list(self):
3849 3850 3851 3852
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3853
            dict{IrNode: set(IrNode)}: the adjacency list.
3854
        """
3855 3856 3857 3858 3859
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3860

3861 3862 3863 3864 3865 3866 3867 3868
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3869
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3870 3871 3872 3873 3874
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3875 3876
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
3877 3878 3879
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
3880 3881 3882 3883 3884
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3885
        remove_ctr_vars = set()
3886
        if remove_ctr_var:
3887
            for node in self.all_var_nodes():
3888 3889 3890
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3891 3892
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3893 3894
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3895 3896 3897 3898 3899 3900
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3901 3902 3903 3904
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3905 3906
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3907 3908 3909 3910 3911 3912 3913
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3914 3915 3916
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3917
        WARN: When the graph includes backward operator nodes, the
3918 3919 3920 3921 3922 3923
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3924
        convert_pass = core.get_pass('graph_to_program_pass')
3925 3926
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3927 3928 3929 3930
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3958
class Program(object):
D
dzhwinter 已提交
3959
    """
3960
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
3961
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3962
    it will contain nested block.
3963

J
Jiabin Yang 已提交
3964 3965 3966
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3967

J
Jiabin Yang 已提交
3968
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3969
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3970 3971 3972 3973 3974 3975 3976
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3977
    **Notes**:
3978 3979 3980
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3981 3982

    Returns:
J
Jiabin Yang 已提交
3983
        Program: An empty Program.
D
dzhwinter 已提交
3984 3985

    Examples:
3986 3987
        .. code-block:: python

3988 3989 3990 3991
            import paddle
            import paddle.static as static

            paddle.enable_static()
3992

3993 3994 3995 3996 3997
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
3998
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
3999 4000 4001

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4002 4003 4004

    """

4005 4006
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4007 4008
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4009 4010
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4011
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4012
        self.__op_role_var = []
T
tangwei12 已提交
4013

4014 4015
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4016
        self._is_distributed = False
4017
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4018
        self._is_chief = False
4019 4020 4021
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4022
        self._endpoints = []
4023 4024 4025
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4026
        self._trainers_endpoints = []
4027
        # the distributed lookup table names
T
tangwei12 已提交
4028
        self._distributed_lookup_table = None
4029 4030 4031

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4032 4033
        self._use_lamb = False

4034 4035 4036
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4037

4038 4039 4040
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4041
        self._program_config = None
4042

H
hutuxian 已提交
4043 4044 4045
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4046 4047 4048
        # appending gradients times
        self._appending_grad_times = 0

4049 4050 4051 4052
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4053 4054 4055
        # compiled program, i.e. Graph
        self._graph = None

4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4066 4067
                import paddle
                import paddle.static as static
4068

4069 4070 4071
                paddle.enable_static()

                prog = static.default_main_program()
4072 4073 4074 4075 4076
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4077
                prog1 = static.default_main_program()
4078 4079 4080 4081 4082 4083 4084 4085
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4086
    @property
4087
    def _op_role(self):
Y
yuyang18 已提交
4088 4089 4090 4091 4092 4093 4094 4095
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4096
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4097 4098 4099 4100
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4101 4102
        return self._current_role

4103 4104
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4105 4106 4107
        self._current_role = role

    @property
4108
    def _op_role_var(self):
Y
yuyang18 已提交
4109
        """
4110
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4111

4112
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4113 4114 4115

        Notes: This is a very low-level API. Users should not use it directly.
        """
4116
        return self.__op_role_var
Y
yuyang18 已提交
4117

4118
    @signature_safe_contextmanager
4119 4120 4121 4122 4123
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4124 4125 4126 4127
        try:
            yield
        finally:
            self._current_role = tmp_role
4128

S
rename  
sneaxiy 已提交
4129
    @signature_safe_contextmanager
W
Wu Yi 已提交
4130
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4131 4132 4133 4134 4135 4136 4137
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4138
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4139 4140 4141

        Examples:

4142
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4143
            >>> p, g = backward(...)
W
Wu Yi 已提交
4144
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4145 4146
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4147
        tmp_role = self._current_role
4148
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4149

Y
yuyang18 已提交
4150 4151
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4152
        self.__op_role_var = [
4153 4154 4155
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4156 4157 4158 4159 4160
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4161

S
rename  
sneaxiy 已提交
4162
    @signature_safe_contextmanager
X
Xin Pan 已提交
4163
    def _lr_schedule_guard(self, is_with_opt=False):
4164 4165 4166 4167 4168 4169 4170
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4171 4172 4173 4174
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4175 4176 4177

        Examples:

4178
            >>> import paddle.fluid as fluid
4179 4180 4181 4182
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4183 4184

        tmp_role = self._current_role
4185
        tmp_var = self.__op_role_var
4186

4187 4188
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4189 4190
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4191
        # TODO(typhoonzero): how to set target learning rate var
4192
        self.__op_role_var = []
4193 4194 4195 4196 4197
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4198

4199
    def __str__(self):
Y
yuyang18 已提交
4200 4201 4202 4203 4204 4205 4206 4207 4208
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4229 4230
            import paddle
            import paddle.static as static
4231

4232 4233 4234
            paddle.enable_static()

            cur_program = static.Program()
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4251
            program_str += '\n'
4252
        return program_str
Y
Yang Yang(Tony) 已提交
4253

F
fengjiayi 已提交
4254 4255 4256
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4257

J
Jiabin Yang 已提交
4258 4259 4260
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4261

J
Jiabin Yang 已提交
4262
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4263

H
haowang101779990 已提交
4264
        Returns:
J
Jiabin Yang 已提交
4265
            str: The debug string describe current Program.
Y
yuyang18 已提交
4266 4267

        Raises:
J
Jiabin Yang 已提交
4268
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4269

4270 4271 4272
        Examples:
            .. code-block:: python

4273 4274 4275 4276
                import paddle
                import paddle.static as static

                paddle.enable_static()
4277

4278 4279 4280
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4281
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4282
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4283
                print("program string without detail: {}".format(prog_string))
4284
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4285
        """
4286 4287 4288 4289 4290 4291 4292 4293 4294
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4295 4296 4297 4298 4299 4300
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4301 4302
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4303 4304
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4305

W
Wu Yi 已提交
4306
    def _get_desc(self):
Y
yuyang18 已提交
4307 4308 4309 4310 4311 4312 4313
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4314 4315
        return self.desc

X
version  
Xin Pan 已提交
4316 4317 4318
    def _version(self):
        return self.desc._version()

4319
    def clone(self, for_test=False):
Y
yuyang18 已提交
4320
        """
4321 4322 4323 4324
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4325

4326
        Create a new Program with forward content of original one when ``for_test=True``.
4327
        Create a new Program as same as the original one when ``for_test=False``.
4328

4329
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4330 4331 4332
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4333

4334 4335
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4336 4337
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4338
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4339

J
Jiabin Yang 已提交
4340
        For Example:
4341
          ::
L
Luo Tao 已提交
4342

4343 4344 4345 4346 4347 4348
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4349
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4350
            loss = paddle.mean(pred)
4351
            # Here we use clone before Momentum
4352 4353
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4354
            optimizer.minimize(loss)
4355

J
Jiabin Yang 已提交
4356
        Args:
4357

4358 4359
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4360

J
Jiabin Yang 已提交
4361
        Returns:
4362
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4363

Y
yuyang18 已提交
4364 4365 4366

        Examples:

4367 4368 4369 4370 4371 4372 4373
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4390
            1. To clone a test program, the sample code is:
4391 4392 4393
                .. code-block:: python

                    import six
4394 4395 4396 4397 4398 4399
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4412 4413
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4414 4415 4416

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4417 4418 4419
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4420
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4421 4422
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4423
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4424 4425
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4426
                            test_program = train_program.clone(for_test=True)
4427
                    print_prog(test_program)
J
Jiabin Yang 已提交
4428 4429 4430 4431

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4432
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4433 4434 4435 4436
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4437 4438 4439
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4440 4441 4442
                            sgd.minimize(avg_loss)


4443
            2. The clone method can be avoid if you create program for training and program for testing individually.
4444 4445 4446
                .. code-block:: python

                    import six
4447 4448 4449 4450 4451 4452
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4464

4465
                    def network():
4466
                        img = static.data(name='image', shape=[None, 784])
4467
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4468 4469
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4470
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4471 4472
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4473 4474
                        return avg_loss

4475 4476 4477 4478 4479
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4480
                            avg_loss = network()
4481
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4482
                            sgd.minimize(avg_loss)
4483
                    # the test startup program is not used.
4484 4485
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4486 4487
                            avg_loss = network()
                    print_prog(test_program_2)
4488

4489
            The two code snippets above will generate and print same programs.
4490
        """
4491

T
tangwei12 已提交
4492
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4493 4494 4495
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4496
        pruned_origin_block_id_map = None
4497
        if for_test:
4498 4499 4500 4501 4502 4503 4504 4505 4506
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4507
        else:
4508
            p = Program()
G
gongweibao 已提交
4509 4510
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4511
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4512 4513 4514
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4515 4516

            p._current_role = self._current_role
4517
            p.__op_role_var = self.__op_role_var
4518
            p._appending_grad_times = self._appending_grad_times
4519 4520
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4521

T
tangwei12 已提交
4522
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
4523
            # its desc.
W
Wu Yi 已提交
4524
            p._sync_with_cpp()
4525

W
Wu Yi 已提交
4526
        p._copy_param_info_from(self)
4527
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4528
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4529
        return p
4530

4531
    def _prune(self, targets):
Y
yuyang18 已提交
4532 4533 4534 4535 4536 4537 4538 4539
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4540
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4541 4542 4543 4544
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4545
        """
4546
        return self._prune_with_input([], targets)
4547 4548

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4549
        """
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4560
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4561 4562 4563 4564 4565 4566
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
4567
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4568 4569 4570
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4571 4572
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4573 4574
        if not isinstance(targets, list):
            targets = [targets]
4575 4576 4577

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4578 4579 4580
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4581

4582 4583 4584 4585
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4586 4587 4588
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4589
                else:
4590 4591 4592
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4593 4594 4595 4596 4597 4598 4599 4600

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4601 4602 4603 4604 4605 4606 4607 4608 4609
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
4610
                        # Skip optimize op except for optimize op in targets,
4611 4612 4613 4614 4615 4616
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4617 4618 4619 4620 4621 4622 4623 4624
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4625

4626
        res = Program()
4627 4628 4629
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4630 4631 4632
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4633
        res._sync_with_cpp()
4634 4635 4636 4637 4638

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4639 4640
        return res

X
Xin Pan 已提交
4641
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4642
        """
F
fengjiayi 已提交
4643 4644 4645 4646 4647
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4648
        3. change the :code:`is_test`
Y
yuyang18 已提交
4649 4650 4651
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4652
        Args:
X
Xin Pan 已提交
4653 4654
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4655

Y
yuyang18 已提交
4656 4657 4658 4659 4660 4661
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4662
        res = Program()
4663
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4664 4665 4666 4667

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4668
        if prune_read_op:
4669 4670 4671 4672 4673 4674 4675 4676 4677
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4678
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4679 4680

        # change all `is_test` attributes to True
M
minqiyang 已提交
4681
        for i in six.moves.range(res.desc.num_blocks()):
4682
            block = res.desc.block(i)
M
minqiyang 已提交
4683
            for j in six.moves.range(block.op_size()):
4684 4685
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4686
                    op._set_attr('is_test', True)
4687 4688 4689
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
4690 4691 4692
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4693
        res._sync_with_cpp()
4694 4695
        return res

4696 4697
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4698
        """
4699 4700 4701
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4702

4703 4704
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4705

J
Jiabin Yang 已提交
4706
        Args:
Y
yuyang18 已提交
4707

J
Jiabin Yang 已提交
4708
            binary_str_type (str): the binary prootbuf string.
4709

J
Jiabin Yang 已提交
4710 4711
        Returns:
            Program: A deserialized Program.
4712 4713 4714 4715

        Examples:
            .. code-block:: python

4716 4717 4718 4719
                import paddle
                import paddle.static as static

                paddle.enable_static()
4720

4721 4722 4723 4724
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
4725

4726
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
4727

4728
                    z = paddle.matmul(x=x, y=y)
4729

4730 4731
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
4732

4733
                    print(static.default_main_program())
4734
                    print(prog_restored)
Y
yuyang18 已提交
4735
        """
4736 4737
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4738
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4739
        p._sync_with_cpp()
4740
        return p
Y
Yu Yang 已提交
4741

4742
    @staticmethod
4743
    def _construct_from_desc(desc):
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4759 4760
    @property
    def random_seed(self):
Y
yuyang18 已提交
4761
        """
J
Jiabin Yang 已提交
4762
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4763 4764
        the random seed from random device.

4765 4766
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
4767 4768 4769

        Returns:
            int64: Random seed in current Program
4770

4771 4772 4773 4774

        Examples:
            .. code-block:: python

4775 4776 4777
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
4778

4779 4780 4781
                paddle.enable_static()

                prog = static.default_main_program()
4782
                random_seed = prog.random_seed
4783
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
4784 4785 4786
                print(random_seed)
                ## 0
                ## the default random seed is 0
4787

4788
                # Here we need to set random seed before we use paddle.nn.functional.dropout
4789
                prog.random_seed = 1
4790
                z_var = F.dropout(x_var, 0.7)
4791

4792
                print(prog.random_seed)
4793 4794
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4795
        """
D
dzhwinter 已提交
4796 4797
        return self._seed

Q
qiaolongfei 已提交
4798 4799
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4800
        """
4801 4802
        The number of :ref:`api_guide_Block_en`  in this Program.

4803 4804
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
4805 4806 4807

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4808

4809 4810 4811 4812

        Examples:
            .. code-block:: python

4813 4814 4815 4816
                import paddle
                import paddle.static as static

                paddle.enable_static()
4817

4818
                prog = static.default_main_program()
4819 4820
                num_blocks = prog.num_blocks
                print(num_blocks)
4821

4822 4823
                # print result:
                # 1
Y
yuyang18 已提交
4824
        """
Q
qiaolongfei 已提交
4825 4826
        return self.desc.num_blocks()

D
dzhwinter 已提交
4827 4828 4829
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4830 4831 4832
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4833 4834
        self._seed = seed

Y
Yu Yang 已提交
4835
    def __repr__(self):
4836
        return self.__str__()
4837

Y
Yu Yang 已提交
4838
    def global_block(self):
Y
yuyang18 已提交
4839
        """
4840 4841
        .. note::
            This API has no effect in Dygraph mode.
4842 4843 4844

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4845 4846
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4847

4848 4849 4850 4851

        Examples:
            .. code-block:: python

4852 4853 4854 4855
                import paddle
                import paddle.static as static

                paddle.enable_static()
4856

4857
                prog = static.default_main_program()
4858 4859
                gb_block = prog.global_block()
                print(gb_block)
4860

Y
yuyang18 已提交
4861
        """
Y
Yu Yang 已提交
4862 4863
        return self.blocks[0]

Q
Qiao Longfei 已提交
4864
    def block(self, index):
Y
yuyang18 已提交
4865
        """
4866 4867
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4868

4869 4870
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4871 4872
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4873

J
Jiabin Yang 已提交
4874 4875
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4876 4877 4878 4879

        Examples:
            .. code-block:: python

4880 4881 4882 4883
                import paddle
                import paddle.static as static

                paddle.enable_static()
4884

4885
                prog = static.default_main_program()
4886 4887
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4888
        """
Q
Qiao Longfei 已提交
4889 4890
        return self.blocks[index]

Y
Yu Yang 已提交
4891
    def current_block(self):
Y
yuyang18 已提交
4892
        """
4893 4894
        .. note::
            This API has no effect in Dygraph mode.
4895

J
Jiabin Yang 已提交
4896 4897
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4898

J
Jiabin Yang 已提交
4899 4900
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4901

4902 4903 4904
        Examples:
            .. code-block:: python

4905 4906 4907 4908
                import paddle
                import paddle.static as static

                paddle.enable_static()
4909

4910
                prog = static.default_main_program()
4911 4912
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4913
        """
Y
Yu Yang 已提交
4914 4915
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4916
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4917 4918 4919 4920 4921
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4922

Y
yuyang18 已提交
4923 4924 4925 4926 4927
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4928
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4929 4930 4931
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4932 4933 4934 4935
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4936
    def _rollback(self):
Y
yuyang18 已提交
4937 4938 4939 4940 4941
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4942 4943
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4944
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4955 4956 4957
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4958
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4959

W
Wu Yi 已提交
4960
    def _copy_param_info_from(self, other):
4961
        """
4962
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4963

Y
yuyang18 已提交
4964 4965 4966
        Notes: This is a very low level API. Users should not invoke it
        directly.

4967 4968 4969 4970 4971 4972 4973
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4974 4975 4976
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4977

W
Wu Yi 已提交
4978
        self.global_block()._copy_param_info_from(other.global_block())
4979

4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4991 4992 4993
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4994 4995
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4996
        self._parameters_on_pservers = other._parameters_on_pservers
4997
        self._endpoints = other._endpoints
4998
        self._ps_endpoint = other._ps_endpoint
4999 5000
        self._distributed_lookup_table = other._distributed_lookup_table

5001
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5002 5003
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5004

Y
yuyang18 已提交
5005 5006 5007
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5008 5009
        Args:
            other(Program): Other program
5010 5011 5012 5013
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5014 5015 5016 5017 5018

        Returns:
            None
        """
        if not isinstance(other, Program):
5019 5020 5021
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5022

5023 5024 5025 5026 5027
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5028 5029 5030

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5031 5032
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5033
            for var in list(block.vars.values()):
5034 5035 5036 5037 5038 5039 5040
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5041

5042
    def list_vars(self):
Y
yuyang18 已提交
5043
        """
5044
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5045

J
Jiabin Yang 已提交
5046
        Returns:
5047
            iterable Tensors: The Generator will yield every Tensor in this program.
5048 5049 5050 5051

        Examples:
            .. code-block:: python

5052 5053
                import paddle
                import paddle.static as static
5054

5055 5056 5057 5058 5059
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5060 5061
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5062

5063 5064
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5065
        """
5066
        for each_block in self.blocks:
5067
            for each_var in list(each_block.vars.values()):
5068 5069
                yield each_var

5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5080 5081 5082 5083
                import paddle
                import paddle.static as static

                paddle.enable_static()
5084

5085 5086
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5087
                hidden = static.nn.fc(x=data, size=10)
5088 5089
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5090 5091 5092 5093 5094 5095 5096

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5097 5098
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
5276

5277
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5278
class Parameter(Variable):
5279
    """
5280
    Parameter is derived from Variable. A parameter is a persistable
5281
    Variable, and will be updated by optimizers after each iteration.
5282
    The training of a neural network is essentially the updating of
5283 5284
    its parameters.

5285
    Relative to a general Variable, a Parameter has several its own
5286 5287
    member variables:

5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5298 5299
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5300 5301
    """

5302 5303 5304 5305 5306 5307
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5308 5309 5310 5311 5312
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5313
        if len(shape) == 0:
5314 5315
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5316 5317 5318

        for each in shape:
            if each < 0:
5319 5320 5321
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5322 5323

        Variable.__init__(
5324 5325 5326 5327 5328 5329 5330
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5331 5332 5333 5334
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5335 5336
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5337
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5338

5339 5340
        self.need_clip = kwargs.get('need_clip', True)

5341 5342
        self.is_distributed = False

F
fengjiayi 已提交
5343
    def __str__(self):
5344
        return self._to_readable_code()
F
fengjiayi 已提交
5345

F
update  
fengjiayi 已提交
5346 5347 5348
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5349

F
update  
fengjiayi 已提交
5350 5351 5352 5353 5354 5355 5356 5357
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5358 5359 5360 5361 5362 5363 5364 5365 5366
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5367 5368 5369 5370 5371 5372
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5373
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5374
            for attr_name in additional_attr:
5375 5376
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5377 5378
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5379 5380 5381 5382
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5383

5384 5385
class ParamBase(core.VarBase):
    """
5386 5387 5388
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5389 5390 5391
    The training of a neural network is essentially the updating of
    its ParamBase.

5392
    Relative to a general Tensor, a ParamBase has several its own
5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5405 5406
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5437 5438
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5439 5440 5441 5442 5443 5444 5445

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5446 5447
        self.need_clip = kwargs.get('need_clip', True)

5448
        self.is_distributed = False
5449
        # self.block = default_main_program().global_block()
5450

5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5464
    def __str__(self):
5465
        """
5466
        Convert a ParamBase object to a readable string.
5467

5468
        Returns(str): A readable string.
5469 5470 5471 5472

        Examples:
            .. code-block:: python

5473
                import paddle
5474 5475 5476 5477 5478 5479 5480
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
5481
        """
5482 5483
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5484

5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
5496

5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

5515 5516 5517 5518 5519 5520 5521
    def _copy_to(self, device, blocking):
        print("in ParamBase copy_to func")
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
        return new_param

5522 5523 5524
    __repr__ = __str__


Y
Yu Yang 已提交
5525
# program is a global instance.
Y
Yu Yang 已提交
5526 5527
_main_program_ = Program()
_startup_program_ = Program()
5528

5529

5530
def default_startup_program():
Y
Yu Yang 已提交
5531
    """
Y
yuyang18 已提交
5532 5533
    Get default/global startup program.

5534 5535
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
5536

5537 5538
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5539

5540 5541
    Returns:
        Program: current default startup program.
5542

5543
    Returns type: 
5544 5545 5546 5547

    Examples:
        .. code-block:: python

5548
            import paddle
5549

5550
            paddle.enable_static()
5551 5552 5553 5554
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5555
    """
Y
Yu Yang 已提交
5556
    return _startup_program_
5557

5558

5559
def default_main_program():
Y
Yu Yang 已提交
5560
    """
5561
    This API can be used to get ``default main program`` which store the 
5562
    descriptions of Ops and tensors.
T
tangwei12 已提交
5563

5564
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
5565
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5566

5567 5568
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5569
    :code:`default_main_program` when the program is not specified.
5570

5571
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
5572

Y
Yu Yang 已提交
5573
    Returns:
5574
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5575 5576 5577 5578

    Examples:
        ..  code-block:: python

5579
            import paddle
5580

5581
            paddle.enable_static()
5582
            # Sample Network:
5583 5584 5585
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
5586

5587 5588 5589
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
5590
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
5591
    """
Y
Yu Yang 已提交
5592
    return _main_program_
Y
Yu Yang 已提交
5593 5594 5595 5596 5597


def switch_main_program(program):
    """
    Switch the main program to a new program.
5598

Y
Yu Yang 已提交
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5613
    Switch the startup program to a new program
Y
Yu Yang 已提交
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5626
@signature_safe_contextmanager
Y
Yu Yang 已提交
5627 5628
def program_guard(main_program, startup_program=None):
    """
5629 5630
    :api_attr: Static Graph

5631 5632 5633
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5634

G
guofei 已提交
5635
    Args:
5636 5637
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5638 5639 5640 5641
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5642
    Examples:
5643
       .. code-block:: python
T
tangwei12 已提交
5644

5645
          import paddle
Y
yuyang18 已提交
5646

5647 5648 5649 5650 5651
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
5652
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
5653 5654 5655

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5656

Y
Yu Yang 已提交
5657
    Examples:
5658
       .. code-block:: python
Y
yuyang18 已提交
5659

5660
          import paddle
5661

5662 5663 5664 5665 5666
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
5667

Y
Yu Yang 已提交
5668
    """
5669
    from .data_feeder import check_type
5670 5671
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5672 5673
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5674
        check_type(startup_program, 'startup_program', Program,
5675
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
5676
        startup_program = switch_startup_program(startup_program)
5677 5678 5679 5680 5681 5682
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5683 5684


W
Wu Yi 已提交
5685
def _get_var(name, program=None):
X
xuwei06 已提交
5686
    """
Y
yuyang18 已提交
5687
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5688

X
xuwei06 已提交
5689 5690 5691
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5692
        If None, default_global_program() will be used.
X
xuwei06 已提交
5693 5694 5695 5696 5697 5698 5699

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5700
    assert isinstance(program, Program)
X
xuwei06 已提交
5701 5702

    return program.global_block().var(name)
5703 5704


S
rename  
sneaxiy 已提交
5705
@signature_safe_contextmanager
L
lujun 已提交
5706 5707
def _dygraph_guard(tracer):
    global _dygraph_tracer_
5708
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
5709
    _dygraph_tracer_ = tracer
5710
    core._switch_tracer(tracer)
M
minqiyang 已提交
5711

5712 5713 5714
    try:
        yield
    finally:
5715 5716
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
5717 5718


S
rename  
sneaxiy 已提交
5719
@signature_safe_contextmanager
L
lujun 已提交
5720
def _dygraph_place_guard(place):
5721 5722 5723
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5724

5725 5726
    _set_dygraph_tracer_expected_place(place)

5727 5728 5729
    try:
        yield
    finally:
5730
        _global_expected_place_ = tmp_place
5731
        _set_dygraph_tracer_expected_place(tmp_place)
5732 5733


5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
5750 5751
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
5752 5753 5754 5755 5756 5757 5758 5759 5760
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
5761
            import paddle
5762

Z
Zhang Ting 已提交
5763 5764 5765
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
5766
            if support_gpu:
Z
Zhang Ting 已提交
5767
                place = paddle.CUDAPlace(0)
5768 5769

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
5770 5771 5772
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
5773

Z
Zhang Ting 已提交
5774
            with paddle.static.device_guard("cpu"):
5775
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
5776 5777
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
5778
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
5779
                out = paddle.reshape(data1, shape=shape)
5780

Z
Zhang Ting 已提交
5781 5782
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
5783 5784 5785
            result = exe.run(fetch_list=[out])
    """

5786 5787 5788 5789 5790
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5791
    if device not in ['cpu', 'gpu', 'npu', '', None]:
5792
        raise ValueError(
5793
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
5794
            "when there is no need to specify device. But received %s" % device)
5795 5796
    if index:
        device = ":".join([device, index])
5797
    pre_device = switch_device(device)
5798 5799 5800 5801
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
5869 5870 5871 5872 5873 5874 5875


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
5876
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
5877 5878 5879 5880 5881 5882 5883 5884 5885
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
5886

5887 5888 5889
    if (place == "device"):
        return core.Place()

5890
    # GPU
5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
5906 5907

    # XPU
5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

5931
    raise ValueError(
5932 5933
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret