nn.py 218.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
25 26 27
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
Y
ying 已提交
32 33 34
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
35
    'dynamic_lstmp',
G
guosheng 已提交
36
    'dynamic_gru',
Y
ying 已提交
37 38 39 40 41 42 43 44 45
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
46
    'conv3d',
Y
ying 已提交
47
    'sequence_pool',
48 49
    'sequence_softmax',
    'softmax',
Y
ying 已提交
50
    'pool2d',
Y
yuyang18 已提交
51
    'pool3d',
Y
ying 已提交
52 53 54
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
55
    'conv3d_transpose',
Y
ying 已提交
56
    'sequence_expand',
C
chengduo 已提交
57
    'sequence_expand_as',
F
fengjiayi 已提交
58
    'sequence_pad',
Y
ying 已提交
59 60 61 62 63
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
64
    'reduce_prod',
Y
ying 已提交
65 66 67 68
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
69 70
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
71 72
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
73
    'topk',
Y
ying 已提交
74 75
    'warpctc',
    'sequence_reshape',
76
    'transpose',
77
    'im2sequence',
78
    'nce',
W
weixing02 已提交
79
    'hsigmoid',
Q
Qiao Longfei 已提交
80
    'beam_search',
81
    'row_conv',
82
    'multiplex',
G
guosheng 已提交
83
    'layer_norm',
84 85
    'softmax_with_cross_entropy',
    'smooth_l1',
86
    'one_hot',
Y
Yu Yang 已提交
87
    'autoincreased_step_counter',
C
caoying03 已提交
88
    'reshape',
Y
Yibing Liu 已提交
89 90
    'squeeze',
    'unsqueeze',
Y
yangyaming 已提交
91
    'lod_reset',
D
dragonwarrior 已提交
92
    'lrn',
G
guosheng 已提交
93
    'pad',
C
chengduo 已提交
94
    'pad_constant_like',
95
    'label_smooth',
96
    'roi_pool',
W
whs 已提交
97
    'dice_loss',
F
fengjiayi 已提交
98 99
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
100
    'resize_bilinear',
W
whs 已提交
101
    'gather',
102
    'scatter',
103
    'random_crop',
Y
yuyang18 已提交
104 105 106
    'mean_iou',
    'relu',
    'log',
107
    'crop',
108
    'rank_loss',
J
jerrywgz 已提交
109
    'prelu',
110
    'flatten',
Q
qingqing01 已提交
111
    'sequence_mask',
S
sneaxiy 已提交
112
    'stack',
W
whs 已提交
113
    'pad2d',
D
dzhwinter 已提交
114
    'unstack',
115
    'sequence_enumerate',
C
add api  
chengduoZH 已提交
116
    'sequence_concat',
Y
Yu Yang 已提交
117 118 119 120 121 122 123 124
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
125
       use_mkldnn=False,
Y
Yu Yang 已提交
126
       act=None,
J
Jacek Czaja 已提交
127
       is_test=False,
128
       name=None):
Y
Yu Yang 已提交
129
    """
130
    **Fully Connected Layer**
Y
Yu Yang 已提交
131

132 133 134 135 136 137 138 139
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
140
    to the output as well.
C
caoying03 已提交
141

C
caoying03 已提交
142
    This process can be formulated as follows:
143 144 145

    .. math::

146
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
147 148 149

    In the above equation:

C
caoying03 已提交
150 151 152 153
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
154
    * :math:`Act`: The activation function.
C
caoying03 已提交
155
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
156 157

    Args:
R
ranqiu 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
173 174
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
175
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
176
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
177 178
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
179
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
180

181
    Returns:
F
fengjiayi 已提交
182
        Variable: The transformation result.
183 184

    Raises:
C
caoying03 已提交
185
        ValueError: If rank of the input tensor is less than 2.
186 187 188 189

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
190
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
191
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
192
    """
C
caoying03 已提交
193

C
caoying03 已提交
194
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
195 196 197 198

    dtype = helper.input_dtype()

    mul_results = []
199 200
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
201 202 203
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
204

Y
Yu Yang 已提交
205
        w = helper.create_parameter(
206 207
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
208
        helper.append_op(
209 210 211
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
212
            outputs={"Out": tmp},
M
mozga-intel 已提交
213 214
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
215 216 217 218
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
219
    else:
220 221
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
222 223 224 225
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
226 227 228 229
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
230 231


232 233 234
def embedding(input,
              size,
              is_sparse=False,
235
              is_distributed=False,
236 237 238
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
239
    """
240 241
    **Embedding Layer**

242
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
243 244
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
245 246 247

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
248 249

    Args:
250 251 252 253 254
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
255
        is_distributed(bool): Whether to run lookup table from remote parameter server.
256 257
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
258
            with zeros whenever lookup encounters it in :attr:`input`. If
259
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
260 261
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
262
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
263

264 265 266
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
267

268 269
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
270

C
chengduoZH 已提交
271
          dict_size = len(dataset.ids)
272
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
273
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
274 275 276 277 278 279
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
280 281
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
282 283 284 285 286
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
287 288 289 290 291
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
292 293 294
    return tmp


Y
yi.wu 已提交
295
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
296 297
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
298 299
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
300 301 302 303 304 305 306
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
307 308
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
309
    """
Y
yi.wu 已提交
310
    ${comment}
Y
Yibing Liu 已提交
311 312

    Args:
Y
yi.wu 已提交
313 314
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
315 316 317 318 319 320 321
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

322
        param_attr(ParamAttr|None): The parameter attribute for the learnable
323
                               hidden-hidden weights.
Y
Yibing Liu 已提交
324 325 326

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
327 328
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
329
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
330 331 332
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
333

334
                              1. `use_peepholes = False`
Y
yi.wu 已提交
335 336
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
337
                              2. `use_peepholes = True`
Y
yi.wu 已提交
338
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
339
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
340
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
341 342 343 344 345 346 347 348
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
349 350

    Returns:
Y
Yibing Liu 已提交
351 352
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
353

Y
Yibing Liu 已提交
354
    Examples:
Y
Yibing Liu 已提交
355 356
        .. code-block:: python

Y
Yibing Liu 已提交
357 358
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
359
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
360 361
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
362
    """
363

Y
Yu Yang 已提交
364
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
365
    size = size // 4
Y
Yu Yang 已提交
366 367 368 369 370 371 372 373 374 375 376 377
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
378 379 380 381 382 383 384 385 386 387
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
388 389 390

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
391
        inputs=inputs,
Y
Yu Yang 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
408 409 410 411 412 413 414 415 416 417 418
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
419 420
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
421 422 423
    """
    **Dynamic LSTMP Layer**

424 425 426 427 428 429
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
430 431 432 433 434

    The formula is as follows:

    .. math::

435
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
436

437
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
438

439
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
440

441
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
442

443
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
444

445
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
446

447
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
448

Y
Yibing Liu 已提交
449 450 451 452 453 454
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
455
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
456
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
457
          bias vector).
Y
Yibing Liu 已提交
458 459 460
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
461
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
462
    * :math:`h`: The hidden state.
463
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
464 465
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
466
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
467
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
468
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
469 470
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
471 472 473 474

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
475

Y
Yibing Liu 已提交
476 477 478 479 480 481 482 483 484 485 486 487
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
488
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
489 490
                               hidden-hidden weight and projection weight.

491 492
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
493 494
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
495 496
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
497 498
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
499 500 501 502 503 504
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
505
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
506 507 508
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
509
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
510 511 512 513 514 515 516 517 518
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
519
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
520 521
                              default "tanh".
        proj_activation(str): The activation for projection output.
522
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
523 524
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
525 526
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
527 528

    Returns:
529 530 531 532
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
533 534

    Examples:
535

Y
Yibing Liu 已提交
536 537
        .. code-block:: python

538 539 540 541
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
542
            hidden_dim, proj_dim = 512, 256
543
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
544
                                     act=None, bias_attr=None)
545 546 547
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
548 549 550 551
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
552
    """
553

Y
Yibing Liu 已提交
554
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
555
    size = size // 4
Y
Yibing Liu 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
600 601 602 603 604 605 606 607 608
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
609
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
610

611
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
612
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
613

G
guosheng 已提交
614 615 616 617 618 619 620 621 622
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
623

G
guosheng 已提交
624
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
625

G
guosheng 已提交
626
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
627 628
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
629 630 631 632
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
633
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
634 635

    Args:
636 637
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
638
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
639
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
640 641
            is the hidden size.
        size(int): The dimension of the gru cell.
642
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
643 644
            hidden-hidden weight matrix. Note:

645
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
646
              :math:`D` is the hidden size.
647
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
648
              The first part are weights of the update gate and reset gate with
649
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
650
              candidate hidden state with shape :math:`(D \\times D)`.
651
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
652
            hidden-hidden bias.
653
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
654 655 656
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
657
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
658
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
659 660 661 662
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
663 664

    Returns:
G
guosheng 已提交
665
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
666
            and sequence length is the same with the input.
667

G
guosheng 已提交
668
    Examples:
669

G
guosheng 已提交
670 671
        .. code-block:: python

672 673 674 675
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
676
            hidden_dim = 512
677
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
678 679 680 681 682 683 684 685 686 687
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
688
    batch_size = input.shape[0]
G
guosheng 已提交
689 690 691
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
692 693 694
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
718 719 720
def gru_unit(input,
             hidden,
             size,
721 722
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
723
             activation='tanh',
724
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
725
    """
726
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
727

728 729
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
730

731
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
732

733
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
734

735
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
736 737

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
738 739 740
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
741 742
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

743 744
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
745 746 747
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
748 749 750 751 752

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
753 754
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
755 756 757 758
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
759

760 761 762 763 764 765
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
766

767
             # assuming we have x_t_data and prev_hidden of size=10
768
             x_t = fluid.layers.fc(input=x_t_data, size=30)
769 770
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
771 772 773 774 775 776 777 778 779 780 781 782

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
783
    size = size // 3
Y
Yu Yang 已提交
784 785

    # create weight
786 787
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
788

789 790 791 792
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
793
    # create bias
794
    if helper.bias_attr:
Y
Yu Yang 已提交
795 796 797
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
798
        inputs['Bias'] = bias
Y
Yu Yang 已提交
799 800 801

    helper.append_op(
        type='gru_unit',
802
        inputs=inputs,
Y
Yu Yang 已提交
803 804 805 806 807 808
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
809 810
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
811 812 813 814 815
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
816
@templatedoc()
817
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
818 819 820 821 822 823 824
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
825
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
826 827 828 829
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
830 831 832
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
833 834

    """
Y
Yu Yang 已提交
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
860
@templatedoc()
861
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
862 863 864 865 866
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
867

Y
yuyang18 已提交
868
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
869

Y
yuyang18 已提交
870 871 872
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
873
        Variable: ${viterbi_path_comment}
874

Y
yi.wu 已提交
875 876 877 878 879
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
880
    """
Y
Yu Yang 已提交
881 882 883 884 885 886 887 888 889 890 891 892 893
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
894
@templatedoc()
F
fengjiayi 已提交
895
def cos_sim(X, Y):
Y
Yu Yang 已提交
896
    """
Y
yi.wu 已提交
897 898 899
    ${comment}

    Args:
900 901
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
902

Y
yi.wu 已提交
903
    Returns:
904
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
905
    """
F
fengjiayi 已提交
906
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


920
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
921 922 923 924 925
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
926
    training. The dropout operator randomly sets (according to the given dropout
927 928 929 930
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
931 932
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
933 934 935 936 937 938 939
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
940 941

    Returns:
942
        Variable: A tensor variable is the shape with `x`.
943 944

    Examples:
945

946 947
        .. code-block:: python

948 949
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
950 951
    """

F
fengjiayi 已提交
952
    helper = LayerHelper('dropout', **locals())
953 954
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
955 956 957 958

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

959 960 961 962 963
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
964 965 966 967 968 969
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
970 971 972
    return out


973
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
974
    """
Y
Yibing Liu 已提交
975 976
    **Cross Entropy Layer**

977 978 979
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
980 981

    1) One-hot cross-entropy:
F
fengjiayi 已提交
982
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
983

Y
Yibing Liu 已提交
984
        .. math::
Y
yangyaming 已提交
985

Y
Yibing Liu 已提交
986 987 988
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
989 990
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
991 992 993 994 995

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
996
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
997 998 999
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1000 1001
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1002
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1003

Y
Yibing Liu 已提交
1004
    Args:
Y
yangyaming 已提交
1005
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1006 1007 1008 1009
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1010
        label (Variable|list): the ground truth which is a 2-D tensor. When
1011 1012 1013 1014
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1015
        soft_label (bool): a flag indicating whether to
1016
                                           interpretate the given labels as soft
1017 1018 1019 1020
                                           labels. Default: `False`.
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1021 1022 1023 1024 1025

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1026 1027 1028 1029 1030
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1031 1032 1033 1034 1035 1036

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1037
    """
F
fengjiayi 已提交
1038
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1039 1040 1041 1042 1043 1044
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1045 1046
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1047 1048 1049
    return out


F
fengjiayi 已提交
1050
def square_error_cost(input, label):
Y
Yu Yang 已提交
1051
    """
1052 1053
    **Square error cost layer**

1054 1055
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1056

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1070 1071
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1072 1073

    Returns:
G
guosheng 已提交
1074
        Variable: The tensor variable storing the element-wise squared error \
1075
                  difference of input and label.
1076 1077 1078 1079 1080 1081 1082 1083

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1084
    """
F
fengjiayi 已提交
1085
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1095 1096
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1097 1098 1099
    return square_out


Y
yi.wu 已提交
1100
@templatedoc()
Y
Yu Yang 已提交
1101 1102 1103 1104
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1105
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1106
    """
Y
yi.wu 已提交
1107
    **Chunk Evaluator**
Y
yi.wu 已提交
1108

Y
yangyaming 已提交
1109
    This function computes and outputs the precision, recall and
1110
    F1-score of chunk detection.
Y
yi.wu 已提交
1111

Y
yi.wu 已提交
1112 1113 1114 1115 1116 1117 1118 1119
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1120

Y
yi.wu 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1146

Y
yi.wu 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1171
    Args:
1172 1173 1174 1175 1176
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1177

Y
yi.wu 已提交
1178
    Returns:
Y
update  
yi.wu 已提交
1179 1180 1181
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1182

Y
yi.wu 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1195
    """
F
fengjiayi 已提交
1196
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1197 1198 1199 1200 1201

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1202 1203 1204
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1205 1206 1207 1208 1209 1210 1211 1212

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1213 1214 1215 1216
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1217 1218 1219
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1220 1221
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1222
        })
1223 1224
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1225 1226


1227
@templatedoc()
Y
Yu Yang 已提交
1228 1229 1230 1231 1232 1233 1234
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1235
                  act=None):
Y
Yu Yang 已提交
1236 1237 1238 1239
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1250

1251 1252
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1271
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1272 1273 1274 1275 1276 1277
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1278
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1279 1280 1281
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1282
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1302

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1325
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1326
    """
1327
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1328
    has the same shape as the input.
Q
qiaolongfei 已提交
1329

1330 1331 1332 1333 1334 1335
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1336
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1337 1338 1339 1340 1341 1342 1343

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1344
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1379 1380 1381
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1382 1383
           stride=1,
           padding=0,
1384
           dilation=1,
Y
Yu Yang 已提交
1385 1386 1387
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1388
           use_cudnn=True,
1389
           use_mkldnn=False,
1390 1391
           act=None,
           name=None):
Y
Yu Yang 已提交
1392
    """
C
chengduoZH 已提交
1393
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1394 1395
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1396
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1397 1398 1399 1400 1401 1402 1403
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1404 1405 1406
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1407

1408
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1409

C
chengduoZH 已提交
1410 1411
    .. math::

C
refine  
chengduoZH 已提交
1412
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1413

T
tensor-tang 已提交
1414
    Where:
C
chengduoZH 已提交
1415

1416 1417 1418 1419 1420
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1421
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1422 1423 1424

    Example:

1425 1426
        - Input:

W
weixing02 已提交
1427
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1428

W
weixing02 已提交
1429
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1430

1431
        - Output:
T
tensor-tang 已提交
1432

W
weixing02 已提交
1433
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1434

C
chengduoZH 已提交
1435
        Where
1436 1437

        .. math::
C
chengduoZH 已提交
1438

W
weixing02 已提交
1439 1440
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1441 1442

    Args:
1443
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1444
        num_filters(int): The number of filter. It is as same as the output
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1467 1468
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1469 1470 1471
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1472 1473

    Returns:
G
guosheng 已提交
1474
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1475 1476
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1477
    Raises:
1478 1479
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1480

C
chengduoZH 已提交
1481 1482 1483
    Examples:
        .. code-block:: python

1484 1485
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1486 1487 1488
    """

    num_channels = input.shape[1]
1489 1490

    l_type = 'conv2d'
X
xzl 已提交
1491 1492
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1493
        l_type = 'depthwise_conv2d'
1494 1495 1496 1497

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1498 1499 1500 1501 1502
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1503
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1504

C
chengduoZH 已提交
1505 1506 1507
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1508
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1509

C
chengduoZH 已提交
1510 1511
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1512 1513

    input_shape = input.shape
M
minqiyang 已提交
1514
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1529
        type=l_type,
Y
Yu Yang 已提交
1530 1531 1532 1533 1534
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1535 1536 1537
        attrs={
            'strides': stride,
            'paddings': padding,
1538
            'dilations': dilation,
C
chengduoZH 已提交
1539
            'groups': groups,
1540 1541
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1542
        })
Y
Yu Yang 已提交
1543 1544 1545 1546 1547 1548

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1567 1568 1569 1570 1571 1572
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1582 1583
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1584 1585 1586
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1587
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1613
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1614 1615
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1616
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1617 1618
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1619
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1620 1621
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1622
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1649 1650
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1665
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1706
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1707 1708 1709 1710

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1711
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1712
    """
Y
yangyaming 已提交
1713 1714 1715
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1727
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1728 1729 1730 1731 1732
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1733
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1734 1735 1736 1737 1738 1739 1740

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1741 1742
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1743

L
Luo Tao 已提交
1744 1745
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1746
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1747 1748 1749 1750 1751 1752 1753 1754
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1755

Y
yangyaming 已提交
1756
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1757 1758 1759 1760 1761
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1762 1763
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1764
    """
F
fengjiayi 已提交
1765
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1777 1778 1779 1780 1781
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1782 1783 1784
    return pool_out


C
add doc  
chengduoZH 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1810
def sequence_first_step(input):
L
Luo Tao 已提交
1811
    """
L
Luo Tao 已提交
1812
    This function gets the first step of sequence.
L
Luo Tao 已提交
1813 1814 1815 1816

    .. code-block:: text

       x is a 1-level LoDTensor:
1817
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1818 1819 1820 1821 1822
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1823
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1824
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1825

L
Luo Tao 已提交
1826 1827 1828 1829 1830 1831 1832 1833 1834
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1835

Y
yangyaming 已提交
1836
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1837 1838 1839
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1840 1841 1842
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1843
def sequence_last_step(input):
L
Luo Tao 已提交
1844
    """
L
Luo Tao 已提交
1845
    This function gets the last step of sequence.
L
Luo Tao 已提交
1846 1847 1848 1849

    .. code-block:: text

       x is a 1-level LoDTensor:
1850
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1851 1852 1853 1854 1855
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1856
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1857
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1858

L
Luo Tao 已提交
1859 1860 1861 1862 1863 1864 1865 1866 1867
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1868

Y
yangyaming 已提交
1869
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1870 1871 1872
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1873 1874 1875
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1876
@templatedoc()
Y
Yu Yang 已提交
1877
def pool2d(input,
C
chengduoZH 已提交
1878 1879
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1880 1881
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1882
           global_pooling=False,
C
chengduoZH 已提交
1883
           use_cudnn=True,
1884
           ceil_mode=False,
1885
           use_mkldnn=False,
C
caoying03 已提交
1886
           name=None):
Y
Yu Yang 已提交
1887
    """
F
fengjiayi 已提交
1888
    ${comment}
1889 1890

    Args:
1891 1892 1893
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1894
                          feature, and W is the width of the feature.
1895
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1896
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1897
        pool_type: ${pooling_type_comment}
1898 1899
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1900 1901 1902 1903
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1904
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1905 1906
                        layer will be named automatically.

1907
    Returns:
F
fengjiayi 已提交
1908
        Variable: The pooling result.
F
fengjiayi 已提交
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1922 1923 1924 1925
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1926
                            global_pooling=False)
Y
Yu Yang 已提交
1927 1928 1929 1930 1931
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1932

C
chengduoZH 已提交
1933 1934 1935 1936 1937
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1938 1939 1940 1941
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1942 1943
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1944

C
Add doc  
chengduoZH 已提交
1945
    l_type = 'pool2d'
1946 1947

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1948 1949 1950 1951
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1981
    pooling configurations mentioned in input parameters.
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1995

1996
    Returns:
1997
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1998 1999 2000 2001 2002
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2003

C
chengduoZH 已提交
2004 2005 2006 2007 2008
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2009 2010 2011
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2012

C
chengduoZH 已提交
2013 2014
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2015

2016 2017
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2018 2019 2020 2021
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2022
        type=l_type,
Y
Yu Yang 已提交
2023 2024 2025 2026 2027 2028 2029
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2030
            "paddings": pool_padding,
2031
            "use_cudnn": use_cudnn,
2032 2033
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2046
               data_layout='NCHW',
Y
Yang Yang 已提交
2047
               in_place=False,
2048
               use_mkldnn=False,
2049 2050
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2051
               moving_variance_name=None,
2052 2053
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2054
    """
Q
qiaolongfei 已提交
2055 2056 2057 2058
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2059

Q
qiaolongfei 已提交
2060
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2061

Q
qiaolongfei 已提交
2062 2063
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2064 2065 2066
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2079 2080

    Args:
Q
qiaolongfei 已提交
2081
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2082 2083 2084 2085
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2086 2087 2088
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2089
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2090 2091 2092 2093 2094
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2095
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2096
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2097 2098

    Returns:
Q
qiaolongfei 已提交
2099
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2100 2101 2102 2103 2104 2105 2106

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2130
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2131

2132 2133
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2134 2135 2136
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2137
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2138
        shape=param_shape,
2139 2140 2141 2142 2143 2144 2145
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2146
            trainable=False,
W
wanghaoshuang 已提交
2147
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2148
        shape=param_shape,
2149 2150
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2151 2152 2153 2154 2155 2156

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2157 2158
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2159

2160
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2178 2179 2180 2181
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2182 2183
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2184
        })
Y
Yu Yang 已提交
2185 2186 2187 2188

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2189
@templatedoc()
G
guosheng 已提交
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2200
    ${comment}
G
guosheng 已提交
2201 2202 2203

    The formula is as follows:

Y
yuyang18 已提交
2204
    ..  math::
G
guosheng 已提交
2205 2206 2207 2208 2209 2210 2211

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2212 2213 2214 2215 2216 2217 2218 2219
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2220

G
guosheng 已提交
2221 2222
    Args:
        input(Variable): The input tensor variable.
2223
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2224
            normalization.
2225
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2226
            normalization.
2227
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2228
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2229
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2230 2231 2232 2233 2234 2235
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2236
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2237 2238

    Returns:
Y
yuyang18 已提交
2239
        ${y_comment}
G
guosheng 已提交
2240 2241 2242

    Examples:

Y
yuyang18 已提交
2243 2244 2245
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2261
    if shift:
G
guosheng 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2286 2287 2288 2289
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2290 2291 2292
                     padding=0,
                     stride=1,
                     dilation=1,
2293
                     groups=None,
C
caoying03 已提交
2294
                     param_attr=None,
2295
                     bias_attr=None,
C
chengduoZH 已提交
2296
                     use_cudnn=True,
2297
                     act=None,
C
caoying03 已提交
2298
                     name=None):
Y
Yu Yang 已提交
2299
    """
2300 2301 2302 2303 2304 2305 2306 2307
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2308 2309
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2310 2311 2312
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2313 2314 2315 2316 2317

    For each input :math:`X`, the equation is:

    .. math::

2318
        Out = \sigma (W \\ast X + b)
2319

2320
    Where:
2321 2322 2323

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2324 2325 2326 2327
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2328

2329 2330 2331 2332
    Example:

        - Input:

2333
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2334

2335
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2336 2337 2338

        - Output:

2339
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2340 2341

        Where
Y
Yu Yang 已提交
2342

2343 2344 2345 2346
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2347 2348

    Args:
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2382 2383

    Returns:
2384
        Variable: The tensor variable storing the convolution transpose result.
2385 2386

    Raises:
2387 2388
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2389 2390 2391 2392

    Examples:
       .. code-block:: python

2393 2394
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2395
    """
2396 2397 2398 2399 2400 2401 2402 2403 2404

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2405 2406 2407
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2408 2409 2410
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2411

C
chengduoZH 已提交
2412 2413
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2414

Y
Yu Yang 已提交
2415 2416 2417 2418 2419
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2420

Y
Yu Yang 已提交
2421 2422
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2423

C
chengduoZH 已提交
2424
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2425
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2426
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2427
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2428
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2429 2430 2431
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2432

2433
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2434
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2435 2436 2437
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2438
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2439
    helper.append_op(
2440
        type=op_type,
Y
Yu Yang 已提交
2441 2442
        inputs={'Input': [input],
                'Filter': [img_filter]},
2443
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2444
        attrs={
2445 2446 2447 2448 2449
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2450 2451
        })

2452 2453 2454
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2455 2456


2457
def conv3d_transpose(input,
Y
Yu Yang 已提交
2458 2459 2460
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2461 2462 2463
                     padding=0,
                     stride=1,
                     dilation=1,
2464
                     groups=None,
C
caoying03 已提交
2465
                     param_attr=None,
2466
                     bias_attr=None,
C
chengduoZH 已提交
2467
                     use_cudnn=True,
2468
                     act=None,
C
caoying03 已提交
2469
                     name=None):
Y
Yu Yang 已提交
2470
    """
2471
    **Convlution3D transpose layer**
2472

2473
    The convolution3D transpose layer calculates the output based on the input,
2474
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2475 2476 2477 2478 2479 2480
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2481 2482 2483
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2484 2485 2486 2487 2488

    For each input :math:`X`, the equation is:

    .. math::

2489
        Out = \sigma (W \\ast X + b)
2490 2491 2492

    In the above equation:

2493 2494
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2495 2496 2497 2498
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2499

2500 2501 2502 2503
    Example:

        - Input:

2504
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2505

2506
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2507 2508 2509

        - Output:

2510
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2511 2512

        Where
Y
Yu Yang 已提交
2513

2514 2515
        .. math::

2516 2517 2518
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2519 2520

    Args:
2521
        input(Variable): The input image with [N, C, D, H, W] format.
2522 2523 2524
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2525
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2526 2527
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2528
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2529 2530 2531
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2532 2533
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2534
        stride(int|tuple): The stride size. If stride is a tuple, it must
2535 2536
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2537
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2538 2539 2540
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2541 2542 2543 2544 2545
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2546 2547 2548
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2549 2550 2551 2552 2553
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2554 2555

    Returns:
2556
        Variable: The tensor variable storing the convolution transpose result.
2557 2558

    Raises:
2559 2560
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2561 2562 2563 2564

    Examples:
       .. code-block:: python

2565 2566
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2567
    """
2568 2569
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2570
    if not isinstance(input, Variable):
2571
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2572 2573
    input_channel = input.shape[1]

2574 2575 2576
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2577

C
chengduoZH 已提交
2578 2579 2580
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2581 2582 2583 2584 2585 2586
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2587 2588 2589
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2590

2591
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2592
                         padding[0] - 1) // dilation[0] + 1
2593
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2594
                         padding[1] - 1) // dilation[1] + 1
2595
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2596
                         padding[2] - 1) // dilation[2] + 1
2597
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2598
    else:
2599 2600
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2601

2602
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2603
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2604 2605 2606
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2607
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2608
    helper.append_op(
2609
        type=l_type,
Y
Yu Yang 已提交
2610 2611
        inputs={'Input': [input],
                'Filter': [img_filter]},
2612
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2613 2614 2615 2616
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2617
            'groups': groups,
C
chengduoZH 已提交
2618 2619
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2620

2621 2622
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2623
    return out
Y
yangyaming 已提交
2624 2625


Y
yangyaming 已提交
2626
def sequence_expand(x, y, ref_level=-1, name=None):
2627
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2628 2629 2630 2631
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2632 2633 2634 2635 2636

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2637
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2638
                x.data = [[a], [b], [c], [d]]
2639 2640 2641
                x.dims = [4, 1]

            y is a LoDTensor:
2642 2643
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2644

Y
yangyaming 已提交
2645
            ref_level: 0
2646

Y
yangyaming 已提交
2647
            then output is a 1-level LoDTensor:
2648
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2649
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2650 2651 2652 2653
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2654
                x.data = [[a], [b], [c]]
2655 2656 2657
                x.dims = [3, 1]

            y is a LoDTensor:
2658
                y.lod = [[2, 0, 3]]
2659

Y
yangyaming 已提交
2660
            ref_level: -1
2661

Y
yangyaming 已提交
2662 2663 2664
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2665 2666 2667
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2668 2669
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2670
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2671
                        will be named automatically.
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2682
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2683
    """
Y
yangyaming 已提交
2684
    helper = LayerHelper('sequence_expand', input=x, **locals())
2685 2686 2687
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2688 2689 2690 2691 2692
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2693
    return tmp
2694 2695


C
chengduo 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
        pad_value(Variable): The Variable that holds values that will be fill 
            into padded steps. It can be a scalar or a tensor whose shape 
            equals to time steps in sequences. If it's a scalar, it will be 
            automatically broadcasted to the shape of time step.
        maxlen(int, default None): The length of padded sequences. It can be 
            None or any positive int. When it is None, all sequences will be 
            padded up to the length of the longest one among them; when it a 
            certain positive value, it must be greater than the length of the 
            longest original sequence."
    
    Returns:
        Variable: The padded sequence batch. All sequences has the same length.
    
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
        outputs={'Out': out},
        attrs={'padded_length': maxlen})
    return out


2806 2807 2808 2809 2810 2811 2812 2813 2814
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2815 2816
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2817 2818 2819

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2820 2821

    This layer does the search in beams for one time step. Specifically, it
2822 2823 2824 2825 2826 2827
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2828

2829 2830 2831 2832 2833 2834 2835 2836
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2837

2838
    Args:
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2864

2865
    Returns:
2866 2867
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2868 2869 2870 2871

    Examples:
        .. code-block:: python

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2900
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2918 2919 2920 2921 2922 2923 2924
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2925

2926 2927 2928 2929 2930 2931 2932 2933 2934
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2935

2936 2937 2938 2939 2940 2941
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2942

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2968 2969 2970 2971
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2972
              param_attr=None,
C
caoying03 已提交
2973 2974
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2975 2976 2977 2978
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2979
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2980

2981
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2982

2983
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2984

2985
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2986 2987 2988

            h_t & = o_t tanh(c_t)

2989 2990 2991 2992 2993 2994
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2995 2996 2997

        .. math::

2998
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2999 3000 3001 3002 3003 3004 3005 3006

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3007
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3008 3009

    Args:
Y
yangyaming 已提交
3010 3011 3012 3013 3014 3015
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3016
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
3017 3018
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
3019 3020
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
3021 3022
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3023 3024

    Returns:
Y
yangyaming 已提交
3025
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3026 3027

    Raises:
3028 3029 3030 3031
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3032 3033 3034 3035 3036 3037

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3038
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3039
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3040
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3057
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3058 3059 3060 3061
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3062 3063
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3064 3065 3066
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3067
    size = cell_t_prev.shape[1]
3068
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3069 3070
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3071
                param_attr=param_attr,
3072
                bias_attr=bias_attr)
Y
yangyaming 已提交
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3085
    return h, c
G
guosheng 已提交
3086 3087


C
caoying03 已提交
3088
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3089
    """
Y
yangyaming 已提交
3090
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3091 3092 3093

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3094
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3095 3096
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3097 3098
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3099
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3100
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3101
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3102 3103
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3104 3105 3106

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3107

G
guosheng 已提交
3108 3109 3110 3111 3112 3113
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3114
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3115 3116 3117 3118
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3119 3120 3121 3122

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3123
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3124 3125 3126
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3127 3128 3129
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3130 3131
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3132 3133 3134 3135 3136
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3137
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3138 3139 3140 3141
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3142 3143


C
caoying03 已提交
3144
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3145
    """
Y
Yibing Liu 已提交
3146
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3147 3148 3149

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3150 3151 3152
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3153
            must be in the range :math:`[-rank(input), rank(input))`. If
3154
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3155
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3156 3157
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3158
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3159
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3160
                       will be named automatically.
G
guosheng 已提交
3161 3162

    Returns:
Y
Yibing Liu 已提交
3163
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3164

G
guosheng 已提交
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3175 3176
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3177 3178 3179 3180 3181 3182 3183

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3184 3185 3186
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3187 3188
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3189 3190 3191 3192 3193
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3194
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3195 3196 3197 3198
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3199 3200


C
caoying03 已提交
3201
def reduce_max(input, dim=None, keep_dim=False, name=None):
3202
    """
Y
yangyaming 已提交
3203
    Computes the maximum of tensor elements over the given dimension.
3204 3205 3206

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3207
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3208 3209 3210
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3211
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3212 3213
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3214
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3215 3216
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3217 3218 3219

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3220

3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3232 3233 3234 3235 3236 3237 3238

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3239 3240 3241
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3242 3243
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3244 3245 3246 3247 3248
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3249
            'dim': dim if dim != None else [0],
3250 3251 3252 3253 3254 3255
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3256
def reduce_min(input, dim=None, keep_dim=False, name=None):
3257
    """
Y
yangyaming 已提交
3258
    Computes the minimum of tensor elements over the given dimension.
3259 3260 3261

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3262
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3263 3264 3265
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3266
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3267 3268
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3269
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3270 3271
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3272 3273 3274

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3275

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3287 3288 3289 3290 3291 3292 3293

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3294 3295 3296
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3297 3298
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3299 3300 3301 3302 3303
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3304
            'dim': dim if dim != None else [0],
3305 3306 3307 3308
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3309 3310


3311 3312 3313 3314 3315 3316
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3317
        dim (list|int|None): The dimensions along which the product is performed. If
3318 3319
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3320 3321
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3322 3323 3324
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3325
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3326
            layer will be named automatically.
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3341
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3342
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3343 3344 3345 3346 3347 3348 3349

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3350 3351 3352
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3353 3354
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3355 3356 3357 3358 3359
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3360
            'dim': dim if dim != None else [0],
3361 3362 3363 3364 3365 3366
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3367
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3368
    """
C
caoying03 已提交
3369
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3370 3371 3372

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3373 3374 3375 3376 3377
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3378
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3379
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3380
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3381 3382
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3383 3384

    Returns:
D
dzhwinter 已提交
3385
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3386 3387 3388 3389 3390 3391 3392 3393 3394

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3395 3396
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3426 3427 3428 3429 3430 3431 3432 3433 3434


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3435
    .. math::
3436 3437

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3438 3439 3440 3441 3442

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3443
        x(Variable|list): The input tensor to l2_normalize layer.
3444
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3445 3446
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3447
        epsilon(float): The epsilon value is used to avoid division by zero, \
3448
            the defalut value is 1e-10.
3449
        name(str|None): A name for this layer(optional). If set None, the layer \
3450
            will be named automatically.
C
caoying03 已提交
3451 3452

    Returns:
3453
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3454 3455

    Examples:
3456

C
caoying03 已提交
3457 3458
        .. code-block:: python

3459 3460 3461 3462
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3463 3464
    """

F
fengjiayi 已提交
3465 3466
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3467 3468
    helper = LayerHelper("l2_normalize", **locals())

3469 3470
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3471
    helper.append_op(
3472 3473 3474 3475
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3476
        attrs={
3477 3478
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3479 3480
        })
    return out
3481 3482


3483
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3484
    """
Y
ying 已提交
3485 3486 3487 3488
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3489

C
chengduoZH 已提交
3490
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3491
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3492

3493 3494 3495 3496 3497
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3498
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3499

C
chengduoZH 已提交
3500
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3501
      performs in the following way.
G
guosheng 已提交
3502

3503
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3504
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3505
        last two dimensions and a batched matrix multiply supporting broadcast
3506
        applies on the two tensors.
G
guosheng 已提交
3507

Y
ying 已提交
3508 3509
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3510
    removed after matrix multiplication.
G
guosheng 已提交
3511 3512 3513

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3514 3515 3516
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3517
        name(str|None): A name for this layer(optional). If set None, the layer
3518
            will be named automatically.
G
guosheng 已提交
3519 3520

    Returns:
3521
        Variable: The product Tensor variable.
G
guosheng 已提交
3522

G
guosheng 已提交
3523 3524 3525
    Examples:
        .. code-block:: python

3526
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3527 3528
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3529

3530 3531
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3532

3533 3534
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3535

3536 3537
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3538 3539 3540 3541

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3542 3543
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3544

Y
ying 已提交
3545
            # x: [M], y: [N]
3546
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3547
    """
Y
ying 已提交
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3560
            y_shape = y_shape + [1]
Y
ying 已提交
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3577
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3578
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3579
    helper.append_op(
3580 3581 3582 3583 3584 3585 3586
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3587 3588


3589
def topk(input, k, name=None):
Q
qingqing01 已提交
3590 3591 3592 3593
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3594
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3595 3596 3597 3598 3599 3600
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3622 3623 3624
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3625
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3626
                 of input.
3627
        name(str|None): A name for this layer(optional). If set None, the layer
3628
                       will be named automatically.
F
fengjiayi 已提交
3629
                       Default: None
Q
qingqing01 已提交
3630 3631

    Returns:
3632 3633 3634
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3635
        within the last dimension of input.
Q
qingqing01 已提交
3636

F
fengjiayi 已提交
3637 3638
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3659
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3660
    """
Y
ying 已提交
3661 3662 3663 3664 3665 3666 3667 3668 3669
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3670

Y
ying 已提交
3671
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3672

3673
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3674 3675
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3676
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3677

3678
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3679 3680
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3681

3682 3683 3684
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3685
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3686
                          the length of reference string.
3687
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3688
                                     calculating edit distance.
3689
        name (str): The name of this layer. It is optional.
3690

W
wanghaoshuang 已提交
3691
    Returns:
W
wanghaoshuang 已提交
3692
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3693 3694 3695 3696 3697

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3698
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3699
            cost = fluid.layers.edit_distance(input=x,label=y)
3700
    """
3701
    helper = LayerHelper("edit_distance", **locals())
3702

3703
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3704
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3705 3706 3707 3708 3709 3710 3711
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3712
            attrs={"tokens": ignored_tokens})
3713 3714 3715 3716 3717
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3718
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3719
            attrs={"tokens": ignored_tokens})
3720 3721
        label = erased_label

3722 3723
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3724
    sequence_num = helper.create_tmp_variable(dtype="int64")
3725 3726 3727 3728
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3729 3730
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3731 3732
        attrs={"normalized": normalized})

3733
    return edit_distance_out, sequence_num
3734 3735 3736 3737 3738


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3739

Y
ying 已提交
3740 3741 3742 3743
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3761
        input.lod = [[4, 4]]
3762 3763 3764 3765 3766 3767 3768

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3769
        output.lod = [[2, 1]]
3770 3771 3772

    Args:

Y
ying 已提交
3773 3774 3775 3776 3777 3778 3779 3780 3781
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3782
        name (str): The name of this layer. It is optional.
3783 3784

    Returns:
3785
        Variable: CTC greedy decode result. If all the sequences in result were
3786
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3787 3788 3789 3790 3791

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3792

3793
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3794
    """
3795
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3796
    _, topk_indices = topk(input, k=1)
3797 3798 3799 3800 3801 3802

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3803
        outputs={"Output": [ctc_out]},
3804 3805
        attrs={"merge_repeated": True,
               "blank": blank})
3806
    return ctc_out
3807 3808


F
fengjiayi 已提交
3809
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3810
    """
3811 3812
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3813
    to compute Connectionist Temporal Classification (CTC) loss.
3814 3815
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3816 3817 3818
    input tensor.

    Args:
3819
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3820 3821 3822 3823
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3824
       label (Variable): The ground truth of variable-length sequence,
3825 3826 3827
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3828 3829
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3830 3831 3832
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3833
         follewed by a mean_op.
W
wanghaoshuang 已提交
3834 3835

    Returns:
3836 3837
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3838 3839

    Examples:
3840

W
wanghaoshuang 已提交
3841
        .. code-block:: python
3842

3843 3844 3845
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3846 3847

    """
F
fengjiayi 已提交
3848
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3875 3876 3877
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3878 3879 3880 3881 3882
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3883

3884
            out.lod  = [[0, 1, 3]]
3885 3886 3887 3888

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3889 3890 3891 3892 3893 3894 3895
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3896 3897 3898

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3899 3900

    Returns:
3901

3902 3903 3904 3905 3906
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3907
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3908
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3909 3910 3911 3912 3913 3914 3915 3916 3917
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3918 3919


3920 3921 3922 3923
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3924 3925 3926 3927 3928 3929 3930
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3931 3932 3933 3934 3935 3936 3937
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3938 3939
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3940
            sample is 1.0.
3941 3942 3943
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3944

3945
    Returns:
Y
Yibing Liu 已提交
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3973
    """
Y
Yang Yu 已提交
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3993 3994 3995 3996 3997 3998 3999 4000 4001
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4018
    return cost / (num_neg_samples + 1)
4019 4020


G
guosheng 已提交
4021
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
4022 4023
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4024
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4025 4026 4027 4028 4029 4030 4031 4032 4033
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4034

W
weixing02 已提交
4035
    Args:
M
minqiyang 已提交
4036
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4037 4038 4039 4040 4041
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
4042 4043
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4044
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4045 4046
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4047 4048 4049 4050 4051 4052 4053 4054

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4055 4056 4057
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4058 4059 4060 4061 4062 4063 4064 4065
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4066
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4067 4068 4069 4070 4071
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4072 4073 4074 4075 4076 4077 4078 4079
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4080 4081
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4082
        inputs=inputs,
W
weixing02 已提交
4083 4084 4085 4086 4087 4088
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4089
def transpose(x, perm, name=None):
Y
ying 已提交
4090 4091 4092 4093 4094 4095 4096
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4097 4098 4099
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4100 4101 4102 4103 4104 4105 4106 4107

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4108
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4109 4110
    """

Y
fix ci.  
ying 已提交
4111
    if len(perm) != len(x.shape):
Y
ying 已提交
4112 4113 4114
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4115 4116 4117 4118 4119 4120
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4121 4122

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4123
    out = helper.create_tmp_variable(x.dtype)
4124
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4125
    helper.append_op(
4126
        type='transpose2',
Y
fix ci.  
ying 已提交
4127
        inputs={'X': [x]},
4128 4129
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4130 4131
        attrs={'axis': perm})
    return out
4132 4133


4134 4135 4136 4137 4138 4139 4140
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4141
    """
4142 4143 4144 4145 4146 4147 4148
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4177 4178 4179 4180 4181 4182 4183 4184 4185
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4186 4187 4188
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4189 4190 4191 4192 4193
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4221 4222 4223
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4236
            output.dims = {8, 8}
4237

4238
            output.lod = [[4, 4]]
4239

D
dzhwinter 已提交
4240
     Examples:
4241 4242 4243

        .. code-block:: python

4244 4245
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4246 4247

    """
W
wanghaoshuang 已提交
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4258 4259 4260 4261 4262 4263 4264
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4265
    helper = LayerHelper('im2sequence', **locals())
4266 4267
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4268
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4269
    return out
4270 4271


Y
yuyang18 已提交
4272
@templatedoc()
4273
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4274 4275
    """
    ${comment}
4276 4277

    Args:
Y
yuyang18 已提交
4278
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4279 4280
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4281 4282 4283 4284 4285
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4286
        ${out_comment}.
4287 4288

    Examples:
Y
yuyang18 已提交
4289 4290 4291 4292
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4305
    return helper.append_activation(out)
4306 4307


Y
yuyang18 已提交
4308
@templatedoc()
4309 4310
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4311 4312 4313 4314 4315 4316 4317
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4318 4319

    Args:
Y
yuyang18 已提交
4320 4321
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4322 4323

    Returns:
Y
yuyang18 已提交
4324
        ${out_comment}.
4325 4326
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4327 4328 4329 4330 4331 4332

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4333 4334 4335 4336 4337 4338
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4339 4340


4341 4342 4343 4344
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4345 4346
    """
    **Softmax With Cross Entropy Operator.**
4347

4348 4349 4350 4351
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4352

4353 4354 4355
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4356

4357 4358 4359
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4360

4361
    The equation is as follows:
4362

4363
    1) Hard label (one-hot label, so every sample has exactly one class)
4364

4365 4366 4367 4368
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4369

4370 4371 4372
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4373

4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
4386 4387 4388 4389
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100

4390 4391 4392 4393 4394 4395 4396 4397 4398
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4399 4400
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4411 4412
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4413 4414 4415 4416 4417
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4418 4419
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4420
    For each instance, it computes the smooth L1 loss element by element first
4421
    and then sums all the losses. So the shape of ouput Variable is
4422
    [batch_size, 1].
4423

4424 4425
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4426
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4427
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4428
            L1 loss op with same shape as :attr:`x`.
4429
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4430 4431
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4432
            by this tensor element by element.
4433
        outside_weight (Variable|None): A tensor with rank at least 2. This
4434 4435
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4436
            element by element.
4437
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4438 4439
           scalar with default value 1.0.

4440
    Returns:
4441
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4442 4443 4444 4445 4446

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4447 4448
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4449
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4450
            out = fluid.layers.smooth_l1(x=fc, y=label)
4451
    """
4452

4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4468 4469 4470 4471


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4472
    This layer creates the one-hot representations for input indices.
4473 4474

    Args:
Y
Yibing Liu 已提交
4475 4476
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4477 4478

    Returns:
Y
Yibing Liu 已提交
4479
        Variable: The one-hot representations of input.
4480 4481

    Examples:
C
caoying03 已提交
4482
        .. code-block:: python
4483

Y
Yibing Liu 已提交
4484 4485
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4486 4487 4488 4489 4490 4491 4492 4493 4494
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4495 4496


Y
Yu Yang 已提交
4497
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4498
    """
Y
yi.wu 已提交
4499 4500 4501
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4502 4503 4504 4505 4506 4507

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4508 4509
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4510 4511 4512 4513 4514 4515

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4516 4517
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4518 4519
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4520 4521 4522 4523 4524
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4525
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4526
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4527 4528
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4529 4530
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4531 4532 4533
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4534 4535


4536
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4537
    """
C
caoying03 已提交
4538 4539
    Gives a new shape to the input Tensor without changing its data.

4540 4541 4542 4543 4544
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4545

4546
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4547

4548 4549 4550 4551
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4552
    2. 0 means the actual dimension value is going to be copied from the
4553 4554 4555 4556
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4557 4558

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4559
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4560
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4561

4562
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4563 4564
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4565 4566
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4567
    dimensions.
C
caoying03 已提交
4568

4569
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4570 4571 4572 4573
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4574 4575

    Args:
4576
        x(variable): The input tensor.
C
caoying03 已提交
4577 4578
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4579 4580 4581 4582 4583
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4584
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4585 4586 4587 4588
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4589
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4590

4591 4592
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4593

X
Xin Pan 已提交
4594 4595 4596
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4597 4598
    Examples:
        .. code-block:: python
G
guosheng 已提交
4599

4600
            data = fluid.layers.data(
4601
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4602
            reshaped = fluid.layers.reshape(
4603
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4604 4605 4606
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4607
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4608 4609 4610 4611 4612
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4613

4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4629
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4630
    out = helper.create_tmp_variable(dtype=x.dtype)
4631
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4632
    helper.append_op(
4633
        type="reshape2",
X
Xin Pan 已提交
4634
        inputs=inputs,
D
dzhwinter 已提交
4635
        attrs={"shape": shape},
4636 4637
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4638

D
dzhwinter 已提交
4639
    return helper.append_activation(out)
4640

4641

4642
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
    """
    Remove single-dimensional entries from the shape of a tensor. Takes a 
    parameter axes with a list of axes to squeeze. If axes is not provided, all 
    the single dimensions will be removed from the shape. If an axis is 
    selected with shape entry not equal to one, an error is raised.
        
    Examples:
    Case 1:
      Given 
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
        and 
          axes = []
        we get:
          Out.shape = (3, 5)
    
    Args:
4666
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4667
        axes (list): List of integers, indicating the dimensions to be squeezed.
4668
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4669 4670 4671 4672 4673 4674 4675 4676

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4677
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4678 4679
    """
    helper = LayerHelper("squeeze", **locals())
4680
    out = helper.create_tmp_variable(dtype=input.dtype)
4681
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4682
    helper.append_op(
4683
        type="squeeze2",
4684
        inputs={"X": input},
Y
Yibing Liu 已提交
4685
        attrs={"axes": axes},
4686 4687
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4688

4689 4690 4691
    return out


4692
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
    """
    Insert single-dimensional entries to the shape of a tensor. Takes one 
    required argument axes, a list of dimensions that will be inserted. 
    Dimension indices in axes are as seen in the output tensor. 

    For example: 
      Given a tensor such that tensor with shape [3, 4, 5], 
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
    
    Args:
4703
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4704
        axes (list): List of integers, indicating the dimensions to be inserted.
4705
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4706 4707 4708 4709 4710 4711 4712 4713

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4714
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4715 4716
    """
    helper = LayerHelper("unsqueeze", **locals())
4717
    out = helper.create_tmp_variable(dtype=input.dtype)
4718
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4719
    helper.append_op(
4720
        type="unsqueeze2",
4721
        inputs={"X": input},
Y
Yibing Liu 已提交
4722
        attrs={"axes": axes},
4723 4724
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4725

4726 4727
    return out

4728

Y
yangyaming 已提交
4729
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4730
    """
Y
Yibing Liu 已提交
4731
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4732 4733 4734 4735
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4736
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4737 4738 4739 4740 4741 4742

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4743
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4744 4745 4746
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4747
            target_lod: [4, 2]
Y
yangyaming 已提交
4748 4749

            then we get a 1-level LoDTensor:
4750
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4751 4752 4753 4754 4755 4756
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4757
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4758 4759 4760 4761
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4762
                y.data = [[2, 4]]
Y
yangyaming 已提交
4763 4764 4765
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4766
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4767 4768 4769 4770 4771 4772
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4773
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4774 4775 4776 4777
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4778
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4779 4780 4781 4782
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4783
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4784 4785 4786 4787 4788
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4789
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4790
                           from :attr:`y`.
Y
yangyaming 已提交
4791
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4792
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4793 4794

    Returns:
Y
Yibing Liu 已提交
4795
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4796 4797

    Raises:
Y
Yibing Liu 已提交
4798
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4834
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4863 4864
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4892 4893 4894 4895


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4896
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4897
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4898

G
guosheng 已提交
4899 4900 4901 4902
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4925
                         The length of :attr:paddings must be
G
guosheng 已提交
4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4936

G
guosheng 已提交
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4951 4952


C
chengduo 已提交
4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5033 5034 5035 5036 5037 5038 5039
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5040 5041
    called label-smoothing regularization (LSR).

5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5065
                              be :math:`(1, class\_num)`.
5066 5067
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5068
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5096 5097


Y
yi.wu 已提交
5098
@templatedoc()
5099 5100
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5101
    ${comment}
5102 5103

    Args:
Y
yi.wu 已提交
5104 5105
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5106 5107 5108
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5109 5110

    Returns:
Y
update  
yi.wu 已提交
5111
        Variable: ${out_comment}.
5112 5113

    Examples:
5114 5115
        .. code-block:: python

5116
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5162 5163
        .. code-block:: python

W
whs 已提交
5164 5165 5166 5167
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5168
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5169 5170 5171 5172 5173 5174
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5175 5176


5177 5178 5179 5180 5181
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5182
    """
Q
qiaolongfei 已提交
5183
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5184

5185
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5186 5187 5188
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5189

5190
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5191

5192
    Args:
5193
        input (Variable): The input tensor of image resize layer,
5194 5195
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5196
        out_shape(list|tuple|Variable|None): Output shape of image resize
5197 5198
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5199
        scale(float|None): The multiplier for the input height or width.
5200 5201 5202
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5203 5204
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5205 5206
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5207 5208

    Returns:
Q
update  
qiaolongfei 已提交
5209 5210
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5211

5212 5213 5214
    Examples:
        .. code-block:: python

5215
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5216
    """
5217 5218 5219 5220
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5221 5222
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5223 5224
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5225 5226 5227 5228

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5229 5230 5231
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5232
    if out_shape is not None:
B
baiyf 已提交
5233 5234 5235
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5236 5237 5238 5239 5240 5241
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5242 5243 5244 5245
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5246 5247
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5248
        type=resample_methods[resample],
5249
        inputs=inputs,
5250 5251 5252 5253
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5254 5255


Y
yuyang18 已提交
5256
@templatedoc(op_type="bilinear_interp")
5257 5258
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5259 5260 5261 5262 5263 5264
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5265

Y
yuyang18 已提交
5266 5267 5268 5269 5270 5271 5272 5273
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5274 5275 5276 5277 5278 5279 5280
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5281 5282 5283
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5284 5285 5286 5287 5288 5289 5290
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5291
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5292

5293
    Returns:
Q
update  
qiaolongfei 已提交
5294
        Variable: The output is a 4-D tensor of the shape
5295
        (num_batches, channls, out_h, out_w).
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5306 5307 5308
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5309 5310 5311
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5312 5313
def gather(input, index):
    """
Q
qiaolongfei 已提交
5314 5315
    **Gather Layer**

5316
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5317 5318 5319 5320
    of X indexed by `index` and concatenate them together.

    .. math::

5321
        Out = X[Index]
W
whs 已提交
5322 5323 5324 5325 5326 5327 5328


    .. code-block:: text


                Given:

5329 5330
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5341
        input (Variable): The source input with rank>=1.
W
whs 已提交
5342 5343 5344 5345 5346 5347
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5348

W
whs 已提交
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5418

5419 5420 5421
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5422
    """
F
stash  
fengjiayi 已提交
5423
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5424
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5425
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5426
    if seed is None:
5427
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5428
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5429
    if isinstance(seed, int):
F
fengjiayi 已提交
5430 5431 5432 5433 5434
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5435 5436 5437 5438
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5439
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5440 5441
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5442 5443
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5444
    return out
W
whs 已提交
5445 5446


5447
def log(x, name=None):
W
wanghaoshuang 已提交
5448 5449 5450 5451 5452
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5453
        Out = \\ln(x)
W
wanghaoshuang 已提交
5454 5455

    Args:
5456
        x (Variable): Input tensor.
5457 5458
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5459 5460 5461 5462 5463 5464 5465 5466

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5467
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5468 5469
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5470
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5471
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5472
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5473 5474 5475
    return out


5476
def relu(x, name=None):
W
wanghaoshuang 已提交
5477 5478
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5479
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5480 5481 5482 5483
    the tensor elementwise.

    .. math::

5484
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5485 5486

    Args:
5487
        x (Variable): The input tensor.
5488 5489
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5490 5491 5492 5493 5494 5495 5496 5497

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5498
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5499 5500
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5501
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5502
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5503
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5504
    return out
5505 5506


W
whs 已提交
5507 5508 5509
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5510 5511 5512 5513
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5514
    .. math::
5515 5516

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5517

5518
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5519 5520 5521 5522 5523
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5524
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5525
                           Its shape should be the same as input.
5526
        num_classes (int): The possible number of labels.
W
whs 已提交
5527 5528 5529 5530

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5531
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5532 5533 5534 5535

    Examples:

        .. code-block:: python
5536

W
whs 已提交
5537 5538 5539 5540 5541 5542 5543 5544 5545
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5546 5547
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5548
        outputs={
W
whs 已提交
5549 5550 5551
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5552 5553 5554
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5629
                    isinstance(shape, Variable)):
5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5663

5664 5665
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5666

5667 5668 5669 5670
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5671

5672 5673 5674 5675 5676
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5677 5678 5679

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5724 5725


W
whs 已提交
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
      
      X = [[1, 2, 3],
           [4, 5, 6]]
      
      Case 0:
      
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
        
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
      
      Case 1:
      
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
        
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
        
      Case 2:
      
        paddings = [0, 1, 2, 1],
        mode = 'edge'
        
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
    
  
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


J
jerrywgz 已提交
5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
5828 5829
	name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 
J
jerrywgz 已提交
5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
5880

5881 5882 5883 5884 5885 5886 5887 5888 5889 5890
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
5891 5892
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
5908
        ValueError: If axis is not in range [0, rank(x)].
5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
5926
    x_shape = helper.create_tmp_variable(x.dtype)
5927
    helper.append_op(
5928
        type='flatten2',
5929
        inputs={"X": x},
5930 5931
        outputs={'Out': out,
                 'XShape': x_shape},
5932 5933
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
5934 5935


C
chenweihang 已提交
5936
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
5937
    """
C
chenweihang 已提交
5938
    Generate a new sequence for the input index sequence, which enumerates all the
C
chenweihang 已提交
5939 5940 5941
    sub-sequences with length `win_size` of the input. 
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
C
chenweihang 已提交
5942 5943 5944 5945 5946
    
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
5947
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
5948 5949 5950 5951 5952 5953
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
5954
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
5955 5956 5957
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
5958 5959 5960
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
5972
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
5973 5974 5975 5976 5977 5978
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
5979

5980

S
sneaxiy 已提交
5981 5982 5983 5984 5985 5986 5987 5988 5989
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
5990

S
sneaxiy 已提交
5991
    .. math::
5992

S
sneaxiy 已提交
5993 5994 5995
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
5996
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
5997 5998 5999 6000
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6001 6002 6003
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6004 6005
    Returns:
        Variable: The output sequence mask.
6006

S
sneaxiy 已提交
6007 6008
    """

Q
qingqing01 已提交
6009
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6010 6011 6012 6013 6014
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6015 6016 6017
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6018 6019 6020 6021 6022 6023
        outputs={'Y': out},
        attrs={
            'max_len': maxlen if maxlen is not None else -1,
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6024 6025


X
Xin Pan 已提交
6026
def stack(x, axis=0):
S
sneaxiy 已提交
6027 6028 6029 6030
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6031 6032 6033 6034 6035 6036 6037

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6038
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6039
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6040 6041

    Args:
6042
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6043
        axis (int|None): The axis along which all inputs are stacked.
6044

S
sneaxiy 已提交
6045 6046
    Returns:
        Variable: The stacked variable.
6047

S
sneaxiy 已提交
6048 6049
    """

X
Xin Pan 已提交
6050 6051 6052 6053 6054 6055 6056 6057
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6058 6059
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6060

X
Xin Pan 已提交
6061
    return out
D
dzhwinter 已提交
6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
   
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised. 

    Args:
        x (Variable): Input variable. 
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
    
    Returns:
        list(Variable): The unstacked variables.
    
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs