infershape_utils.cc 24.0 KB
Newer Older
C
Chen Weihang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/infershape_utils.h"

17 18
#include <string>

19
#include "paddle/fluid/framework/convert_utils.h"
C
Chen Weihang 已提交
20
#include "paddle/fluid/framework/framework.pb.h"
21
#include "paddle/fluid/framework/phi_utils.h"
C
Chen Weihang 已提交
22
#include "paddle/fluid/platform/enforce.h"
23
#include "paddle/phi/common/scalar.h"
24
#include "paddle/phi/common/scalar_array.h"
25 26 27 28 29 30
#include "paddle/phi/core/compat/arg_map_context.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/core/tensor_utils.h"
C
Chen Weihang 已提交
31 32 33 34

namespace paddle {
namespace framework {

35
class InferShapeArgumentMappingContext : public phi::ArgumentMappingContext {
C
Chen Weihang 已提交
36 37 38 39 40 41 42 43 44 45 46 47
 public:
  explicit InferShapeArgumentMappingContext(const InferShapeContext& ctx)
      : ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
    return ctx_.HasInput(name);
  }

  bool HasOutput(const std::string& name) const override {
    return ctx_.HasOutput(name);
  }

48 49 50 51
  bool HasAttr(const std::string& name) const override {
    return ctx_.HasAttr(name);
  }

C
Chen Weihang 已提交
52 53 54 55 56 57
  paddle::any Attr(const std::string& name) const override {
    auto& attr = ctx_.Attrs().GetAttr(name);
    return GetAttrValue(attr);
  }

  size_t InputSize(const std::string& name) const override {
58 59 60 61 62 63
    if (ctx_.HasInputs(name)) {
      return ctx_.Inputs(name).size();
    } else if (ctx_.HasInput(name)) {
      return 1;
    }
    return 0;
C
Chen Weihang 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
  }

  size_t OutputSize(const std::string& name) const override {
    return ctx_.Outputs(name).size();
  }

  bool IsDenseTensorInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
    return var_types[0] == proto::VarType::LOD_TENSOR;
  }

  bool IsSelectedRowsInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
    return var_types[0] == proto::VarType::SELECTED_ROWS;
  }

80 81 82 83 84
  bool IsDenseTensorVectorInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
    return var_types[0] == proto::VarType::LOD_TENSOR_ARRAY;
  }

85 86 87 88 89 90 91 92 93 94
  bool IsDenseTensorOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
    return var_types[0] == proto::VarType::LOD_TENSOR;
  }

  bool IsSelectedRowsOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
    return var_types[0] == proto::VarType::SELECTED_ROWS;
  }

95 96
  bool IsForInferShape() const override { return true; }

97 98
  bool IsRuntime() const override { return ctx_.IsRuntime(); }

C
Chen Weihang 已提交
99 100 101 102
 private:
  const InferShapeContext& ctx_;
};

103 104 105 106 107 108 109
int64_t CompatMetaTensor::numel() const {
  if (is_runtime_) {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    return var->Get<Tensor>().numel();
  } else {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);
    return var->ElementSize();
C
Chen Weihang 已提交
110
  }
111
}
C
Chen Weihang 已提交
112

113 114 115 116 117 118 119 120 121 122 123
DDim CompatMetaTensor::dims() const {
  if (is_runtime_) {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      return var->Get<phi::DenseTensor>().dims();
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().dims();
    } else if (var->IsType<framework::LoDTensorArray>()) {
      // use tensor array size as dims
      auto& tensor_array = var->Get<framework::LoDTensorArray>();
      return phi::make_ddim({static_cast<int64_t>(tensor_array.size())});
C
Chen Weihang 已提交
124
    } else {
125 126 127
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can get dims from DenseTensor or SelectedRows or "
          "DenseTensorArray."));
C
Chen Weihang 已提交
128
    }
129 130 131 132 133
  } else {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);

    return var->GetShape().empty() ? phi::make_ddim({0UL})
                                   : phi::make_ddim(var->GetShape());
C
Chen Weihang 已提交
134
  }
135
}
C
Chen Weihang 已提交
136

137 138 139 140 141 142 143 144 145 146 147
phi::DataType CompatMetaTensor::dtype() const {
  if (is_runtime_) {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      return var->Get<phi::DenseTensor>().dtype();
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().dtype();
    } else if (var->IsType<framework::LoDTensorArray>()) {
      // NOTE(chenweihang): do nothing
      // Unsupported get dtype from LoDTensorArray now
      return phi::DataType::UNDEFINED;
C
Chen Weihang 已提交
148
    } else {
149 150
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can get dtype from DenseTensor or SelectedRows."));
C
Chen Weihang 已提交
151
    }
152 153 154
  } else {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);
    return paddle::framework::TransToPhiDataType(var->GetDataType());
C
Chen Weihang 已提交
155
  }
156
}
C
Chen Weihang 已提交
157

158 159 160 161 162 163 164 165
DataLayout CompatMetaTensor::layout() const {
  if (is_runtime_) {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      return var->Get<phi::DenseTensor>().layout();
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().layout();
    } else if (var->IsType<framework::LoDTensorArray>()) {
166
      // NOTE(chenweihang): do nothing
167 168 169 170 171 172
      // Unsupported get layout from LoDTensorArray now
      return phi::DataLayout::UNDEFINED;
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can get layout from DenseTensor or "
          "SelectedRows."));
C
Chen Weihang 已提交
173
    }
174 175 176 177
  } else {
    // NOTE(chenweihang): do nothing
    // Unsupported get layout for VarDesc now
    return DataLayout::UNDEFINED;
C
Chen Weihang 已提交
178
  }
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
}

void CompatMetaTensor::set_dims(const DDim& dims) {
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      auto* tensor = var->GetMutable<phi::DenseTensor>();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
    } else if (var->IsType<framework::LoDTensorArray>()) {
      auto* tensor_array = var->GetMutable<framework::LoDTensorArray>();
      // Note: Here I want enforce `tensor_array->size() == 0UL`, because
      // inplace using on LoDTensorArray is dangerous, but the unittest
      // `test_list` contains this behavior
      PADDLE_ENFORCE_EQ(dims.size(), 1UL,
                        platform::errors::InvalidArgument(
                            "LoDTensorArray can only have one dimension."));
      // only set the array size for LoDTensorArray input
      tensor_array->resize(dims[0]);
C
Chen Weihang 已提交
200
    } else {
201 202
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can set dims from DenseTensor or SelectedRows."));
C
Chen Weihang 已提交
203
    }
204 205 206
  } else {
    auto* var = BOOST_GET(VarDesc*, var_);
    var->SetShape(vectorize(dims));
C
Chen Weihang 已提交
207
  }
208 209 210 211 212 213 214 215 216 217 218 219 220 221
}

void CompatMetaTensor::set_dtype(phi::DataType dtype) {
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      auto* tensor = var->GetMutable<phi::DenseTensor>();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
    } else if (var->IsType<framework::LoDTensorArray>()) {
      // NOTE(chenweihang): do nothing
      // Unsupported set dtype for LoDTensorArray now
C
Chen Weihang 已提交
222
    } else {
223 224
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can set dtype from DenseTensor or SelectedRows."));
C
Chen Weihang 已提交
225
    }
226 227 228
  } else {
    auto* var = BOOST_GET(VarDesc*, var_);
    var->SetDataType(paddle::framework::TransToProtoVarType(dtype));
C
Chen Weihang 已提交
229
  }
230 231 232 233 234 235 236 237 238 239 240 241
}

void CompatMetaTensor::set_layout(DataLayout layout) {
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      auto* tensor = var->GetMutable<phi::DenseTensor>();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->layout = layout;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->layout = layout;
    } else if (var->IsType<framework::LoDTensorArray>()) {
242
      // NOTE(chenweihang): do nothing
243 244 245 246 247
      // Unsupported set dtype for LoDTensorArray now
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can set layout from DenseTensor or "
          "SelectedRows."));
C
Chen Weihang 已提交
248
    }
249 250 251
  } else {
    // NOTE(chenweihang): do nothing
    // Unsupported set layout for VarDesc now
C
Chen Weihang 已提交
252
  }
253 254 255 256 257 258 259 260 261
}

void CompatMetaTensor::share_lod(const MetaTensor& meta_tensor) {
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      auto* tensor = var->GetMutable<phi::DenseTensor>();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->lod =
          static_cast<const CompatMetaTensor&>(meta_tensor).GetRuntimeLoD();
C
Chen Weihang 已提交
262
    } else {
263 264
      // NOTE(chenweihang): do nothing
      // only LoDTensor need to share lod
C
Chen Weihang 已提交
265
    }
266 267 268 269
  } else {
    auto* var = BOOST_GET(VarDesc*, var_);
    var->SetLoDLevel(
        static_cast<const CompatMetaTensor&>(meta_tensor).GetCompileTimeLoD());
C
Chen Weihang 已提交
270
  }
271 272 273 274 275 276 277 278 279 280 281 282
}

void CompatMetaTensor::share_dims(const MetaTensor& meta_tensor) {
  set_dims(meta_tensor.dims());
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::SelectedRows>()) {
      auto* selected_rows = var->GetMutable<phi::SelectedRows>();
      auto& input_selected_rows =
          static_cast<const CompatMetaTensor&>(meta_tensor).GetSelectedRows();
      selected_rows->set_rows(input_selected_rows.rows());
      selected_rows->set_height(input_selected_rows.height());
283
    }
284
  }
285 286 287 288 289 290 291 292 293
}

void CompatMetaTensor::share_meta(const MetaTensor& meta_tensor) {
  share_dims(meta_tensor);
  set_dtype(meta_tensor.dtype());
  set_layout(meta_tensor.layout());
  // special case: share lod of LoDTensor
  share_lod(meta_tensor);
}
C
Chen Weihang 已提交
294

295 296
phi::InferMetaContext BuildInferMetaContext(InferShapeContext* ctx,
                                            const std::string& op_type) {
297 298
  // 1. get kernel args
  InitDefaultKernelSignatureMap();
299
  auto arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_type);
300 301 302 303 304 305 306 307
  PADDLE_ENFORCE_NOT_NULL(
      arg_map_fn, platform::errors::NotFound(
                      "The ArgumentMappingFn of %s op is not found.", op_type));
  InferShapeArgumentMappingContext arg_map_context(*ctx);
  auto signature = arg_map_fn(arg_map_context);
  VLOG(3) << "BuildInferMetaContext: op kernel signature - " << signature;

  // 2. build infermeta context
F
From00 已提交
308 309
  phi::InferMetaContext infer_meta_context(
      {ctx->IsRuntime(), ctx->IsRunMKLDNNKernel()});
310 311

  auto& input_names = std::get<0>(signature.args);
312
  auto& attr_names = std::get<1>(signature.args);
313 314
  auto& output_names = std::get<2>(signature.args);

315 316 317 318 319 320 321 322 323 324
  auto kernels_map =
      phi::KernelFactory::Instance().SelectKernelMap(signature.name);
  if (kernels_map.size() == 0) {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not find `%s` kernels when construct "
                                        "InferMetaContext.",
                                        signature.name));
  }
  auto attr_defs = kernels_map.cbegin()->second.args_def().attribute_defs();

325
  // TODO(chenweihang): support multiple inputs and outputs later
326
  phi::InferMetaContext infer_mete_context;
327
  for (auto& in_name : input_names) {
328 329 330 331 332 333 334 335 336 337 338 339 340 341
    if (ctx->HasInputs(in_name)) {
      auto input_var = ctx->GetInputVarPtrs(in_name);
      if (input_var.size() == 1) {
        infer_meta_context.EmplaceBackInput(
            std::make_shared<CompatMetaTensor>(input_var[0], ctx->IsRuntime()));
      } else {
        paddle::SmallVector<std::shared_ptr<phi::MetaTensor>> inputs;
        inputs.reserve(input_var.size());
        for (const auto& in : input_var) {
          inputs.push_back(
              std::make_shared<CompatMetaTensor>(in, ctx->IsRuntime()));
        }
        infer_meta_context.EmplaceBackInputs(std::move(inputs));
      }
342 343 344
    } else {
      infer_meta_context.EmplaceBackInput({nullptr});
    }
345
  }
346 347

  auto attr_reader = ctx->Attrs();
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
  for (size_t i = 0; i < attr_names.size(); ++i) {
    auto attr_name = attr_names[i];
    if (attr_defs[i].type_index == std::type_index(typeid(phi::ScalarArray))) {
      // When attr is a vector_tensor or tensor, transform it to ScalarArray
      if (ctx->HasInputs(attr_name) || ctx->HasInput(attr_name)) {
        const auto& infershape_inputs = ctx->GetInputVarPtrs(attr_name);
        if (ctx->IsRuntime()) {
          // If is in runtime, we will get tensor's value for ScalarArray
          // and push it into attrs
          std::vector<Variable*> vars;
          vars.reserve(infershape_inputs.size());
          for (size_t i = 0; i < infershape_inputs.size(); i++) {
            vars.push_back(BOOST_GET_CONST(Variable*, infershape_inputs[i]));
          }
          if (infershape_inputs.size() != 1) {
            infer_meta_context.EmplaceBackAttr(
364
                std::move(experimental::MakePhiScalarArrayFromVarList(vars)));
365 366
          } else {
            infer_meta_context.EmplaceBackAttr(
367
                std::move(experimental::MakePhiScalarArrayFromVar(*vars[0])));
368 369 370 371 372
          }
        } else {
          // If is not in runtime, we will set default value(-1) for ScalarArray
          std::vector<VarDesc*> vars;
          vars.reserve(infershape_inputs.size());
373
          for (size_t i = 0; i < infershape_inputs.size(); ++i) {
374 375
            vars.push_back(BOOST_GET_CONST(VarDesc*, infershape_inputs[i]));
          }
376

377
          int64_t num_ele = 0;
378 379 380
          if (vars.size() == 1) {
            num_ele = 1;
            const auto& tensor_dims = vars[0]->GetShape();
381 382 383
            for (size_t i = 0; i < tensor_dims.size(); ++i) {
              num_ele *= tensor_dims[i];
            }
384
          } else {
385
            num_ele = vars.size();
386 387 388 389 390 391 392 393 394 395 396
          }
          phi::ScalarArray tensor_attr(std::vector<int32_t>(num_ele, -1));
          tensor_attr.SetFromTensor(true);
          infer_meta_context.EmplaceBackAttr(std::move(tensor_attr));
        }
      } else if (ctx->HasAttr(attr_name)) {
        auto& attr = attr_reader.GetAttr(attr_name);
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int32_t>))) {
          infer_meta_context.EmplaceBackAttr(std::move(
              phi::ScalarArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
397 398 399 400
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::vector<int64_t>))) {
          infer_meta_context.EmplaceBackAttr(std::move(
              phi::ScalarArray(BOOST_GET_CONST(std::vector<int64_t>, attr))));
401 402 403 404
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          infer_meta_context.EmplaceBackAttr(
              phi::ScalarArray({BOOST_GET_CONST(int, attr)}));
405 406 407
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to ScalarArray when "
408
              "construct InferMetaContext.",
409 410 411
              attr_name));
        }
      }
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(phi::Scalar))) {
      if (ctx->HasAttr(attr_name)) {
        // TODO(chentianyu03): support other attrs later
        auto& attr = attr_reader.GetAttr(attr_name);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
          infer_meta_context.EmplaceBackAttr(
              phi::Scalar(BOOST_GET_CONST(float, attr)));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
          infer_meta_context.EmplaceBackAttr(
              phi::Scalar(BOOST_GET_CONST(std::string, attr)));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          infer_meta_context.EmplaceBackAttr(
              phi::Scalar(BOOST_GET_CONST(int, attr)));
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "InferMetaContext.",
              attr_name));
        }
      } else if (ctx->HasInput(attr_name)) {
        const auto& infershape_input = ctx->GetInputVarPtrs(attr_name);
        if (infershape_input.size() == 1) {
          if (ctx->IsRuntime()) {
            Variable* var = BOOST_GET_CONST(Variable*, infershape_input[0]);
            infer_meta_context.EmplaceBackAttr(
440
                std::move(experimental::MakePhiScalarFromVar(*var)));
441 442 443 444 445 446 447 448 449 450 451 452
          } else {
            phi::Scalar tensor_scalar(-1);
            tensor_scalar.SetFromTensor(true);
            infer_meta_context.EmplaceBackAttr(std::move(tensor_scalar));
          }
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Invalid input.size() when cast op attribute `%s` to Scalar, "
              "expected 1, but actually is %d .",
              attr_name, infershape_input.size()));
        }
      }
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(std::vector<phi::Scalar>))) {
      auto& attr = attr_reader.GetAttr(attr_name);
      if (std::type_index(attr.type()) ==
          std::type_index(typeid(std::vector<int32_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int32_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int64_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<float>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<float>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<double>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<double>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported cast op attribute `%s` to vector<Scalar> when "
            "construct InferMetaContext.",
            attr_names[i]));
      }
498 499
    } else if (ctx->HasAttr(attr_name)) {
      // Emplace Back Attr according to the type of attr.
500
      auto& attr = attr_reader.GetAttr(attr_name);
501
      if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
502
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
503
      } else if (attr_defs[i].type_index == std::type_index(typeid(int))) {
504
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(int, attr));
505
      } else if (attr_defs[i].type_index == std::type_index(typeid(int64_t))) {
506
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(int64_t, attr));
507
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
508
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(float, attr));
509
      } else if (attr_defs[i].type_index ==
510 511
                 std::type_index(typeid(std::string))) {
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(std::string, attr));
512
      } else if (attr_defs[i].type_index ==
513 514 515
                 std::type_index(typeid(std::vector<bool>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<bool>, attr));
516
      } else if (attr_defs[i].type_index ==
517 518 519
                 std::type_index(typeid(std::vector<int>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<int>, attr));
520
      } else if (attr_defs[i].type_index ==
521
                 std::type_index(typeid(std::vector<int64_t>))) {
522 523 524 525 526 527 528 529 530 531 532 533
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int>))) {
          // Emplace Back Attr according to the type of Phi_Kernel args.
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
          infer_meta_context.EmplaceBackAttr(vector_int64_attr);
        } else {
          infer_meta_context.EmplaceBackAttr(
              BOOST_GET_CONST(std::vector<int64_t>, attr));
        }
      } else if (attr_defs[i].type_index ==
534 535 536
                 std::type_index(typeid(std::vector<float>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<float>, attr));
537
      } else if (attr_defs[i].type_index ==
538 539 540
                 std::type_index(typeid(std::vector<double>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<double>, attr));
541
      } else if (attr_defs[i].type_index ==
542 543 544
                 std::type_index(typeid(std::vector<std::string>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<std::string>, attr));
545 546
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(phi::DataType))) {
547
        auto data_type = paddle::framework::TransToPhiDataType(
548 549 550
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
        infer_meta_context.EmplaceBackAttr(data_type);
551
      } else {
552 553 554
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported attribute type is received when call "
            "InferShapeFunctor."));
555
      }
H
hong 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
    } else if (ctx->HasInput(attr_name)) {
      // convert from data
      if (attr_defs[i].type_index == std::type_index(typeid(int32_t))) {
        if (ctx->IsRuntime()) {
          const auto& infershape_inputs = ctx->GetInputVarPtrs(attr_name);
          auto var_temp = BOOST_GET_CONST(Variable*, infershape_inputs[i]);
          auto val = experimental::MakePhiScalarFromVar(*var_temp);
          int32_t val_int = val.template to<int32_t>();
          infer_meta_context.EmplaceBackAttr(val_int);
        } else {
          infer_meta_context.EmplaceBackAttr(-1);
        }
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Get value from variable only support int yet"));
      }
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
    }
  }

  for (auto& out_name : output_names) {
    if (ctx->HasOutputs(out_name)) {
      auto output_var = ctx->GetOutputVarPtrs(out_name);
      if (output_var.size() == 1) {
        infer_meta_context.EmplaceBackOutput(std::make_shared<CompatMetaTensor>(
            output_var[0], ctx->IsRuntime()));
      } else {
        paddle::SmallVector<std::shared_ptr<phi::MetaTensor>> outputs;
        outputs.reserve(output_var.size());
        for (const auto& out : output_var) {
          outputs.emplace_back(
              std::make_shared<CompatMetaTensor>(out, ctx->IsRuntime()));
        }
        infer_meta_context.EmplaceBackOutputs(std::move(outputs));
      }
    } else {
      infer_meta_context.EmplaceBackOutput({nullptr});
592
    }
593 594 595 596 597
  }

  return infer_meta_context;
}

C
Chen Weihang 已提交
598 599
}  // namespace framework
}  // namespace paddle