operator.cc 74.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/shape_inference.h"
27
#include "paddle/fluid/framework/transfer_scope_cache.h"
28
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/var_type.h"
L
Leo Chen 已提交
30
#include "paddle/fluid/platform/enforce.h"
31
#include "paddle/fluid/platform/profiler.h"
32
#include "paddle/pten/common/scalar.h"
33
#include "paddle/pten/common/scalar_array.h"
34 35 36 37 38 39

namespace paddle {
namespace framework {
class LoDTensor;
}  // namespace framework
}  // namespace paddle
40
#ifdef PADDLE_WITH_XPU
41 42
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
43
#endif
Q
Qiao Longfei 已提交
44

45 46 47 48
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
49 50 51 52
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
53
DECLARE_bool(benchmark);
54
DECLARE_bool(check_nan_inf);
55
DECLARE_bool(enable_unused_var_check);
56 57
PADDLE_DEFINE_EXPORTED_int32(inner_op_parallelism, 0,
                             "number of threads for inner op");
58
DECLARE_bool(run_pten_kernel);
D
dzhwinter 已提交
59

Q
Qiao Longfei 已提交
60 61 62
namespace paddle {
namespace framework {

63 64 65 66 67 68
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
69

70
static DDim GetDimsDebug(const ScopeBase& scope, const std::string& name,
71
                         bool get_actual_dim = false) {
72
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
73 74
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
75 76
  }

M
minqiyang 已提交
77 78 79 80 81 82 83 84 85
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
S
Steffy-zxf 已提交
86 87
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
88 89 90 91 92
  } else {
    return DDim({-1});
  }
}

93
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
94 95 96 97 98
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

99
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
100 101 102 103
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
104

M
minqiyang 已提交
105 106 107
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
108 109
      return "";
    }
Y
Yu Yang 已提交
110
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
111
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
112 113 114 115
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
116
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
117
    }
S
Steffy-zxf 已提交
118 119
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
120 121 122 123 124
  } else {
    return "";
  }
}

125
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
  } else if (var->IsType<SelectedRows>()) {
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

154
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
155 156 157 158 159
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
160 161
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
162 163 164 165 166
  }

  return -1;
}

167
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
168 169 170 171 172 173 174
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
175 176 177
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
178 179 180 181 182
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
183 184 185 186 187
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
188
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
189 190 191 192 193 194
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
195
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
196 197 198 199 200 201
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

202
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
203 204 205
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
206
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
207 208 209 210
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
211
#else
212
      auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
P
peizhilin 已提交
213
      platform::SetDeviceId(dev_id);
214 215 216
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
217 218 219 220
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
221 222 223
#else
      auto dev_id = BOOST_GET_CONST(platform::XPUPlace, place).device;
      platform::SetXPUDeviceId(dev_id);
224 225 226 227 228 229 230 231 232 233
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
      auto dev_id = BOOST_GET_CONST(platform::NPUPlace, place).device;
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
234 235 236 237 238 239 240 241 242 243
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
      auto dev_id = BOOST_GET_CONST(platform::MLUPlace, place).device;
      platform::SetMLUDeviceId(dev_id);
244
#endif
P
peizhilin 已提交
245
    }
P
peizhilin 已提交
246

247
    {
248 249 250 251 252 253
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
      platform::RecordEvent op_type_record_event(Type());
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
254
          op_name, platform::EventRole::kUniqueOp);
P
peizhilin 已提交
255 256
      RunImpl(scope, place);
    }
257

Z
Zhang Ting 已提交
258
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
259
  } catch (platform::EnforceNotMet& exception) {
260
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
261
    throw std::move(exception);
262 263 264 265 266 267
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
268
  } catch (...) {
269
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
270
    std::rethrow_exception(std::current_exception());
271
  }
272 273
}

274
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
275
  return inputs_.find(name) != inputs_.end();
276 277
}

278
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
279
  auto& ins = Inputs(name);
280 281
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
282
      platform::errors::InvalidArgument(
283 284
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
285
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
286 287
}

Y
Yu Yang 已提交
288 289
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
290
  auto it = inputs_.find(name);
291 292 293 294
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
295
  return it->second;
Y
Yan Chunwei 已提交
296 297
}

298
bool OperatorBase::HasOutputs(const std::string& name) const {
299
  if (outputs_.find(name) != outputs_.end()) {
300 301 302 303 304 305
    return true;
  } else {
    return false;
  }
}

306
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
307
  auto& outs = Outputs(name);
308 309 310 311 312
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
313
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
314 315
}

Y
Yu Yang 已提交
316 317
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
318
  auto it = outputs_.find(name);
319 320 321 322
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
323
  return it->second;
Y
Yan Chunwei 已提交
324 325
}

326
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
327
  std::stringstream ss;
Y
Yu Yang 已提交
328
  ss << "Op(" << type_ << "), inputs:{";
329

330
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
331 332
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
333 334
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
335 336
  }

Y
Yu Yang 已提交
337 338
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
339 340
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
341 342
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
343 344
      auto var_name = input.second[i];
      ss << var_name;
345
      if (scope) {
Q
Qiao Longfei 已提交
346 347 348 349 350 351 352
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
353 354 355
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
356
          ss << ":" << dtype;
357 358
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
359
          ss << "(" << GetPlace(*scope, var_name) << ")";
360
        }
361
      }
Y
Yu Yang 已提交
362 363 364
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
365
    }
Y
Yu Yang 已提交
366
    ss << "]";
Y
Yu Yang 已提交
367 368
    ++it;
    if (it != inputs_.end()) {
369 370
      ss << ", ";
    }
Q
Qiao Longfei 已提交
371
  }
Y
Yu Yang 已提交
372
  ss << "}, outputs:{";
Y
Yu Yang 已提交
373 374
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
375 376
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
377 378
      auto var_name = output.second[i];
      ss << var_name;
379
      if (scope) {
Q
Qiao Longfei 已提交
380 381 382 383 384 385 386
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
387 388
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
389 390
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
391
          ss << "(" << GetPlace(*scope, var_name) << ")";
392
        }
393
      }
Y
Yu Yang 已提交
394 395 396
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
397
    }
Y
Yu Yang 已提交
398
    ss << "]";
Y
Yu Yang 已提交
399 400
    ++it;
    if (it != outputs_.end()) {
401 402
      ss << ", ";
    }
Q
Qiao Longfei 已提交
403
  }
Y
Yu Yang 已提交
404
  ss << "}.";
Q
Qiao Longfei 已提交
405 406 407
  return ss.str();
}

Y
Yu Yang 已提交
408
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
409 410
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
411
                           const AttributeMap& attrs)
S
sneaxiy 已提交
412 413 414 415 416 417
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
418 419 420 421 422 423 424 425
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
426
}
427

Q
qijun 已提交
428 429
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
430
  for (auto& o : inputs_) {
Q
qijun 已提交
431 432 433 434 435 436
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
437 438 439 440 441 442 443 444 445 446
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
447
  auto& info = Info();
Y
Yu Yang 已提交
448 449

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
450
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
451 452 453 454 455 456 457 458 459
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
460 461
}

462
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
463
  if (info_ == nullptr || info_->proto_ == nullptr) return;
464

S
sneaxiy 已提交
465
  for (auto& in : info_->Proto().inputs()) {
466
    if (!in.dispensable() && !in.extra()) {
467 468 469 470
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
471
    }
472 473
  }

S
sneaxiy 已提交
474
  for (auto& out : info_->Proto().outputs()) {
475
    if (!out.dispensable() && !out.extra()) {
476 477 478 479
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
480
    }
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
496

C
chengduo 已提交
497
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
498 499 500 501
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
502
  } else {
503 504 505
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
506 507 508
  }
}

C
chengduo 已提交
509
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
510
  if (var->IsType<LoDTensor>()) {
511
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
512
  } else if (var->IsType<SelectedRows>()) {
513
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
514
  } else {
515 516 517
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
518 519 520
  }
}

521
bool ExecutionContext::HasInput(const std::string& name) const {
522
  auto* var = InputVar(name);
523 524 525 526
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
527
  auto* var = OutputVar(name);
528 529 530
  return var != nullptr;
}

X
Xin Pan 已提交
531
const Variable* ExecutionContext::InputVar(const std::string& name) const {
532 533
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
534 535 536
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

537 538
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
539
      platform::errors::InvalidArgument(
540 541
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
542 543 544
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
545
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
546 547 548
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

549 550 551 552 553
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
554 555 556
  return it->second.empty() ? nullptr : it->second[0];
}

557
template <>
558
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
559
  return Input<LoDTensor>(name);
560 561 562
}

template <>
563
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
564
    const std::string& name) const {
565 566
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
567 568
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
569 570 571 572 573
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
574
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
575
                   if (var == nullptr) return nullptr;
576 577 578 579 580
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
581 582 583 584 585
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

586
template <>
587
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
588
  return Output<LoDTensor>(name);
589 590 591
}

template <>
592
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
593
    const std::string& name) const {
H
hong 已提交
594 595 596
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
597 598
    return {};
  }
599
  std::vector<Tensor*> res;
600 601 602 603 604
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
605
                 });
606 607 608
  return res;
}

Y
Yu Yang 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

624 625
class RuntimeInferShapeContext : public InferShapeContext {
 public:
626
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
627
      : op_(op), ctx_(ctx) {}
628 629

  bool HasInput(const std::string& name) const override {
630
    // has only one input
X
Xin Pan 已提交
631
    const auto& ins = ctx_.inputs;
632 633
    auto it = ins.find(name);
    if (it == ins.end()) {
634 635
      return false;
    }
636
    const auto& in = it->second;
X
Xin Pan 已提交
637
    if (in.size() == 0) return false;
638 639 640 641
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
642
    return in[0] != nullptr;
643 644 645
  }

  bool HasOutput(const std::string& name) const override {
646
    // has only one output
X
Xin Pan 已提交
647
    const auto& outs = ctx_.outputs;
648 649
    auto it = outs.find(name);
    if (it == outs.end()) {
650 651
      return false;
    }
652
    const auto& out = it->second;
X
Xin Pan 已提交
653
    if (out.size() == 0) {
654 655
      return false;
    }
656 657 658 659
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
660
    return out[0] != nullptr;
661 662 663
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
664 665
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
666
    if (it == ins.end() || it->second.empty()) {
667 668
      return false;
    }
X
Xin Pan 已提交
669 670
    for (auto& input : it->second) {
      if (input == nullptr) {
671 672 673 674 675 676 677
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
678 679
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
680
    if (it == outs.end() || it->second.empty()) {
681 682
      return false;
    }
X
Xin Pan 已提交
683 684
    for (auto& output : it->second) {
      if (output == nullptr) {
685 686 687 688 689 690 691 692
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
693
  std::vector<std::string> Inputs(const std::string& name) const override {
694 695 696
    return op_.Inputs(name);
  }

H
hong 已提交
697
  std::vector<std::string> Outputs(const std::string& name) const override {
698 699 700
    return op_.Outputs(name);
  }

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

724 725
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
726 727
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
744 745 746

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
747

748 749 750 751 752
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
753 754 755 756 757 758 759 760 761 762 763 764

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
765
      PADDLE_THROW(platform::errors::Unimplemented(
766
          "Currently, the input type of ShareDim only can be LoDTensor "
767
          "or SelectedRows."));
768 769 770
    }
  }

H
hong 已提交
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
789
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
816 817
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
818 819
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
836 837

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
838
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
839
    Variable* out_var = out_it->second.at(j);
840 841 842 843
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
844
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
845 846
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
847

M
mozga-intel 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
867 868
  }

869
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
870
    PADDLE_THROW(platform::errors::PreconditionNotMet(
871
        "GetLoDLevel is only used in compile time. The calculation of "
872
        "output's actual lod is different among operators so that should be "
873
        "set in the runtime kernel."));
874 875
  }

876 877
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
878
    PADDLE_THROW(platform::errors::PreconditionNotMet(
879
        "SetLoDLevel is only used in compile time. The calculation of "
880
        "output's actual lod is different among operators so that should be "
881
        "set in the runtime kernel."));
C
chengduo 已提交
882 883
  }

884 885
  bool IsRuntime() const override { return true; }

886 887
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
888
      const std::string& name) const override {
889 890 891 892 893 894 895 896
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
897
      const std::string& name) const override {
898 899 900 901 902 903 904
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
905 906
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
907 908 909 910 911
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
912 913 914 915 916 917 918 919
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
920 921 922 923 924 925 926 927 928 929
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
930 931
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
932 933 934 935 936
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
937 938 939 940 941 942 943 944 945
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

946
 protected:
X
Xin Pan 已提交
947
  DDim GetDim(Variable* var) const {
948 949
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
950 951 952 953 954
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
955 956 957 958
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
959 960 961
    }
  }

X
Xin Pan 已提交
962 963 964 965 966 967 968 969
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
970
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
971 972
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
973 974
  }

X
Xin Pan 已提交
975
  void SetDim(Variable* var, const DDim& dim) {
976 977 978 979 980
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
981 982 983 984
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
985 986 987 988 989 990
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
991 992 993 994 995 996
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
997 998 999 1000 1001
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1002 1003 1004
    }
  }

F
fengjiayi 已提交
1005 1006
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1007 1008
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1009 1010
  }

X
Xin Pan 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1022 1023 1024
    return ToVarType(var->Type());
  }

1025 1026 1027
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1028 1029 1030 1031
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1032 1033 1034 1035 1036
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1037 1038 1039 1040
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1041
    return it->second;
F
fengjiayi 已提交
1042 1043
  }

1044
  const OperatorBase& op_;
X
Xin Pan 已提交
1045
  const RuntimeContext& ctx_;
1046 1047
};

1048 1049
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1050 1051 1052 1053
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
1054 1055
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
1056 1057
    return;
  }
1058 1059 1060 1061 1062 1063 1064 1065
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1066 1067
}

1068 1069
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1070 1071
  auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1072
                     [data_type](OpKernelMap::const_reference kern_pair) {
1073 1074
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1075 1076
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1077 1078 1079
                     });
}

1080 1081
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1082 1083 1084
  bool use_mkldnn_ctx = ctx.HasAttr("use_mkldnn") &&
                        ctx.Attr<bool>("use_mkldnn") &&
                        platform::is_cpu_place(ctx.GetPlace());
1085
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1086 1087
}

B
baojun-nervana 已提交
1088
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1089 1090
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1091
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
B
baojun-nervana 已提交
1092 1093 1094
  this->InferShape(&infer_shape_ctx);
}

L
luotao1 已提交
1095 1096
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1097 1098
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1099 1100 1101
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1102
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1103
    all_kernels_must_compute_runtime_shape_ = true;
1104
  const Scope* cur_scope = &scope;
1105
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1106 1107
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1108
    pre_scope_ = cur_scope;
L
luotao1 已提交
1109
  } else {
1110 1111 1112 1113 1114 1115
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1116 1117 1118 1119 1120 1121 1122 1123
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1124
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1125
  auto* dev_ctx = pool.Get(place);
1126

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1137 1138 1139 1140 1141 1142 1143 1144 1145
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);

  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
  if (FLAGS_run_pten_kernel &&
      pten::KernelFactory::Instance().HasCompatiblePtenKernel(type_)) {
1146
    if (pt_kernel_signature_ == nullptr || pt_kernel_ == nullptr) {
1147 1148 1149 1150 1151 1152 1153 1154
      ChoosePtenKernel(exe_ctx);
    }
    run_pten_kernel_ = pt_kernel_->IsValid();
  }
  if (!run_pten_kernel_) {
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
    }
1155 1156
  }

Y
yuyang18 已提交
1157 1158
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1159 1160
  Scope* transfer_scope = nullptr;
  {
1161
    platform::RecordEvent record_event("prepare_data",
1162
                                       platform::EventRole::kInnerOp);
1163 1164 1165 1166
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1167
  }
Y
yuyang18 已提交
1168 1169 1170 1171
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1172 1173
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
1174
  }
Q
QI JUN 已提交
1175

1176
  if (!all_kernels_must_compute_runtime_shape_) {
1177
    platform::RecordEvent record_event("infer_shape",
1178
                                       platform::EventRole::kInnerOp);
1179
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1180 1181
    this->InferShape(&infer_shape_ctx);
  }
1182 1183 1184 1185 1186

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1187 1188
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1189
  {
1190
    platform::RecordEvent record_event("compute",
1191
                                       platform::EventRole::kInnerOp);
1192
    if (run_pten_kernel_) {
1193 1194 1195 1196 1197
      if (pt_kernel_context_ == nullptr) {
        pt_kernel_context_.reset(new pten::KernelContext());
      }
      BuildPtenKernelContext(*runtime_ctx, dev_ctx);
      (*pt_kernel_)(pt_kernel_context_.get());
1198
      WriteBackToOutputs(runtime_ctx);
1199
      pt_kernel_context_->ClearData();
1200 1201 1202 1203
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1204
  }
D
dzhwinter 已提交
1205

Y
yuyang18 已提交
1206
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1207
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1208
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1209
  }
1210 1211 1212 1213 1214 1215 1216

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1217 1218 1219 1220 1221 1222 1223 1224
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1225

D
dzhwinter 已提交
1226
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1227
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1228
    dev_ctx->Wait();
1229 1230
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1231 1232
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1233
  }
C
chengduoZH 已提交
1234 1235

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1236
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1237
  }
1238 1239 1240 1241 1242 1243 1244

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1245
}
X
Xin Pan 已提交
1246

1247 1248 1249
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto& dev_ctx = ctx.device_context();
L
Liu Yiqun 已提交
1250

1251
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1252 1253 1254
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1265 1266 1267
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
      if (SupportGPU()) {
1268
        expected_kernel_key.place_ = dev_ctx.GetPlace();
B
Baibaifan 已提交
1269
      } else if (SupportNPU()) {
1270
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1271 1272 1273 1274 1275 1276 1277 1278
      } else {
        expected_kernel_key.place_ = platform::CPUPlace();
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1279 1280
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1281 1282 1283 1284 1285 1286
  return expected_kernel_key;
}

void OperatorWithKernel::ChoosePtenKernel(const ExecutionContext& ctx) const {
  pt_kernel_signature_.reset(
      new KernelSignature(std::move(this->GetExpectedPtenKernelArgs(ctx))));
C
Chen Weihang 已提交
1287
  VLOG(6) << KernelSignatureToString(*pt_kernel_signature_.get());
1288 1289 1290 1291

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

Y
YuanRisheng 已提交
1292
  auto pt_kernel_name = pt_kernel_signature_->name;
1293 1294 1295 1296 1297 1298
  auto pt_kernel_key = TransOpKernelTypeToPtenKernelKey(*kernel_type_.get());
  pt_kernel_.reset(
      new pten::Kernel(pten::KernelFactory::Instance().SelectKernel(
          pt_kernel_name, pt_kernel_key)));

  if (pt_kernel_->IsValid()) {
C
Chen Weihang 已提交
1299
    VLOG(6) << "Static mode ChoosePtenKernel - kernel name: " << pt_kernel_name
1300 1301 1302
            << " | kernel key: " << pt_kernel_key
            << " | kernel: " << *pt_kernel_;
  } else {
C
Chen Weihang 已提交
1303
    VLOG(6) << "Static mode ChoosePtenKernel - kernel `" << pt_kernel_name
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
            << "` not found.";
  }
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1332 1333
#endif
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
1334 1335 1336 1337
  if (is_xpu_place(expected_kernel_key.place_) &&
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1338 1339 1340 1341 1342 1343
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
      is_npu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
      is_mlu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1364
#endif
1365 1366 1367 1368
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1369

1370 1371 1372 1373 1374
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1375 1376
}

Y
yuyang18 已提交
1377 1378 1379 1380
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1381
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1382
    auto* origin_var = scope.FindVar(var_name);
1383 1384 1385
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1386
    auto* original_tensor =
C
chengduo 已提交
1387
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1388
    auto* var = transfer_scope.FindVar(var_name);
1389 1390
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1391
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1392
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1393
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1394 1395 1396 1397 1398
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1399 1400 1401
  }
}

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
      auto src_type = grad_tensor->type();
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
      auto dst_type = tensor->saved_type();
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1469
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1470
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1471 1472
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1473
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1474

1475
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1476 1477 1478 1479
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1480 1481
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1482 1483 1484
    }
  }

Y
yuyang18 已提交
1485
  for (auto& var_name_item : Inputs()) {
1486 1487
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1488

X
Xin Pan 已提交
1489 1490 1491 1492
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1493
      auto* var = input_vars[i];
X
Xin Pan 已提交
1494

Y
yuyang18 已提交
1495
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1496
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1497 1498 1499
        continue;
      }

C
chengduo 已提交
1500
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1516 1517
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1550 1551
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1552

1553 1554 1555
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1556
      // We use a thread_local cache to fix that issue, the key in the cache is
1557 1558 1559 1560 1561
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1562 1563
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1564
      // variables, that behavior a lot different.
1565 1566 1567 1568 1569 1570 1571 1572 1573
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1574 1575
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1576
        enable_cache_transfer_scope_ = true;
1577
      }
1578
      if (!new_scope) {
Y
yuyang18 已提交
1579 1580
        new_scope = &scope.NewScope();
      }
1581 1582 1583 1584
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1585
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1586 1587
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1588
      if (enable_cache_runtime_context_) {
1589 1590
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1591 1592

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1593
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1594
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1612
      Tensor out;
Y
yuyang18 已提交
1613
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1614 1615 1616
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1617

1618 1619 1620 1621 1622 1623
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
1624 1625 1626 1627 1628 1629

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
1630 1631
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1632 1633 1634

  return new_scope;
}
Q
Qiao Longfei 已提交
1635

1636
void OperatorWithKernel::ParseInputDataType(
1637
    const std::vector<Variable*>& vars, const std::string& name,
1638
    proto::VarType::Type* data_type) const {
1639
  proto::VarType::Type default_data_type =
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
1651
      } else if (var->IsType<LoDTensorArray>()) {
1652 1653 1654 1655
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
1656 1657
          }
        }
1658 1659
      }
      if (t != nullptr) {
1660 1661
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
1662 1663 1664
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(), name));
1665
        proto::VarType::Type tmp = t->type();
1666 1667 1668 1669 1670 1671 1672 1673 1674
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(), name, DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
1675 1676 1677 1678 1679 1680
        *data_type = tmp;
      }
    }
  }
}

1681
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1682
    const ExecutionContext& ctx) const {
1683 1684 1685
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1686
  for (auto& input : ctx.InNameList()) {
1687 1688
    const std::vector<Variable*> vars = ctx.MultiInputVar(input);
    ParseInputDataType(vars, input, &data_type);
Y
Yu Yang 已提交
1689
  }
1690 1691 1692 1693
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
1694 1695 1696 1697 1698 1699 1700 1701
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
1702
  ParseInputDataType(ctx.MultiInputVar(name), name, &data_type);
1703 1704
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
1705 1706 1707 1708 1709
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
1710
  return data_type;
Y
Yu Yang 已提交
1711
}
1712

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
  } else if (var->IsType<SelectedRows>()) {
    t = var->GetMutable<SelectedRows>()->mutable_value();
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
  auto type_a = tensor_a->type();
  auto type_b = tensor_b->type();

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

1773 1774 1775 1776 1777 1778 1779 1780
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1781 1782
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1783 1784
}

1785 1786
KernelSignature OperatorWithKernel::GetExpectedPtenKernelArgs(
    const ExecutionContext& ctx) const {
Y
YuanRisheng 已提交
1787 1788
  return KernelSignatureMap::Instance().Get(
      pten::TransToPtenKernelName(Type()));
1789 1790
}

1791 1792
void OperatorWithKernel::BuildPtenKernelContext(
    const RuntimeContext& ctx, platform::DeviceContext* dev_ctx) const {
1793 1794 1795 1796 1797 1798 1799
  // TODO(chenweihang): now only work for very simple case,
  // many cases need to be deal with later:
  // 1. the input and output are not tensor
  // 2. the dispensbale, duplicable input and output
  // 3. needless attributes remove
  // 4. use pt Tensor directly
  // 5. kernel input is not DenseTensor
1800
  pt_kernel_context_->SetDeviceContext(dev_ctx);
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828

  auto& input_names = std::get<0>(pt_kernel_signature_->args);
  auto& attr_names = std::get<1>(pt_kernel_signature_->args);
  auto& output_names = std::get<2>(pt_kernel_signature_->args);

  auto input_defs = pt_kernel_->args_def().input_defs();
  auto attr_defs = pt_kernel_->args_def().attribute_defs();
  auto output_defs = pt_kernel_->args_def().output_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
1829 1830
    auto& in_def = input_defs.at(i);
    auto& ins_vector = ctx.inputs.at(input_names[i]);
1831 1832 1833 1834 1835

    // calcute the start and end index of the input tensors
    size_t start_idx =
        (i == 0 ? 0 : pt_kernel_context_->InputRangeAt(i - 1).second);
    size_t end_idx = start_idx + ins_vector.size();
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
    auto current_vector_size = pt_kernel_context_->InputsSize();

    // If the memory needed is less than the current memory allocated, we will
    // reuse the current memory by using ReMakePtenDenseTensorFromVar.
    // Otherwise,we will create new storage.
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      if (current_vector_size > start_idx + offset) {
        auto& input_ptr =
            pt_kernel_context_->MutableInputPtrAt(start_idx + offset);
        if (input_ptr == nullptr) {
          input_ptr = experimental::MakePtenTensorBaseFromVar(
              *ins_vector[offset], in_def);
        } else {
1849
          experimental::ReMakePtenDenseTensorFromVar(
1850
              *ins_vector[offset], in_def,
1851
              pt_kernel_context_->MutableInputAt<pten::DenseTensor>(start_idx +
1852
                                                                    offset));
1853
        }
1854 1855 1856 1857
      } else {
        pt_kernel_context_->EmplaceBackInputWithoutSetRange(
            experimental::MakePtenTensorBaseFromVar(*ins_vector[offset],
                                                    in_def));
1858
      }
1859
    }
1860
    pt_kernel_context_->AssignInputRange(std::make_pair(start_idx, end_idx), i);
1861 1862 1863
  }

  for (size_t i = 0; i < output_names.size(); ++i) {
1864 1865
    auto& out_def = output_defs.at(i);
    auto& outs_vector = ctx.outputs.at(output_names[i]);
1866 1867 1868 1869

    size_t start_idx =
        (i == 0 ? 0 : pt_kernel_context_->OutputRangeAt(i - 1).second);
    size_t end_idx = start_idx + outs_vector.size();
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
    auto current_vector_size = pt_kernel_context_->OutputsSize();

    // If the memory needed is less than the current memory allocated, we will
    // reuse the current memory by using ReMakePtenDenseTensorFromVar.
    // Otherwise,we will create new storage.
    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
      if (current_vector_size > start_idx + offset) {
        experimental::ReMakePtenDenseTensorFromVar(
            outs_vector[offset], out_def,
            pt_kernel_context_->MutableOutputAt<pten::DenseTensor>(start_idx +
                                                                   offset));
      } else {
        pt_kernel_context_->EmplaceBackOutputWithoutSetRange(
            experimental::MakePtenTensorBaseFromVar(outs_vector[offset],
                                                    out_def));
1885
      }
1886
    }
1887 1888
    pt_kernel_context_->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
1889 1890 1891
  }

  for (size_t i = 0; i < attr_names.size(); ++i) {
1892 1893 1894 1895 1896 1897 1898
    if (attr_defs[i].type_index == std::type_index(typeid(pten::ScalarArray))) {
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // shape is in the attribute
        if (std::type_index(attr_iter->second.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
          pt_kernel_context_->EmplaceBackAttr(std::move(pten::ScalarArray(
              BOOST_GET_CONST(std::vector<int64_t>, attr_iter->second))));
1899 1900 1901 1902
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
          pt_kernel_context_->EmplaceBackAttr(std::move(pten::ScalarArray(
              BOOST_GET_CONST(std::vector<int32_t>, attr_iter->second))));
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to ScalarArray when "
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
          pt_kernel_context_->EmplaceBackAttr(std::move(
              experimental::MakePtenScalarArrayFromVar(*ins_vector.front())));
        } else {  // ShapeTensorList
          pt_kernel_context_->EmplaceBackAttr(std::move(
              experimental::MakePtenScalarArrayFromVarList(ins_vector)));
        }
      }
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(pten::Scalar))) {
1921 1922 1923
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // scalar is in the attribute
        auto& attr = Attrs().at(attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
          pt_kernel_context_->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(float, attr))));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
          pt_kernel_context_->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(std::string, attr))));
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext.",
              attr_names[i]));
        }
1940
      } else {
1941 1942 1943
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
        pt_kernel_context_->EmplaceBackAttr(std::move(
            experimental::MakePtenScalarFromVar(*ins_vector.front())));
1944
      }
1945

1946 1947
    } else {
      // TODO(chenweihang): support other attrs later
1948
      auto& attr = Attrs().at(attr_names[i]);
1949
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
1950
        pt_kernel_context_->EmplaceBackAttr(BOOST_GET_CONST(int, attr));
1951
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
1952
        pt_kernel_context_->EmplaceBackAttr(BOOST_GET_CONST(float, attr));
1953
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
1954
        pt_kernel_context_->EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
1955
      } else if (attr_defs[i].type_index ==
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
                 std::type_index(typeid(pten::DataType))) {
        auto data_type = pten::TransToPtenDataType(
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
        pt_kernel_context_->EmplaceBackAttr(data_type);
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int>))) {
          // Emplace Back Attr according to the type of Pten_Kernel args.
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
          pt_kernel_context_->EmplaceBackAttr(vector_int64_attr);
        }
        // TODO(YuanRisheng) Need support vector<int64_t> attr

1973 1974
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
1975
            "Unsupported cast op attribute `%s` when construct "
1976 1977 1978 1979 1980 1981 1982
            "KernelContext.",
            attr_names[i]));
      }
    }
  }
}

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
void OperatorWithKernel::WriteBackToOutputs(RuntimeContext* ctx) const {
  // auto& input_names = std::get<0>(pt_kernel_signature_->args);
  // auto& attr_names = std::get<1>(pt_kernel_signature_->args);
  auto& output_names = std::get<2>(pt_kernel_signature_->args);

  // pt_kernel_context_

  for (size_t i = 0; i < output_names.size(); ++i) {
    auto& outs_vector = ctx->outputs.at(output_names[i]);

    auto& range_pair = pt_kernel_context_->OutputRangeAt(i);
    auto pten_outs =
        pt_kernel_context_->MutableOutputBetween<pten::DenseTensor>(
            range_pair.first, range_pair.second);

    for (size_t j = 0; j < pten_outs.size(); ++j) {
      experimental::MakeVariableFromPtenTensor(pten_outs[j], outs_vector[j]);
    }
  }
}

Q
Qiao Longfei 已提交
2004
}  // namespace framework
L
liaogang 已提交
2005
}  // namespace paddle