nn.py 272.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
Y
Yu Yang 已提交
31 32

__all__ = [
X
Xin Pan 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    'fc',
    'embedding',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
58
    'sequence_unpad',
X
Xin Pan 已提交
59 60 61 62 63 64 65 66
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
67
    'sequence_slice',
X
Xin Pan 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
J
jerrywgz 已提交
97
    'roi_align',
X
Xin Pan 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
111
    'margin_rank_loss',
X
Xin Pan 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
S
sneaxiy 已提交
155
    'sequence_reverse',
156
    'affine_channel',
M
minqiyang 已提交
157
    'hash',
G
gmcather 已提交
158 159
    'log_loss',
    'add_position_encoding',
Y
Yu Yang 已提交
160
]
P
peizhilin 已提交
161 162 163 164
if os.name != 'nt':
    __all__.append('dynamic_lstm')
    __all__.append('crf_decoding')
    __all__.append('roi_pool')
Y
Yu Yang 已提交
165 166 167 168 169 170 171 172


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
173
       is_test=False,
174
       name=None):
Y
Yu Yang 已提交
175
    """
176
    **Fully Connected Layer**
Y
Yu Yang 已提交
177

178 179 180 181 182 183 184 185
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
186
    to the output as well.
C
caoying03 已提交
187

C
caoying03 已提交
188
    This process can be formulated as follows:
189 190 191

    .. math::

192
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
193 194 195

    In the above equation:

C
caoying03 已提交
196 197 198 199
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
200
    * :math:`Act`: The activation function.
C
caoying03 已提交
201
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
202 203

    Args:
R
ranqiu 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
219 220
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
221
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
222
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
223
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
224

225
    Returns:
F
fengjiayi 已提交
226
        Variable: The transformation result.
227 228

    Raises:
C
caoying03 已提交
229
        ValueError: If rank of the input tensor is less than 2.
230 231 232 233

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
234
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
235
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
236
    """
C
caoying03 已提交
237

C
caoying03 已提交
238
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
239 240 241 242

    dtype = helper.input_dtype()

    mul_results = []
243 244
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
245 246 247
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
248

Y
Yu Yang 已提交
249
        w = helper.create_parameter(
250
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
251
        tmp = helper.create_variable_for_type_inference(dtype)
252
        helper.append_op(
253 254 255
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
256
            outputs={"Out": tmp},
M
mozga-intel 已提交
257 258
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
259 260 261 262
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
263
    else:
X
Xin Pan 已提交
264
        pre_bias = helper.create_variable_for_type_inference(dtype)
265
        helper.append_op(
266 267 268
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
269
            attrs={"use_mkldnn": False})
270 271 272 273
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
274 275


276 277 278
def embedding(input,
              size,
              is_sparse=False,
279
              is_distributed=False,
280 281 282
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
283
    """
284 285
    **Embedding Layer**

286
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
287 288
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
289 290 291

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
292 293

    Args:
294 295 296 297 298
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
299
        is_distributed(bool): Whether to run lookup table from remote parameter server.
300 301
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
302
            with zeros whenever lookup encounters it in :attr:`input`. If
303
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
304 305
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
306
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
307

308 309 310
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
311

312 313
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
314

C
chengduoZH 已提交
315
          dict_size = len(dataset.ids)
316
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
317
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
318 319 320 321 322
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
323
    tmp = helper.create_variable_for_type_inference(dtype)
324 325
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
326 327 328 329 330
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
331 332 333 334 335
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
336 337 338
    return tmp


P
peizhilin 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
if os.name != 'nt':
    @templatedoc(op_type="lstm")
    def dynamic_lstm(input,
                     size,
                     h_0=None,
                     c_0=None,
                     param_attr=None,
                     bias_attr=None,
                     use_peepholes=True,
                     is_reverse=False,
                     gate_activation='sigmoid',
                     cell_activation='tanh',
                     candidate_activation='tanh',
                     dtype='float32',
                     name=None):
        """
        ${comment}

        Args:
            input (Variable): ${input_comment}
            size (int): 4 * hidden size.
            h_0(Variable): The initial hidden state is an optional input, default is zero.
                           This is a tensor with shape (N x D), where N is the
                           batch size and D is the hidden size.
            c_0(Variable): The initial cell state is an optional input, default is zero.
                           This is a tensor with shape (N x D), where N is the
                           batch size. `h_0` and `c_0` can be NULL but only at the same time.
            param_attr(ParamAttr|None): The parameter attribute for the learnable
                                   hidden-hidden weights.

                                   - Weights = {:math:`W_{ch}, W_{ih}, \
                                                    W_{fh}, W_{oh}`}
                                   - The shape is (D x 4D), where D is the hidden
                                     size.

                                   If it is set to None or one attribute of ParamAttr,
                                   dynamic_lstm will create ParamAttr as param_attr.
                                   If the Initializer of the param_attr is not set, the
                                   parameter is initialized with Xavier. Default: None.
            bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                                  weights, which contains two parts, input-hidden
                                  bias weights and peephole connections weights if
                                  setting `use_peepholes` to `True`.

                                  1. `use_peepholes = False`
                                     - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                     - The shape is (1 x 4D).
                                  2. `use_peepholes = True`
                                     - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                     W_{fc}, W_{oc}`}.
                                     - The shape is (1 x 7D).

                                  If it is set to None or one attribute of ParamAttr,
                                  dynamic_lstm will create ParamAttr as bias_attr.
                                  If the Initializer of the bias_attr is not set,
                                  the bias is initialized zero. Default: None.
            use_peepholes (bool): ${use_peepholes_comment}
            is_reverse (bool): ${is_reverse_comment}
            gate_activation (str): ${gate_activation_comment}
            cell_activation (str): ${cell_activation_comment}
            candidate_activation (str): ${candidate_activation_comment}
            dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
            name (str|None): A name for this layer(optional). If set None, the layer
                             will be named automatically.

        Returns:
            tuple: The hidden state, and cell state of LSTM. The shape of both \
            is (T x D), and lod is the same with the `input`.

        Examples:
            .. code-block:: python

                hidden_dim = 512
                forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                               bias_attr=False)
                forward, _ = fluid.layers.dynamic_lstm(
                    input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
        """
        assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
        helper = LayerHelper('lstm', **locals())
        size = size // 4
        weight = helper.create_parameter(
            attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
        bias_size = [1, 7 * size]
        if not use_peepholes:
            bias_size[1] = 4 * size
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
427

P
peizhilin 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441
        hidden = helper.create_variable_for_type_inference(dtype)
        cell = helper.create_variable_for_type_inference(dtype)
        batch_gate = helper.create_variable_for_type_inference(dtype)
        batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
        inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
        batch_size = input.shape[0]
        if h_0:
            assert h_0.shape == (batch_size, size), \
                'The shape of h0 should be (batch_size, %d)' % size
            inputs['H0'] = h_0
        if c_0:
            assert c_0.shape == (batch_size, size), \
                'The shape of c0 should be (batch_size, %d)' % size
            inputs['C0'] = c_0
Y
Yu Yang 已提交
442

P
peizhilin 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
        helper.append_op(
            type='lstm',
            inputs=inputs,
            outputs={
                'Hidden': hidden,
                'Cell': cell,
                'BatchGate': batch_gate,
                'BatchCellPreAct': batch_cell_pre_act
            },
            attrs={
                'use_peepholes': use_peepholes,
                'is_reverse': is_reverse,
                'gate_activation': gate_activation,
                'cell_activation': cell_activation,
                'candidate_activation': candidate_activation
            })
        return hidden, cell
Y
Yu Yang 已提交
460 461


Y
Yibing Liu 已提交
462 463 464 465 466 467 468 469 470 471 472
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
473 474
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
475 476 477
    """
    **Dynamic LSTMP Layer**

478 479 480 481 482 483
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
484 485 486 487 488

    The formula is as follows:

    .. math::

489
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
490

491
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
492

493
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
494

495
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
496

497
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
498

499
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
500

501
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
502

Y
Yibing Liu 已提交
503 504 505 506 507 508
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
509
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
510
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
511
          bias vector).
Y
Yibing Liu 已提交
512 513 514
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
515
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
516
    * :math:`h`: The hidden state.
517
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
518 519
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
520
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
521
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
522
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
523 524
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
525 526 527 528

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
529

Y
Yibing Liu 已提交
530 531 532 533 534 535 536 537 538 539 540 541
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
542
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
543 544
                               hidden-hidden weight and projection weight.

545 546
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
547 548
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
549 550
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
551
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
552 553 554 555 556

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
557
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
558 559 560 561 562 563
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
564
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
565 566 567
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
568
                                - The shape is (1 x 7D).
C
chengduo 已提交
569 570 571 572 573

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
574 575 576 577 578 579 580 581 582
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
583
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
584 585
                              default "tanh".
        proj_activation(str): The activation for projection output.
586
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
587 588
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
589 590
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
591 592

    Returns:
593 594 595 596
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
597 598

    Examples:
599

Y
Yibing Liu 已提交
600 601
        .. code-block:: python

602 603 604 605
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
606
            hidden_dim, proj_dim = 512, 256
607
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
608
                                     act=None, bias_attr=None)
609 610 611
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
612 613 614 615
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
616
    """
617

C
chengduo 已提交
618
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
619
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
620
    size = size // 4
Y
Yibing Liu 已提交
621 622 623 624 625 626 627 628 629 630
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
631 632 633 634 635 636
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
665 666 667 668 669 670 671 672 673
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
674
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
675

676
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
677
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
678

G
guosheng 已提交
679 680 681 682 683 684 685 686 687
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
688

G
guosheng 已提交
689
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
690

G
guosheng 已提交
691
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
692 693
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
694 695 696 697
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
698
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
699 700

    Args:
701 702
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
703
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
704
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
705 706
            is the hidden size.
        size(int): The dimension of the gru cell.
707
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
708 709
            hidden-hidden weight matrix. Note:

710
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
711
              :math:`D` is the hidden size.
712
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
713
              The first part are weights of the update gate and reset gate with
714
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
715
              candidate hidden state with shape :math:`(D \\times D)`.
716
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
717
            hidden-hidden bias.
718
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
719 720 721
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
722
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
723
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
724 725 726 727
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
728 729

    Returns:
G
guosheng 已提交
730
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
731
            and sequence length is the same with the input.
732

G
guosheng 已提交
733
    Examples:
734

G
guosheng 已提交
735 736
        .. code-block:: python

737 738 739 740
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
741
            hidden_dim = 512
742
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
743 744 745 746 747 748 749 750 751 752
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
753
    batch_size = input.shape[0]
G
guosheng 已提交
754
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
755
    if h_0:
G
guosheng 已提交
756
        assert h_0.shape == (
Y
Yancey 已提交
757 758 759
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
760

X
Xin Pan 已提交
761 762 763 764
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
783 784 785
def gru_unit(input,
             hidden,
             size,
786 787
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
788
             activation='tanh',
789
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
790
    """
791
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
792

793 794
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
795

796
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
797

798
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
799

800
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
801 802

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
803 804 805
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
806 807
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

808 809
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
810 811 812
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
813 814 815 816 817

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
818 819
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
820 821 822 823
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
824

825 826 827 828 829 830
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
831

832
             # assuming we have x_t_data and prev_hidden of size=10
833
             x_t = fluid.layers.fc(input=x_t_data, size=30)
834 835
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
836 837 838 839 840 841 842 843 844 845 846 847

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
848
    size = size // 3
Y
Yu Yang 已提交
849 850

    # create weight
851 852
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
853

X
Xin Pan 已提交
854 855 856
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
857
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
858
    # create bias
859
    if helper.bias_attr:
Y
Yu Yang 已提交
860 861 862
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
863
        inputs['Bias'] = bias
Y
Yu Yang 已提交
864 865 866

    helper.append_op(
        type='gru_unit',
867
        inputs=inputs,
Y
Yu Yang 已提交
868 869 870 871 872 873
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
874 875
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
876 877 878 879 880
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
881
@templatedoc()
882
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
883 884 885 886 887 888 889
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
890
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
891 892 893 894
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
895 896 897
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
898 899

    """
Y
Yu Yang 已提交
900 901 902 903 904 905
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
906 907 908 909 910 911 912 913
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


P
peizhilin 已提交
929 930 931 932 933
if os.name != 'nt':
    @templatedoc()
    def crf_decoding(input, param_attr, label=None):
        """
        ${comment}
Y
yuyang18 已提交
934

P
peizhilin 已提交
935 936
        Args:
            input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
937

P
peizhilin 已提交
938
            param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
939

P
peizhilin 已提交
940
            label(${label_type}): ${label_comment}
Y
yuyang18 已提交
941

P
peizhilin 已提交
942 943
        Returns:
            Variable: ${viterbi_path_comment}
944

P
peizhilin 已提交
945 946
        Examples:
            .. code-block:: python
Y
yi.wu 已提交
947

P
peizhilin 已提交
948 949 950 951 952 953 954 955 956 957 958 959 960
               crf_decode = layers.crf_decoding(
                    input=hidden, param_attr=ParamAttr(name="crfw"))
        """
        helper = LayerHelper('crf_decoding', **locals())
        transition = helper.get_parameter(param_attr.name)
        viterbi_path = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
        helper.append_op(
            type='crf_decoding',
            inputs={"Emission": [input],
                    "Transition": transition,
                    "Label": label},
            outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
961

P
peizhilin 已提交
962
        return viterbi_path
Y
Yu Yang 已提交
963 964


Y
yi.wu 已提交
965
@templatedoc()
F
fengjiayi 已提交
966
def cos_sim(X, Y):
Y
Yu Yang 已提交
967
    """
Y
yi.wu 已提交
968 969 970
    ${comment}

    Args:
971 972
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
973

Y
yi.wu 已提交
974
    Returns:
975
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
976
    """
F
fengjiayi 已提交
977
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
978 979 980
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
981 982 983 984 985 986 987 988 989 990
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
991 992 993 994 995
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
996
            dropout_implementation="downgrade_in_infer"):
997 998 999 1000 1001
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1002
    training. The dropout operator randomly sets (according to the given dropout
1003 1004 1005 1006
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1007 1008
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1009 1010 1011 1012 1013 1014 1015
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                           dropout op can be removed from the program. 
                                           the program will be efficient
                                        
P
phlrain 已提交
1030

1031 1032

    Returns:
1033
        Variable: A tensor variable is the shape with `x`.
1034 1035

    Examples:
1036

1037 1038
        .. code-block:: python

1039 1040
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1041 1042
    """

F
fengjiayi 已提交
1043
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1044 1045 1046
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1047 1048 1049 1050

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1051 1052 1053 1054 1055
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1056 1057 1058 1059
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1060 1061
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1062
        })
1063 1064 1065
    return out


1066
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1067
    """
Y
Yibing Liu 已提交
1068 1069
    **Cross Entropy Layer**

1070 1071 1072
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1073 1074

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1075
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1076

Y
Yibing Liu 已提交
1077
        .. math::
Y
yangyaming 已提交
1078

Y
Yibing Liu 已提交
1079 1080 1081
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1082 1083
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1084 1085 1086 1087 1088

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1089
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1090 1091 1092
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1093 1094
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1095
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1096

Y
Yibing Liu 已提交
1097
    Args:
Y
yangyaming 已提交
1098
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1099 1100 1101 1102
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1103
        label (Variable|list): the ground truth which is a 2-D tensor. When
1104 1105 1106 1107
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1108
        soft_label (bool): a flag indicating whether to
1109
                                           interpretate the given labels as soft
1110
                                           labels. Default: `False`.
M
minqiyang 已提交
1111 1112
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1113
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1114 1115 1116 1117 1118

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1119 1120 1121 1122 1123
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1124 1125 1126 1127 1128 1129

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1130
    """
F
fengjiayi 已提交
1131
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1132
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1133 1134 1135 1136 1137
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1138 1139
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1140 1141 1142
    return out


F
fengjiayi 已提交
1143
def square_error_cost(input, label):
Y
Yu Yang 已提交
1144
    """
1145 1146
    **Square error cost layer**

1147 1148
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1149

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1163 1164
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1165 1166

    Returns:
G
guosheng 已提交
1167
        Variable: The tensor variable storing the element-wise squared error \
1168
                  difference of input and label.
1169 1170 1171 1172 1173 1174 1175 1176

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1177
    """
F
fengjiayi 已提交
1178
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1179
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1180 1181 1182 1183 1184 1185
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1186
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1187
    helper.append_op(
F
fengjiayi 已提交
1188 1189
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1190 1191 1192
    return square_out


Y
yi.wu 已提交
1193
@templatedoc()
Y
Yu Yang 已提交
1194 1195 1196 1197
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1198
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1199
    """
Y
yi.wu 已提交
1200
    **Chunk Evaluator**
Y
yi.wu 已提交
1201

Y
yangyaming 已提交
1202
    This function computes and outputs the precision, recall and
1203
    F1-score of chunk detection.
Y
yi.wu 已提交
1204

Y
yi.wu 已提交
1205 1206 1207 1208 1209 1210 1211 1212
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1213

Y
yi.wu 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1239

Y
yi.wu 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1264
    Args:
1265 1266 1267 1268 1269
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1270

Y
yi.wu 已提交
1271
    Returns:
Y
update  
yi.wu 已提交
1272 1273 1274
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1275

Y
yi.wu 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1288
    """
F
fengjiayi 已提交
1289
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1290 1291

    # prepare output
X
Xin Pan 已提交
1292 1293 1294 1295 1296 1297 1298
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1299 1300 1301 1302 1303 1304 1305 1306

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1307 1308 1309 1310
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1311 1312 1313
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1314 1315
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1316
        })
1317 1318
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1319 1320


1321
@templatedoc()
Y
Yu Yang 已提交
1322 1323 1324 1325 1326 1327 1328
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1329 1330
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1331 1332 1333 1334
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1335 1336 1337 1338 1339 1340 1341

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1355

1356 1357
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1358 1359 1360 1361 1362 1363 1364
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1365
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1376
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1377 1378 1379 1380 1381 1382
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1383
def sequence_softmax(input, use_cudnn=False, name=None):
1384 1385 1386
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1387
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1404 1405 1406
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1407

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1419 1420
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1421
    softmax_out = helper.create_variable_for_type_inference(dtype)
1422 1423 1424 1425 1426 1427 1428 1429
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1430
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1431
    """
1432
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1433
    has the same shape as the input.
Q
qiaolongfei 已提交
1434

1435 1436 1437 1438 1439 1440
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1441
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1442 1443 1444 1445 1446 1447 1448

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1449
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1450 1451 1452 1453 1454 1455 1456 1457

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1458 1459 1460
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1473 1474
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1475
    softmax_out = helper.create_variable_for_type_inference(dtype)
1476 1477 1478 1479 1480 1481 1482 1483
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1484 1485 1486
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1487 1488
           stride=1,
           padding=0,
1489
           dilation=1,
Y
Yu Yang 已提交
1490 1491 1492
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1493
           use_cudnn=True,
1494 1495
           act=None,
           name=None):
Y
Yu Yang 已提交
1496
    """
C
chengduoZH 已提交
1497
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1498 1499
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1500
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1501 1502 1503 1504 1505 1506 1507
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1508 1509 1510
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1511

1512
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1513

C
chengduoZH 已提交
1514 1515
    .. math::

C
refine  
chengduoZH 已提交
1516
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1517

T
tensor-tang 已提交
1518
    Where:
C
chengduoZH 已提交
1519

1520 1521 1522 1523 1524
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1525
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1526 1527 1528

    Example:

1529 1530
        - Input:

W
weixing02 已提交
1531
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1532

W
weixing02 已提交
1533
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1534

1535
        - Output:
T
tensor-tang 已提交
1536

W
weixing02 已提交
1537
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1538

C
chengduoZH 已提交
1539
        Where
1540 1541

        .. math::
C
chengduoZH 已提交
1542

W
weixing02 已提交
1543 1544
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1545 1546

    Args:
1547
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1548
        num_filters(int): The number of filter. It is as same as the output
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1577 1578
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1579 1580
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1581
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1582
            will be named automatically. Default: None
C
chengduoZH 已提交
1583 1584

    Returns:
G
guosheng 已提交
1585
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1586 1587
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1588
    Raises:
1589 1590
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1591

C
chengduoZH 已提交
1592 1593 1594
    Examples:
        .. code-block:: python

1595 1596
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1597 1598 1599
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1600
    assert param_attr is not False, "param_attr should not be False here."
1601
    l_type = 'conv2d'
X
xzl 已提交
1602 1603
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1604
        l_type = 'depthwise_conv2d'
1605 1606 1607 1608

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1609 1610 1611 1612 1613
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1614
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1615

C
chengduoZH 已提交
1616 1617 1618
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1619
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1620

C
chengduoZH 已提交
1621 1622
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1623 1624

    input_shape = input.shape
M
minqiyang 已提交
1625
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1626 1627

    def _get_default_param_initializer():
C
chengduo 已提交
1628 1629
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1630 1631 1632 1633 1634 1635 1636 1637
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1638
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1639 1640

    helper.append_op(
1641
        type=l_type,
Y
Yu Yang 已提交
1642 1643 1644 1645 1646
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1647 1648 1649
        attrs={
            'strides': stride,
            'paddings': padding,
1650
            'dilations': dilation,
C
chengduoZH 已提交
1651
            'groups': groups,
1652
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1653
            'use_mkldnn': False
C
chengduoZH 已提交
1654
        })
Y
Yu Yang 已提交
1655 1656 1657 1658 1659 1660

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1678 1679 1680 1681 1682 1683
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1693 1694
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1695 1696 1697
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1698
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1724
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1725 1726
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1727
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1728 1729
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1730
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1731 1732
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1733
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1734 1735 1736 1737 1738 1739
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1750 1751
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1752 1753
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1754
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1755
            will be named automatically. Default: None.
C
chengduoZH 已提交
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1768 1769
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1770 1771 1772
    """

    l_type = 'conv3d'
C
chengduo 已提交
1773
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1784
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1798 1799 1800
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1801 1802 1803 1804 1805 1806 1807 1808
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1809
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1824
            'use_mkldnn': False
C
chengduoZH 已提交
1825 1826
        })

1827
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1828 1829 1830 1831

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1832
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1833
    """
Y
yangyaming 已提交
1834 1835 1836
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1848
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1849 1850 1851 1852 1853
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1854
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1855 1856 1857 1858 1859 1860 1861

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1862 1863
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1864

L
Luo Tao 已提交
1865 1866
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1867
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1868
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1869
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1870 1871 1872 1873 1874 1875 1876

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1877

Y
yangyaming 已提交
1878
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1879 1880 1881 1882 1883
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1884 1885
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1886
    """
F
fengjiayi 已提交
1887
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1888
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1889 1890
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1891 1892 1893 1894 1895 1896

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1897 1898
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1899

Y
yangyaming 已提交
1900 1901 1902 1903 1904
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1905 1906 1907
    return pool_out


C
add doc  
chengduoZH 已提交
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1927
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1928 1929 1930 1931 1932
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1933
def sequence_first_step(input):
L
Luo Tao 已提交
1934
    """
L
Luo Tao 已提交
1935
    This function gets the first step of sequence.
L
Luo Tao 已提交
1936 1937 1938 1939

    .. code-block:: text

       x is a 1-level LoDTensor:
1940
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1941 1942 1943 1944 1945
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1946
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1947
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1948

L
Luo Tao 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1958

Y
yangyaming 已提交
1959
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1960 1961 1962
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1963 1964 1965
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1966
def sequence_last_step(input):
L
Luo Tao 已提交
1967
    """
L
Luo Tao 已提交
1968
    This function gets the last step of sequence.
L
Luo Tao 已提交
1969 1970 1971 1972

    .. code-block:: text

       x is a 1-level LoDTensor:
1973
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1974 1975 1976 1977 1978
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1979
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1980
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1981

L
Luo Tao 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1991

Y
yangyaming 已提交
1992
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1993 1994 1995
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1996 1997 1998
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
1999 2000 2001 2002
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2003
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2004 2005 2006 2007 2008
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2009

Y
Yibing Liu 已提交
2010 2011
	- Case:

2012
            Given the input Variable **input**:
2013

2014 2015 2016
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2017

2018
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2019

2020
            the output Variable will be
2021

2022 2023 2024
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2025 2026

    NOTE: The first dimension size of **input**, **offset** and **length**
2027
          should be equal. The **offset** should start from 0.
2028

Y
Yibing Liu 已提交
2029
    Args:
2030
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2031
                         sequences.
Y
Yibing Liu 已提交
2032 2033 2034 2035 2036 2037
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2038
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2049
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2050 2051 2052 2053
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2054
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2069
@templatedoc()
Y
Yu Yang 已提交
2070
def pool2d(input,
C
chengduoZH 已提交
2071 2072
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2073 2074
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2075
           global_pooling=False,
C
chengduoZH 已提交
2076
           use_cudnn=True,
2077
           ceil_mode=False,
C
caoying03 已提交
2078
           name=None):
Y
Yu Yang 已提交
2079
    """
F
fengjiayi 已提交
2080
    ${comment}
2081 2082

    Args:
2083 2084 2085
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2086
                          feature, and W is the width of the feature.
2087
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2088
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2089
        pool_type: ${pooling_type_comment}
2090 2091
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
2092 2093 2094
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
2095
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2096 2097
                        layer will be named automatically.

2098
    Returns:
F
fengjiayi 已提交
2099
        Variable: The pooling result.
F
fengjiayi 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2113 2114 2115 2116
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2117
                            global_pooling=False)
Y
Yu Yang 已提交
2118 2119 2120 2121 2122
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2123

C
chengduoZH 已提交
2124 2125 2126 2127 2128
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2129 2130 2131 2132
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2133 2134
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2135

C
Add doc  
chengduoZH 已提交
2136
    l_type = 'pool2d'
2137 2138

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2139
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2140
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2141 2142

    helper.append_op(
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2154
            "use_mkldnn": False
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2171
    pooling configurations mentioned in input parameters.
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2184

2185
    Returns:
2186
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2187 2188 2189 2190 2191
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2192

C
chengduoZH 已提交
2193 2194 2195 2196 2197
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2198 2199 2200
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2201

C
chengduoZH 已提交
2202 2203
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2204

2205 2206
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2207
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2208
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2209 2210

    helper.append_op(
2211
        type=l_type,
Y
Yu Yang 已提交
2212 2213 2214 2215 2216 2217 2218
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2219
            "paddings": pool_padding,
2220
            "use_cudnn": use_cudnn,
2221
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2222
            "use_mkldnn": False
Y
Yu Yang 已提交
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2235
               data_layout='NCHW',
Y
Yang Yang 已提交
2236
               in_place=False,
2237 2238
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2239
               moving_variance_name=None,
2240 2241
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2242
    """
Q
qiaolongfei 已提交
2243 2244 2245 2246
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2247

Q
qiaolongfei 已提交
2248
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2249

Q
qiaolongfei 已提交
2250 2251
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2252 2253 2254
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2267 2268

    Args:
Q
qiaolongfei 已提交
2269
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2270 2271 2272 2273
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2274 2275 2276 2277 2278 2279 2280 2281
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2282
        data_layout(string, default NCHW): NCHW|NHWC
2283
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2284 2285 2286 2287
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2288
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2289
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2290 2291

    Returns:
Q
qiaolongfei 已提交
2292
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2293 2294 2295 2296 2297 2298 2299

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2300
    """
C
chengduo 已提交
2301
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2324
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2325

2326 2327
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2328 2329 2330
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2331
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2332
        shape=param_shape,
2333 2334 2335 2336 2337 2338 2339
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2340
            trainable=False,
W
wanghaoshuang 已提交
2341
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2342
        shape=param_shape,
2343 2344
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2345 2346 2347 2348 2349 2350

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2351 2352 2353 2354
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2355

X
Xin Pan 已提交
2356 2357
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2375 2376 2377 2378
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2379
            "use_mkldnn": False,
2380
            "fuse_with_relu": fuse_with_relu
2381
        })
Y
Yu Yang 已提交
2382 2383 2384 2385

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2386
@templatedoc()
G
guosheng 已提交
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2397
    ${comment}
G
guosheng 已提交
2398 2399 2400

    The formula is as follows:

Y
yuyang18 已提交
2401
    ..  math::
G
guosheng 已提交
2402 2403 2404 2405 2406 2407 2408

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2409 2410 2411 2412 2413 2414 2415 2416
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2417

G
guosheng 已提交
2418 2419
    Args:
        input(Variable): The input tensor variable.
2420
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2421
            normalization. Default True.
2422
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2423 2424
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2425
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2426
            Default 1.
2427
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2428
            division by zero. Default 1e-05.
G
guosheng 已提交
2429
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2430 2431
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2432 2433
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2434
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2435 2436
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2437
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2438
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2439
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2440 2441 2442
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2443 2444

    Returns:
Y
yuyang18 已提交
2445
        ${y_comment}
G
guosheng 已提交
2446 2447 2448

    Examples:

Y
yuyang18 已提交
2449 2450 2451
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2467
    if shift:
G
guosheng 已提交
2468 2469 2470 2471 2472 2473
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2474 2475 2476 2477 2478
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2494 2495 2496 2497
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2498 2499 2500
                     padding=0,
                     stride=1,
                     dilation=1,
2501
                     groups=None,
C
caoying03 已提交
2502
                     param_attr=None,
2503
                     bias_attr=None,
C
chengduoZH 已提交
2504
                     use_cudnn=True,
2505
                     act=None,
C
caoying03 已提交
2506
                     name=None):
Y
Yu Yang 已提交
2507
    """
2508 2509 2510 2511 2512 2513 2514 2515
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2516 2517
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2518 2519 2520
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2521 2522 2523 2524 2525

    For each input :math:`X`, the equation is:

    .. math::

2526
        Out = \sigma (W \\ast X + b)
2527

2528
    Where:
2529 2530 2531

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2532 2533 2534 2535
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2536

2537 2538 2539 2540
    Example:

        - Input:

2541
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2542

2543
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2544 2545 2546

        - Output:

2547
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2548 2549

        Where
Y
Yu Yang 已提交
2550

2551 2552
        .. math::

2553 2554 2555 2556
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2557 2558

    Args:
2559 2560 2561 2562
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2563 2564 2565 2566
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2595
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2596 2597 2598
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2599
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2600
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2601 2602

    Returns:
2603
        Variable: The tensor variable storing the convolution transpose result.
2604 2605

    Raises:
2606 2607
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2608 2609 2610 2611

    Examples:
       .. code-block:: python

2612 2613
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2614
    """
C
chengduo 已提交
2615
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2616 2617 2618 2619 2620 2621 2622 2623
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2624 2625 2626
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2627 2628 2629
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2630

C
chengduoZH 已提交
2631 2632
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2633

Y
Yu Yang 已提交
2634 2635 2636 2637 2638
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2639

Y
Yu Yang 已提交
2640 2641
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2642

C
chengduoZH 已提交
2643
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2644
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2645
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2646
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2647
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2648 2649 2650
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2651

2652 2653 2654 2655 2656 2657 2658
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2659
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2660
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2661

Y
Yu Yang 已提交
2662 2663 2664
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2665
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2666
    helper.append_op(
2667
        type=op_type,
Y
Yu Yang 已提交
2668 2669
        inputs={'Input': [input],
                'Filter': [img_filter]},
2670
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2671
        attrs={
2672
            'output_size': output_size,
2673 2674 2675 2676 2677
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2678 2679
        })

2680 2681 2682
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2683 2684


2685
def conv3d_transpose(input,
Y
Yu Yang 已提交
2686 2687 2688
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2689 2690 2691
                     padding=0,
                     stride=1,
                     dilation=1,
2692
                     groups=None,
C
caoying03 已提交
2693
                     param_attr=None,
2694
                     bias_attr=None,
C
chengduoZH 已提交
2695
                     use_cudnn=True,
2696
                     act=None,
C
caoying03 已提交
2697
                     name=None):
Y
Yu Yang 已提交
2698
    """
2699
    **Convlution3D transpose layer**
2700

2701
    The convolution3D transpose layer calculates the output based on the input,
2702
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2703 2704 2705 2706 2707 2708
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2709 2710 2711
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2712 2713 2714 2715 2716

    For each input :math:`X`, the equation is:

    .. math::

2717
        Out = \sigma (W \\ast X + b)
2718 2719 2720

    In the above equation:

2721 2722
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2723 2724 2725 2726
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2727

2728 2729 2730 2731
    Example:

        - Input:

2732
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2733

2734
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2735 2736 2737

        - Output:

2738
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2739 2740

        Where
Y
Yu Yang 已提交
2741

2742 2743
        .. math::

2744 2745 2746
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2747 2748

    Args:
2749
        input(Variable): The input image with [N, C, D, H, W] format.
2750 2751 2752
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2753
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2754 2755
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2756
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2757 2758 2759
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2760 2761
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2762
        stride(int|tuple): The stride size. If stride is a tuple, it must
2763 2764
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2765
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2766 2767 2768
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2769 2770 2771 2772 2773
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2774 2775 2776 2777 2778 2779 2780 2781 2782
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2783 2784
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2785 2786
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2787 2788
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2789 2790

    Returns:
2791
        Variable: The tensor variable storing the convolution transpose result.
2792 2793

    Raises:
2794 2795
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2796 2797 2798 2799

    Examples:
       .. code-block:: python

2800 2801
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2802
    """
C
chengduo 已提交
2803
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2804 2805
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2806
    if not isinstance(input, Variable):
2807
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2808 2809
    input_channel = input.shape[1]

2810 2811 2812
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2813

C
chengduoZH 已提交
2814 2815 2816
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2817 2818 2819 2820 2821 2822
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2823 2824 2825
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2826

2827
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2828
                         padding[0] - 1) // dilation[0] + 1
2829
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2830
                         padding[1] - 1) // dilation[1] + 1
2831
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2832
                         padding[2] - 1) // dilation[2] + 1
2833
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2834
    else:
2835 2836
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2837

2838
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2839
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2840 2841 2842
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2843
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2844
    helper.append_op(
2845
        type=l_type,
Y
Yu Yang 已提交
2846 2847
        inputs={'Input': [input],
                'Filter': [img_filter]},
2848
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2849 2850 2851 2852
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2853
            'groups': groups,
C
chengduoZH 已提交
2854 2855
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2856

2857 2858
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2859
    return out
Y
yangyaming 已提交
2860 2861


Y
yangyaming 已提交
2862
def sequence_expand(x, y, ref_level=-1, name=None):
2863
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2864 2865 2866 2867
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2868 2869 2870 2871 2872

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2873
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2874
                x.data = [[a], [b], [c], [d]]
2875 2876 2877
                x.dims = [4, 1]

            y is a LoDTensor:
2878 2879
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2880

Y
yangyaming 已提交
2881
            ref_level: 0
2882

Y
yangyaming 已提交
2883
            then output is a 1-level LoDTensor:
2884
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2885
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2886 2887 2888 2889
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2890
                x.data = [[a], [b], [c]]
2891 2892 2893
                x.dims = [3, 1]

            y is a LoDTensor:
2894
                y.lod = [[2, 0, 3]]
2895

Y
yangyaming 已提交
2896
            ref_level: -1
2897

Y
yangyaming 已提交
2898 2899 2900
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2901 2902 2903
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2904 2905
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2906
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2907
                        will be named automatically.
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2918
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2919
    """
Y
yangyaming 已提交
2920
    helper = LayerHelper('sequence_expand', input=x, **locals())
2921
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2922
    tmp = helper.create_variable_for_type_inference(dtype)
2923
    helper.append_op(
Y
yangyaming 已提交
2924 2925 2926 2927 2928
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2929
    return tmp
2930 2931


C
chengduo 已提交
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2988
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
2989 2990 2991 2992 2993 2994 2995 2996
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2997
@templatedoc()
2998
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
2999 3000 3001 3002 3003
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3004 3005 3006
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3007
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3008 3009 3010 3011
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3012 3013 3014
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3015

F
fengjiayi 已提交
3016
    Returns:
M
minqiyang 已提交
3017
        Variable: The padded sequence batch and the original lengths before
3018
                  padding. All sequences has the same length.
M
minqiyang 已提交
3019

F
fengjiayi 已提交
3020 3021 3022 3023 3024 3025 3026
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3027 3028
            pad_value = fluid.layers.assign(
                input=numpy.array([0], dtype=numpy.float32))
F
fengjiayi 已提交
3029 3030 3031 3032 3033
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3034 3035
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3036 3037 3038 3039

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3040 3041 3042 3043 3044 3045
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3046 3047
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3048
        attrs={'padded_length': maxlen})
3049
    return out, length
F
fengjiayi 已提交
3050 3051


3052
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3053
    """
3054
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3055

3056 3057
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3058 3059 3060 3061 3062 3063 3064 3065 3066
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3067 3068 3069
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3070
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3071 3072 3073 3074 3075 3076

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3077
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3078 3079 3080 3081 3082 3083

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3084 3085
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3100
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3112 3113 3114 3115 3116 3117 3118 3119 3120
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3121 3122
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3123 3124 3125

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3126 3127

    This layer does the search in beams for one time step. Specifically, it
3128 3129 3130 3131 3132 3133
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3134

3135 3136 3137 3138 3139 3140 3141 3142
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3143

3144
    Args:
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3170

3171
    Returns:
3172 3173
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3174 3175 3176 3177

    Examples:
        .. code-block:: python

3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3195 3196 3197 3198
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3199 3200 3201
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3202 3203 3204 3205 3206

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3207
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3225 3226 3227 3228 3229 3230 3231
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3232

3233 3234 3235 3236 3237 3238 3239 3240 3241
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3242

3243 3244 3245 3246 3247 3248
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3249

3250 3251 3252 3253 3254 3255 3256 3257
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3258 3259
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3275 3276 3277 3278
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3279
              param_attr=None,
C
caoying03 已提交
3280 3281
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3282 3283 3284 3285
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3286
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3287

3288
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3289

3290
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3291

3292
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3293 3294 3295

            h_t & = o_t tanh(c_t)

3296 3297 3298 3299 3300 3301
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3302 3303 3304

        .. math::

3305
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3306 3307 3308 3309 3310 3311 3312 3313

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3314
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3315 3316

    Args:
Y
yangyaming 已提交
3317 3318 3319 3320 3321 3322
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3323
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3336 3337
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3338 3339

    Returns:
Y
yangyaming 已提交
3340
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3341 3342

    Raises:
3343 3344 3345 3346
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3347 3348 3349 3350 3351 3352

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3353
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3354
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3355
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3372
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3373 3374 3375 3376
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3377 3378
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3379 3380 3381
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3382
    size = cell_t_prev.shape[1]
3383
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3384 3385
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3386
                param_attr=param_attr,
3387
                bias_attr=bias_attr)
Y
yangyaming 已提交
3388
    dtype = x_t.dtype
X
Xin Pan 已提交
3389 3390
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3391 3392 3393 3394 3395 3396 3397 3398 3399

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3400
    return h, c
G
guosheng 已提交
3401 3402


C
caoying03 已提交
3403
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3404
    """
Y
yangyaming 已提交
3405
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3406 3407 3408

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3409
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3410 3411
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3412 3413
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3414
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3415
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3416
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3417 3418
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3419 3420 3421

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3422

G
guosheng 已提交
3423 3424 3425 3426 3427 3428
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3429
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3430 3431 3432 3433
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3434 3435 3436 3437

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3438
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3439 3440 3441
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3442 3443
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3444
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3445 3446
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3447 3448 3449 3450 3451
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3452
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3453 3454 3455 3456
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3457 3458


C
caoying03 已提交
3459
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3460
    """
Y
Yibing Liu 已提交
3461
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3462 3463 3464

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3465 3466 3467
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3468
            must be in the range :math:`[-rank(input), rank(input))`. If
3469
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3470
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3471 3472
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3473
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3474
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3475
                       will be named automatically.
G
guosheng 已提交
3476 3477

    Returns:
Y
Yibing Liu 已提交
3478
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3479

G
guosheng 已提交
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3490 3491
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3492 3493 3494 3495 3496 3497 3498

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3499 3500
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3501
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3502 3503
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3504 3505 3506 3507 3508
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3509
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3510 3511 3512 3513
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3514 3515


C
caoying03 已提交
3516
def reduce_max(input, dim=None, keep_dim=False, name=None):
3517
    """
Y
yangyaming 已提交
3518
    Computes the maximum of tensor elements over the given dimension.
3519 3520 3521

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3522
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3523 3524 3525
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3526
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3527 3528
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3529
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3530 3531
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3532 3533 3534

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3535

3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3547 3548 3549 3550 3551 3552 3553

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3554 3555
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3556
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3557 3558
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3559 3560 3561 3562 3563
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3564
            'dim': dim if dim != None else [0],
3565 3566 3567 3568 3569 3570
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3571
def reduce_min(input, dim=None, keep_dim=False, name=None):
3572
    """
Y
yangyaming 已提交
3573
    Computes the minimum of tensor elements over the given dimension.
3574 3575 3576

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3577
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3578 3579 3580
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3581
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3582 3583
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3584
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3585 3586
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3587 3588 3589

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3590

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3602 3603 3604 3605 3606 3607 3608

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3609 3610
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3611
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3612 3613
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3614 3615 3616 3617 3618
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3619
            'dim': dim if dim != None else [0],
3620 3621 3622 3623
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3624 3625


3626 3627 3628 3629 3630 3631
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3632
        dim (list|int|None): The dimensions along which the product is performed. If
3633 3634
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3635 3636
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3637 3638 3639
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3640
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3641
            layer will be named automatically.
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3656
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3657
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3658 3659 3660 3661 3662 3663 3664

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3665 3666
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3667
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3668 3669
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3670 3671 3672 3673 3674
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3675
            'dim': dim if dim != None else [0],
3676 3677 3678 3679 3680 3681
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3682
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3683
    """
C
caoying03 已提交
3684
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3685 3686 3687

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3688 3689 3690 3691 3692
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3693
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3694
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3695
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3696 3697
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3698 3699

    Returns:
D
dzhwinter 已提交
3700
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3701 3702 3703 3704 3705 3706 3707 3708 3709

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3710 3711
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3727
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3741 3742 3743 3744 3745 3746 3747 3748 3749


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3750
    .. math::
3751 3752

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3753 3754 3755 3756 3757

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3758
        x(Variable|list): The input tensor to l2_normalize layer.
3759
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3760 3761
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3762
        epsilon(float): The epsilon value is used to avoid division by zero, \
3763
            the defalut value is 1e-10.
3764
        name(str|None): A name for this layer(optional). If set None, the layer \
3765
            will be named automatically.
C
caoying03 已提交
3766 3767

    Returns:
3768
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3769 3770

    Examples:
3771

C
caoying03 已提交
3772 3773
        .. code-block:: python

3774 3775 3776 3777
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3778 3779
    """

F
fengjiayi 已提交
3780 3781
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3782 3783
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3784 3785
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3786
    helper.append_op(
3787 3788 3789 3790
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3791
        attrs={
3792 3793
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3794 3795
        })
    return out
3796 3797


S
sneaxiy 已提交
3798
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3799
    """
Y
ying 已提交
3800 3801 3802 3803
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3804

C
chengduoZH 已提交
3805
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3806
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3807

3808 3809 3810 3811 3812
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3813
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3814

C
chengduoZH 已提交
3815
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3816
      performs in the following way.
G
guosheng 已提交
3817

3818
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3819
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3820
        last two dimensions and a batched matrix multiply supporting broadcast
3821
        applies on the two tensors.
G
guosheng 已提交
3822

Y
ying 已提交
3823 3824
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3825
    removed after matrix multiplication.
G
guosheng 已提交
3826 3827 3828

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3829 3830 3831
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3832
        alpha (float): The scale of output. Default 1.0.
3833
        name(str|None): A name for this layer(optional). If set None, the layer
3834
            will be named automatically.
G
guosheng 已提交
3835 3836

    Returns:
3837
        Variable: The product Tensor variable.
G
guosheng 已提交
3838

G
guosheng 已提交
3839 3840 3841
    Examples:
        .. code-block:: python

3842
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3843 3844
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3845

3846 3847
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3848

3849 3850
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3851

3852 3853
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3854 3855 3856 3857

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3858 3859
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3860

Y
ying 已提交
3861
            # x: [M], y: [N]
3862
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3863
    """
Y
ying 已提交
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3876
            y_shape = y_shape + [1]
Y
ying 已提交
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3893
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3894
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3895
    helper.append_op(
3896 3897 3898 3899
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3900 3901 3902
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3903
            'alpha': float(alpha),
S
sneaxiy 已提交
3904
        })
3905
    return out
3906 3907


3908
def topk(input, k, name=None):
Q
qingqing01 已提交
3909 3910 3911 3912
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3913
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3914 3915 3916 3917 3918 3919
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3941 3942 3943
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3944
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3945
                 of input.
3946
        name(str|None): A name for this layer(optional). If set None, the layer
3947
                       will be named automatically.
F
fengjiayi 已提交
3948
                       Default: None
Q
qingqing01 已提交
3949 3950

    Returns:
3951 3952 3953
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3954
        within the last dimension of input.
Q
qingqing01 已提交
3955

F
fengjiayi 已提交
3956 3957
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3958 3959 3960 3961 3962 3963 3964

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
3965 3966
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3978
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3979
    """
Y
ying 已提交
3980 3981 3982 3983 3984 3985 3986 3987 3988
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3989

Y
ying 已提交
3990
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3991

3992
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3993 3994
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3995
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3996

3997
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3998 3999
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4000

4001 4002 4003
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4004
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4005
                          the length of reference string.
4006
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4007
                                     calculating edit distance.
4008
        name (str): The name of this layer. It is optional.
4009

W
wanghaoshuang 已提交
4010
    Returns:
W
wanghaoshuang 已提交
4011
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4012 4013 4014 4015 4016

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
4017
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
4018
            cost = fluid.layers.edit_distance(input=x,label=y)
4019
    """
4020
    helper = LayerHelper("edit_distance", **locals())
4021

4022
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4023
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4024 4025
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4026 4027 4028 4029 4030

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4031
            attrs={"tokens": ignored_tokens})
4032 4033 4034 4035 4036
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4037
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4038
            attrs={"tokens": ignored_tokens})
4039 4040
        label = erased_label

4041
    # edit distance op
X
Xin Pan 已提交
4042 4043
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4044 4045 4046 4047
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4048 4049
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4050 4051
        attrs={"normalized": normalized})

4052
    return edit_distance_out, sequence_num
4053 4054 4055 4056 4057


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4058

Y
ying 已提交
4059 4060 4061 4062
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4080
        input.lod = [[4, 4]]
4081 4082 4083 4084 4085 4086 4087

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4088
        output.lod = [[2, 1]]
4089 4090 4091

    Args:

Y
ying 已提交
4092 4093 4094 4095 4096 4097 4098 4099 4100
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4101
        name (str): The name of this layer. It is optional.
4102 4103

    Returns:
4104
        Variable: CTC greedy decode result. If all the sequences in result were
4105
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4106 4107 4108 4109 4110

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4111

4112
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4113
    """
4114
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4115
    _, topk_indices = topk(input, k=1)
4116 4117

    # ctc align op
X
Xin Pan 已提交
4118
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4119 4120 4121
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4122
        outputs={"Output": [ctc_out]},
4123 4124
        attrs={"merge_repeated": True,
               "blank": blank})
4125
    return ctc_out
4126 4127


F
fengjiayi 已提交
4128
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4129
    """
4130 4131
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4132
    to compute Connectionist Temporal Classification (CTC) loss.
4133 4134
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4135 4136 4137
    input tensor.

    Args:
4138
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4139 4140 4141 4142
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4143
       label (Variable): The ground truth of variable-length sequence,
4144 4145 4146
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4147 4148
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4149 4150 4151
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4152
         follewed by a mean_op.
W
wanghaoshuang 已提交
4153 4154

    Returns:
4155 4156
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4157 4158

    Examples:
4159

W
wanghaoshuang 已提交
4160
        .. code-block:: python
4161

4162 4163 4164
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4165 4166

    """
F
fengjiayi 已提交
4167
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4168 4169
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4170 4171 4172 4173 4174 4175 4176 4177 4178
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4194 4195 4196
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4197 4198 4199 4200 4201
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4202

4203
            out.lod  = [[0, 1, 3]]
4204 4205 4206 4207

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4208 4209 4210 4211 4212 4213 4214
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4215 4216 4217

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4218 4219

    Returns:
4220

4221 4222 4223 4224 4225
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4226
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4227
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4228 4229
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4230
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4231 4232 4233 4234 4235 4236
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4237 4238


4239 4240 4241 4242
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4243 4244 4245 4246 4247 4248
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4249 4250
        num_neg_samples=None,
        name=None):
4251 4252 4253 4254 4255 4256 4257
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4258 4259
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4260
            sample is 1.0.
C
chengduo 已提交
4261 4262 4263 4264 4265 4266 4267 4268 4269
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4270
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4271 4272
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4273

4274
    Returns:
Y
Yibing Liu 已提交
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4302
    """
Y
Yang Yu 已提交
4303 4304 4305
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4306 4307

    dim = input.shape[1]
Y
Yang Yu 已提交
4308 4309 4310 4311 4312 4313
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4327 4328 4329
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4330

Y
Yang Yu 已提交
4331 4332 4333 4334 4335 4336 4337 4338 4339
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4340 4341 4342

    helper.append_op(
        type='nce',
C
chengduo 已提交
4343
        inputs=inputs,
Y
Yang Yu 已提交
4344 4345 4346 4347 4348 4349
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4350
    return cost / (num_neg_samples + 1)
4351 4352


C
chengduo 已提交
4353 4354 4355 4356 4357 4358
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4359 4360
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4361
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4362 4363 4364 4365 4366 4367 4368 4369 4370
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4371

W
weixing02 已提交
4372
    Args:
M
minqiyang 已提交
4373
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4374 4375 4376 4377 4378
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4390 4391 4392 4393 4394 4395 4396 4397

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4398 4399 4400
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4401 4402 4403 4404
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4405 4406
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4407 4408
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4409
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4410 4411 4412 4413 4414
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4415 4416 4417 4418 4419 4420 4421 4422
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4423 4424
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4425
        inputs=inputs,
W
weixing02 已提交
4426 4427 4428 4429 4430 4431
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4432
def transpose(x, perm, name=None):
Y
ying 已提交
4433 4434 4435 4436 4437 4438 4439
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4440 4441 4442
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4443 4444 4445 4446 4447 4448 4449 4450

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4451
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4452 4453
    """

Y
fix ci.  
ying 已提交
4454
    if len(perm) != len(x.shape):
Y
ying 已提交
4455 4456 4457
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4458 4459 4460 4461 4462 4463
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4464 4465

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4466 4467
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4468
    helper.append_op(
4469
        type='transpose2',
Y
fix ci.  
ying 已提交
4470
        inputs={'X': [x]},
4471 4472
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4473 4474
        attrs={'axis': perm})
    return out
4475 4476


4477 4478 4479 4480 4481 4482 4483
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4484
    """
4485 4486 4487 4488 4489 4490 4491
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4520 4521 4522 4523 4524 4525 4526 4527 4528
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4529 4530 4531
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4532 4533 4534 4535 4536
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4564 4565 4566
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4579
            output.dims = {8, 8}
4580

4581
            output.lod = [[4, 4]]
4582

D
dzhwinter 已提交
4583
     Examples:
4584 4585 4586

        .. code-block:: python

4587 4588
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4589 4590

    """
W
wanghaoshuang 已提交
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4601 4602 4603 4604 4605 4606 4607
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4608
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4609
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4610
    helper.append_op(
4611
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4612
    return out
4613 4614


Y
yuyang18 已提交
4615
@templatedoc()
4616
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4617 4618
    """
    ${comment}
4619 4620

    Args:
Y
yuyang18 已提交
4621
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4622 4623
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4624 4625 4626 4627 4628
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4629
        ${out_comment}.
4630 4631

    Examples:
Y
yuyang18 已提交
4632 4633 4634 4635
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4636 4637 4638 4639 4640 4641
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4642
    out = helper.create_variable_for_type_inference(dtype)
4643 4644 4645 4646 4647
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4648
    return helper.append_activation(out)
4649 4650


Y
yuyang18 已提交
4651
@templatedoc()
4652 4653
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4654 4655 4656 4657 4658 4659 4660
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4661 4662

    Args:
Y
yuyang18 已提交
4663 4664
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4665 4666

    Returns:
Y
yuyang18 已提交
4667
        ${out_comment}.
4668 4669
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4670 4671 4672 4673 4674

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4675
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4676 4677 4678 4679 4680 4681
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4682 4683


4684 4685 4686 4687
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4688 4689
    """
    **Softmax With Cross Entropy Operator.**
4690

4691 4692 4693 4694
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4695

4696 4697 4698
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4699

4700 4701 4702
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4703

4704
    The equation is as follows:
4705

4706
    1) Hard label (one-hot label, so every sample has exactly one class)
4707

4708 4709 4710 4711
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4712

4713 4714 4715
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4716

4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4729 4730
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4731 4732
                            if soft_label is set to False. Default: -100

4733 4734 4735 4736 4737 4738 4739 4740 4741
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4742 4743
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4744 4745
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4746 4747
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4748 4749 4750 4751 4752 4753
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4754 4755
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4756 4757 4758 4759 4760
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4761 4762
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4763
    For each instance, it computes the smooth L1 loss element by element first
4764
    and then sums all the losses. So the shape of ouput Variable is
4765
    [batch_size, 1].
4766

4767 4768
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4769
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4770
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4771
            L1 loss op with same shape as :attr:`x`.
4772
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4773 4774
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4775
            by this tensor element by element.
4776
        outside_weight (Variable|None): A tensor with rank at least 2. This
4777 4778
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4779
            element by element.
4780
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4781 4782
           scalar with default value 1.0.

4783
    Returns:
4784
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4785 4786 4787 4788 4789

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4790 4791
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4792
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4793
            out = fluid.layers.smooth_l1(x=fc, y=label)
4794
    """
4795

4796
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4797 4798
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4811 4812 4813 4814


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4815
    This layer creates the one-hot representations for input indices.
4816 4817

    Args:
Y
Yibing Liu 已提交
4818 4819
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4820 4821

    Returns:
Y
Yibing Liu 已提交
4822
        Variable: The one-hot representations of input.
4823 4824

    Examples:
C
caoying03 已提交
4825
        .. code-block:: python
4826

Y
Yibing Liu 已提交
4827 4828
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4829 4830
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4831
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4832 4833 4834 4835 4836 4837
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4838 4839


Y
Yu Yang 已提交
4840
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4841
    """
Y
yi.wu 已提交
4842 4843 4844
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4845 4846 4847 4848 4849 4850

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4851 4852
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4853 4854 4855 4856 4857 4858

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4859 4860
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4861 4862
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4863 4864 4865 4866 4867
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4868
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4869
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4870 4871
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4872 4873
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4874 4875 4876
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4877 4878


4879
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
4880
    """
C
caoying03 已提交
4881 4882
    Gives a new shape to the input Tensor without changing its data.

4883 4884 4885 4886 4887
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4888

4889
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4890

4891 4892 4893 4894
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4895
    2. 0 means the actual dimension value is going to be copied from the
4896 4897 4898 4899
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4900 4901

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4902
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4903
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4904

4905
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4906 4907
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4908 4909
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4910
    dimensions.
C
caoying03 已提交
4911

4912
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4913 4914 4915 4916
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4917 4918

    Args:
4919
        x(variable): The input tensor.
C
caoying03 已提交
4920 4921
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4922 4923 4924 4925 4926
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
4927 4928
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
4929 4930 4931 4932 4933 4934 4935
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
4936
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4937

4938
    Returns:
G
guosheng 已提交
4939 4940 4941 4942
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
4943

X
Xin Pan 已提交
4944 4945 4946
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4947 4948
    Examples:
        .. code-block:: python
G
guosheng 已提交
4949

4950
            data = fluid.layers.data(
4951
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4952
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
4953
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
4954 4955 4956
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4957
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4958 4959 4960 4961 4962
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4963

4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4979
    helper = LayerHelper("reshape2", **locals())
4980 4981
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
4982
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4983
    helper.append_op(
4984
        type="reshape2",
X
Xin Pan 已提交
4985
        inputs=inputs,
D
dzhwinter 已提交
4986
        attrs={"shape": shape},
4987 4988
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4989

D
dzhwinter 已提交
4990
    return helper.append_activation(out)
4991

4992

4993
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4994
    """
M
minqiyang 已提交
4995 4996 4997
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4998
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4999

Y
Yibing Liu 已提交
5000 5001
    Examples:
    Case 1:
M
minqiyang 已提交
5002
      Given
Y
Yibing Liu 已提交
5003 5004 5005 5006 5007 5008 5009 5010
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5011
        and
Y
Yibing Liu 已提交
5012 5013 5014
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5015

Y
Yibing Liu 已提交
5016
    Args:
5017
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5018
        axes (list): List of integers, indicating the dimensions to be squeezed.
5019
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5020 5021 5022 5023 5024 5025 5026 5027

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5028
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5029 5030
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5031 5032
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5033
    helper.append_op(
5034
        type="squeeze2",
5035
        inputs={"X": input},
Y
Yibing Liu 已提交
5036
        attrs={"axes": axes},
5037 5038
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5039

5040 5041 5042
    return out


5043
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5044
    """
M
minqiyang 已提交
5045 5046 5047
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5048

M
minqiyang 已提交
5049 5050
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5051
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5052

Y
Yibing Liu 已提交
5053
    Args:
5054
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5055
        axes (list): List of integers, indicating the dimensions to be inserted.
5056
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5057 5058 5059 5060 5061 5062 5063 5064

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5065
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5066 5067
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5068 5069
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5070
    helper.append_op(
5071
        type="unsqueeze2",
5072
        inputs={"X": input},
Y
Yibing Liu 已提交
5073
        attrs={"axes": axes},
5074 5075
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5076

5077 5078
    return out

5079

Y
yangyaming 已提交
5080
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5081
    """
Y
Yibing Liu 已提交
5082
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5083 5084 5085 5086
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5087
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5088 5089 5090 5091 5092 5093

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5094
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5095 5096 5097
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5098
            target_lod: [4, 2]
Y
yangyaming 已提交
5099 5100

            then we get a 1-level LoDTensor:
5101
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5102 5103 5104 5105 5106 5107
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5108
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5109 5110 5111 5112
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5113
                y.data = [[2, 4]]
Y
yangyaming 已提交
5114 5115 5116
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5117
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5118 5119 5120 5121 5122 5123
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5124
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5125 5126 5127 5128
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5129
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5130 5131 5132 5133
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5134
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5135 5136 5137 5138 5139
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5140
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5141
                           from :attr:`y`.
Y
yangyaming 已提交
5142
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5143
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5144 5145

    Returns:
Y
Yibing Liu 已提交
5146
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5147 5148

    Raises:
Y
Yibing Liu 已提交
5149
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5150 5151 5152 5153 5154 5155 5156 5157 5158

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5159
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5185
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5214 5215
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5228 5229 5230
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5244 5245 5246 5247


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5248
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5249
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5250

G
guosheng 已提交
5251 5252 5253 5254
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5277
                         The length of :attr:paddings must be
G
guosheng 已提交
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5288

G
guosheng 已提交
5289 5290 5291 5292 5293 5294
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5295
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5296 5297 5298 5299 5300 5301 5302
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5303 5304


C
chengduo 已提交
5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5375
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5376 5377 5378 5379 5380 5381 5382 5383 5384
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5385 5386 5387 5388 5389 5390 5391
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5392 5393
    called label-smoothing regularization (LSR).

5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5417
                              be :math:`(1, class\_num)`.
5418 5419
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5420
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5440
    smooth_label = helper.create_variable_for_type_inference(dtype)
5441 5442 5443 5444 5445 5446 5447
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5448 5449


P
peizhilin 已提交
5450 5451 5452 5453 5454
if os.name != 'nt':
    @templatedoc()
    def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
        """
        ${comment}
5455

P
peizhilin 已提交
5456 5457 5458 5459 5460 5461
        Args:
            input (Variable): ${x_comment}
            rois (Variable): ROIs (Regions of Interest) to pool over.
            pooled_height (integer): ${pooled_height_comment} Default: 1
            pooled_width (integer): ${pooled_width_comment} Default: 1
            spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5462

P
peizhilin 已提交
5463 5464
        Returns:
            Variable: ${out_comment}.
5465

P
peizhilin 已提交
5466 5467
        Examples:
            .. code-block:: python
5468

P
peizhilin 已提交
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
                pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
        """
        helper = LayerHelper('roi_pool', **locals())
        dtype = helper.input_dtype()
        pool_out = helper.create_variable_for_type_inference(dtype)
        argmaxes = helper.create_variable_for_type_inference(dtype='int32')
        helper.append_op(
            type="roi_pool",
            inputs={"X": input,
                    "ROIs": rois},
            outputs={"Out": pool_out,
                     "Argmax": argmaxes},
            attrs={
                "pooled_height": pooled_height,
                "pooled_width": pooled_width,
                "spatial_scale": spatial_scale
            })
        return pool_out
W
whs 已提交
5487 5488


J
jerrywgz 已提交
5489 5490 5491 5492 5493 5494
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5495 5496
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5513 5514 5515
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5516 5517 5518 5519 5520 5521
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5522
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5563 5564
        .. code-block:: python

W
whs 已提交
5565 5566 5567 5568
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5569
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5570 5571 5572 5573 5574 5575
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5576 5577


5578 5579 5580 5581 5582
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5583
    """
Q
qiaolongfei 已提交
5584
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5585

5586
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5587 5588 5589
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5590

5591
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5592

5593
    Args:
5594
        input (Variable): The input tensor of image resize layer,
5595 5596
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5597
        out_shape(list|tuple|Variable|None): Output shape of image resize
5598 5599
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5600
        scale(float|None): The multiplier for the input height or width.
5601 5602 5603
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5604 5605
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5606 5607
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5608 5609

    Returns:
Q
update  
qiaolongfei 已提交
5610 5611
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5612

5613 5614 5615
    Examples:
        .. code-block:: python

5616
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5617
    """
5618 5619 5620 5621
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5622 5623
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5624 5625
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5626 5627 5628 5629

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5630 5631 5632
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5633
    if out_shape is not None:
B
baiyf 已提交
5634 5635 5636
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5637 5638 5639 5640 5641 5642
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5643 5644 5645 5646
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

X
Xin Pan 已提交
5647
    out = helper.create_variable_for_type_inference(dtype)
5648
    helper.append_op(
5649
        type=resample_methods[resample],
5650
        inputs=inputs,
5651 5652 5653 5654
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5655 5656


Y
yuyang18 已提交
5657
@templatedoc(op_type="bilinear_interp")
5658 5659
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5660 5661 5662 5663 5664 5665
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5666

Y
yuyang18 已提交
5667 5668 5669 5670 5671 5672 5673 5674
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5675 5676 5677 5678 5679 5680 5681
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5682 5683 5684
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5685 5686 5687 5688 5689 5690 5691
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5692
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5693

5694
    Returns:
Q
update  
qiaolongfei 已提交
5695
        Variable: The output is a 4-D tensor of the shape
5696
        (num_batches, channls, out_h, out_w).
5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5707 5708 5709
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5710 5711 5712
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5713 5714
def gather(input, index):
    """
Q
qiaolongfei 已提交
5715 5716
    **Gather Layer**

5717
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5718 5719 5720 5721
    of X indexed by `index` and concatenate them together.

    .. math::

5722
        Out = X[Index]
W
whs 已提交
5723 5724 5725 5726 5727 5728 5729


    .. code-block:: text


                Given:

5730 5731
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5742
        input (Variable): The source input with rank>=1.
W
whs 已提交
5743 5744 5745 5746 5747 5748
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5749

W
whs 已提交
5750 5751 5752 5753 5754 5755
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5756
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5757 5758 5759 5760 5761 5762 5763 5764
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5796
    out = helper.create_variable_for_type_inference(dtype)
5797 5798 5799 5800 5801 5802 5803 5804 5805
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5856
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
5857 5858 5859 5860 5861 5862 5863 5864 5865
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5879

5880 5881 5882
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5883
    """
F
stash  
fengjiayi 已提交
5884
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5885
    dtype = x.dtype
X
Xin Pan 已提交
5886
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
5887
    if seed is None:
5888
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5889
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5890
    if isinstance(seed, int):
F
fengjiayi 已提交
5891 5892 5893 5894 5895
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5896 5897 5898 5899
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5900
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5901 5902
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5903 5904
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5905
    return out
W
whs 已提交
5906 5907


5908
def log(x, name=None):
W
wanghaoshuang 已提交
5909 5910 5911 5912 5913
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5914
        Out = \\ln(x)
W
wanghaoshuang 已提交
5915 5916

    Args:
5917
        x (Variable): Input tensor.
5918 5919
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5920 5921 5922 5923 5924 5925 5926 5927

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5928
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5929 5930
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5931
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5932
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5933
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5934 5935 5936
    return out


5937
def relu(x, name=None):
W
wanghaoshuang 已提交
5938 5939
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5940
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5941 5942 5943 5944
    the tensor elementwise.

    .. math::

5945
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5946 5947

    Args:
5948
        x (Variable): The input tensor.
5949 5950
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5951 5952 5953 5954 5955 5956 5957 5958

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5959
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5960 5961
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5962
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5963
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5964
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5965
    return out
5966 5967


W
whs 已提交
5968 5969 5970
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5971 5972 5973 5974
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5975
    .. math::
5976 5977

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5978

5979
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5980 5981 5982 5983 5984
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5985
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5986
                           Its shape should be the same as input.
5987
        num_classes (int): The possible number of labels.
W
whs 已提交
5988 5989 5990 5991

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5992
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5993 5994 5995 5996

    Examples:

        .. code-block:: python
5997

W
whs 已提交
5998 5999 6000 6001
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6002 6003 6004
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6005 6006
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6007 6008
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6009
        outputs={
W
whs 已提交
6010 6011 6012
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6013 6014 6015
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6090
                    isinstance(shape, Variable)):
6091 6092 6093 6094 6095
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6096
    out = helper.create_variable_for_type_inference(x.dtype)
6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6114 6115 6116 6117 6118 6119 6120 6121 6122 6123


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6124

6125 6126
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6127

6128 6129 6130 6131
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6132

6133 6134 6135 6136 6137
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6138 6139 6140

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6176
    out = helper.create_variable_for_type_inference("float32")
6177 6178 6179 6180 6181 6182 6183 6184

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6185 6186


M
minqiyang 已提交
6187 6188
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6189
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6190
    which compares left score and right score passed in.
M
minqiyang 已提交
6191
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6192 6193 6194 6195 6196 6197

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6198
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6199 6200
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6201
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6202 6203 6204
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6205
       Variable: The ranking loss.
M
minqiyang 已提交
6206
    Raises:
M
minqiyang 已提交
6207
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6208 6209 6210 6211 6212 6213 6214
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6215
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6216 6217 6218 6219 6220 6221
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6222 6223
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6249

W
whs 已提交
6250 6251
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6252

W
whs 已提交
6253
      Case 0:
M
minqiyang 已提交
6254

W
whs 已提交
6255 6256 6257
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6258

W
whs 已提交
6259 6260 6261
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6262

W
whs 已提交
6263
      Case 1:
M
minqiyang 已提交
6264

W
whs 已提交
6265 6266
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6267

W
whs 已提交
6268 6269 6270
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6271

W
whs 已提交
6272
      Case 2:
M
minqiyang 已提交
6273

W
whs 已提交
6274 6275
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6276

W
whs 已提交
6277 6278 6279
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6280 6281


W
whs 已提交
6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6308
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6337
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6360
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6383
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6407
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6432
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6456
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6457 6458 6459 6460 6461 6462 6463 6464
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6479
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6480
                        will be named automatically.
J
jerrywgz 已提交
6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6508
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6509 6510 6511 6512 6513 6514 6515 6516 6517
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6532
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6555
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6577
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6578 6579 6580 6581 6582 6583 6584 6585
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6599

6600 6601 6602 6603 6604 6605 6606 6607 6608 6609
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6610 6611
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6627
        ValueError: If axis is not in range [0, rank(x)].
6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6644 6645
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6646
    helper.append_op(
6647
        type='flatten2',
6648
        inputs={"X": x},
6649 6650
        outputs={'Out': out,
                 'XShape': x_shape},
6651 6652
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6653 6654


C
chenweihang 已提交
6655
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6656
    """
C
chenweihang 已提交
6657
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6658
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6659 6660
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6661

C
chenweihang 已提交
6662 6663 6664 6665
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6666
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6667 6668 6669 6670 6671 6672
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6673
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6674 6675 6676
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6677 6678 6679
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
6691 6692
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6693 6694 6695 6696 6697 6698
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6699
    return out
6700

6701

S
sneaxiy 已提交
6702 6703 6704 6705 6706 6707 6708 6709 6710
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6711

S
sneaxiy 已提交
6712
    .. math::
6713

S
sneaxiy 已提交
6714 6715 6716
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6717
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6718 6719 6720 6721
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6722 6723 6724
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6725 6726
    Returns:
        Variable: The output sequence mask.
6727

S
sneaxiy 已提交
6728 6729
    """

Q
qingqing01 已提交
6730
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6731
    if name is None:
X
Xin Pan 已提交
6732
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
6733
    else:
X
Xin Pan 已提交
6734
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
6735

Q
qingqing01 已提交
6736 6737 6738
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6739 6740
        outputs={'Y': out},
        attrs={
6741
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6742 6743 6744
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6745 6746


X
Xin Pan 已提交
6747
def stack(x, axis=0):
S
sneaxiy 已提交
6748 6749 6750 6751
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6752 6753 6754 6755 6756 6757 6758

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6759
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6760
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6761 6762

    Args:
6763
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6764
        axis (int|None): The axis along which all inputs are stacked.
6765

S
sneaxiy 已提交
6766 6767
    Returns:
        Variable: The stacked variable.
6768

S
sneaxiy 已提交
6769 6770
    """

X
Xin Pan 已提交
6771 6772 6773 6774 6775 6776
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
6777
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
6778
    helper.append_op(
S
sneaxiy 已提交
6779 6780
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6781

X
Xin Pan 已提交
6782
    return out
D
dzhwinter 已提交
6783 6784 6785 6786 6787 6788 6789


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6790

D
dzhwinter 已提交
6791 6792 6793
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6794
    raised.
D
dzhwinter 已提交
6795 6796

    Args:
M
minqiyang 已提交
6797
        x (Variable): Input variable.
D
dzhwinter 已提交
6798 6799
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6800

D
dzhwinter 已提交
6801 6802
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6803

D
dzhwinter 已提交
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
6815
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
6816 6817 6818 6819 6820 6821 6822 6823

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6836

W
whs 已提交
6837 6838 6839 6840
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6841

W
whs 已提交
6842
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6843

W
whs 已提交
6844
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6845

W
whs 已提交
6846 6847 6848 6849
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6850

W
whs 已提交
6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6867
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6868 6869 6870 6871 6872 6873
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6874 6875


G
fix  
gongweibao 已提交
6876 6877 6878
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6879
@templatedoc()
G
fix  
gongweibao 已提交
6880 6881 6882 6883 6884 6885 6886 6887 6888
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6889
    ${comment}
G
fix  
gongweibao 已提交
6890 6891

    Args:
G
gongweibao 已提交
6892 6893 6894
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6895
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6896 6897 6898
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6899 6900
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6901
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6902 6903 6904 6905

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
6906
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6923 6924


G
gongweibao 已提交
6925
@templatedoc()
X
Xin Pan 已提交
6926
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6927
    """
G
gongweibao 已提交
6928
    ${comment}
G
fix  
gongweibao 已提交
6929 6930

    Args:
G
gongweibao 已提交
6931 6932 6933 6934
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6935 6936 6937
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6938
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6939 6940 6941 6942

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
6943
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6944 6945 6946 6947 6948 6949 6950 6951 6952 6953
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
6954
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6955 6956 6957 6958 6959
        })

    return out


G
gongweibao 已提交
6960
@templatedoc()
G
fix  
gongweibao 已提交
6961
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6962
    """
G
gongweibao 已提交
6963
    ${comment}
G
fix  
gongweibao 已提交
6964 6965

    Args:
G
gongweibao 已提交
6966 6967 6968 6969
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6970
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6971 6972

    Returns:
G
gongweibao 已提交
6973
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6974 6975 6976 6977

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
6978
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6990
@templatedoc()
G
fix  
gongweibao 已提交
6991 6992 6993 6994 6995 6996 6997 6998 6999
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7000
    ${comment}
G
fix  
gongweibao 已提交
7001 7002

    Args:
G
gongweibao 已提交
7003 7004
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7005
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7006 7007 7008 7009
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7010
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7011 7012

    Returns:
G
gongweibao 已提交
7013
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7014 7015 7016
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7017
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7036
@templatedoc()
X
Xin Pan 已提交
7037
def sum(x):
G
fix  
gongweibao 已提交
7038
    """
G
gongweibao 已提交
7039
    ${comment}
G
fix  
gongweibao 已提交
7040 7041

    Args:
G
gongweibao 已提交
7042
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7043 7044

    Returns:
G
gongweibao 已提交
7045
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7046 7047 7048
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7049 7050
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7051 7052 7053 7054
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7055
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7056 7057 7058 7059

    return out


G
gongweibao 已提交
7060
@templatedoc()
G
fix  
gongweibao 已提交
7061 7062
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7063
    ${comment}
G
fix  
gongweibao 已提交
7064 7065

    Args:
G
gongweibao 已提交
7066 7067 7068 7069
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7070 7071

    Returns:
G
gongweibao 已提交
7072
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7073 7074 7075 7076

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7077 7078
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7090
@templatedoc()
G
fix  
gongweibao 已提交
7091 7092
def shape(input):
    """
G
gongweibao 已提交
7093
    ${comment}
G
fix  
gongweibao 已提交
7094 7095

    Args:
G
gongweibao 已提交
7096
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7097 7098

    Returns:
G
gongweibao 已提交
7099
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7100 7101 7102 7103

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7104 7105
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7106
    helper.append_op(
G
fix  
gongweibao 已提交
7107
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7108 7109

    return out
G
merge  
gongweibao 已提交
7110 7111


S
sneaxiy 已提交
7112 7113 7114 7115 7116 7117 7118 7119
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7120 7121
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7122
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7123 7124 7125
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7126

S
sneaxiy 已提交
7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7138
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7139 7140 7141 7142 7143 7144 7145 7146
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7147
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7148
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7149 7150 7151 7152 7153 7154

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7155
    if name is None:
X
Xin Pan 已提交
7156
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7157 7158 7159
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7160 7161 7162 7163 7164 7165 7166 7167 7168 7169

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7170
    return helper.append_activation(out)
S
sneaxiy 已提交
7171 7172


X
Xin Pan 已提交
7173
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7174 7175 7176
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7177
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7178 7179 7180
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7181
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7182 7183 7184
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7185
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7186 7187 7188
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7189
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7190 7191 7192
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7193
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7194 7195 7196
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7197
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7209 7210
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7211
        ])
M
minqiyang 已提交
7212 7213


7214
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7215 7216
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7217 7218
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7219 7220 7221

    if out is None:
        if name is None:
X
Xin Pan 已提交
7222
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7238
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7257
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7276
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7295
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
X
Xin Pan 已提交
7330
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
X
Xin Pan 已提交
7362
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7392
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7422
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7423 7424 7425 7426 7427 7428 7429 7430 7431
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7432 7433
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7456
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7486
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7487 7488 7489 7490 7491 7492 7493 7494 7495 7496
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7497 7498


S
sneaxiy 已提交
7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512
@templatedoc()
def sequence_reverse(x, name=None):
    """ 
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
7513
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7514 7515 7516 7517 7518 7519 7520 7521 7522 7523
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
7524 7525


7526 7527 7528 7529 7530 7531
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
7532

7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7552
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
7565 7566


M
minqiyang 已提交
7567 7568 7569 7570 7571 7572 7573
def hash(input, hash_size, num_hash=1, name=None):
    """
    hash the input
     Args:
        input (Variable): The input variable which is a one-hot word.
        hash_size (int): The space size for hash algorithm.
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
7574
        name (str, default None): The name of this layer.
M
minqiyang 已提交
7575 7576 7577 7578
     Returns:
        Variable: The hash result variable which is a LoDTensor.
     Examples:
        .. code-block:: python
M
minqiyang 已提交
7579
            word_dict = paddle.dataset.imdb.word_dict()
M
minqiyang 已提交
7580 7581 7582 7583
            x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
            out = fluid.layers.hash(input=x, len(word_dict))
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
7584 7585
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
7586 7587 7588 7589 7590 7591 7592
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688


def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out