nn.py 200.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

Y
Yu Yang 已提交
20 21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
23
from ..param_attr import ParamAttr
24 25 26
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
Y
yuyang18 已提交
27
import random
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
30
import warnings
Y
Yu Yang 已提交
31 32

__all__ = [
Y
ying 已提交
33 34 35
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
36
    'dynamic_lstmp',
G
guosheng 已提交
37
    'dynamic_gru',
Y
ying 已提交
38 39 40 41 42 43 44 45 46
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
47
    'conv3d',
Y
ying 已提交
48
    'sequence_pool',
49 50
    'sequence_softmax',
    'softmax',
Y
ying 已提交
51
    'pool2d',
Y
yuyang18 已提交
52
    'pool3d',
Y
ying 已提交
53 54 55
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
56
    'conv3d_transpose',
Y
ying 已提交
57 58 59 60 61 62
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
63
    'reduce_prod',
Y
ying 已提交
64 65 66 67
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
68 69
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
70 71
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
72
    'topk',
Y
ying 已提交
73 74
    'warpctc',
    'sequence_reshape',
75
    'transpose',
76
    'im2sequence',
77
    'nce',
W
weixing02 已提交
78
    'hsigmoid',
Q
Qiao Longfei 已提交
79
    'beam_search',
80
    'row_conv',
81
    'multiplex',
G
guosheng 已提交
82
    'layer_norm',
83 84
    'softmax_with_cross_entropy',
    'smooth_l1',
85
    'one_hot',
Y
Yu Yang 已提交
86
    'autoincreased_step_counter',
C
caoying03 已提交
87
    'reshape',
Y
yangyaming 已提交
88
    'lod_reset',
D
dragonwarrior 已提交
89
    'lrn',
G
guosheng 已提交
90
    'pad',
91
    'label_smooth',
92
    'roi_pool',
W
whs 已提交
93
    'dice_loss',
F
fengjiayi 已提交
94 95
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
96
    'resize_bilinear',
W
whs 已提交
97
    'gather',
98
    'random_crop',
Y
yuyang18 已提交
99 100 101
    'mean_iou',
    'relu',
    'log',
102
    'crop',
103
    'rank_loss',
J
jerrywgz 已提交
104
    'prelu',
105
    'flatten',
Y
Yu Yang 已提交
106 107 108 109 110 111 112 113
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
114
       use_mkldnn=False,
Y
Yu Yang 已提交
115
       act=None,
J
Jacek Czaja 已提交
116
       is_test=False,
117
       name=None):
Y
Yu Yang 已提交
118
    """
119
    **Fully Connected Layer**
Y
Yu Yang 已提交
120

121 122 123 124 125 126 127 128
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
129
    to the output as well.
C
caoying03 已提交
130

C
caoying03 已提交
131
    This process can be formulated as follows:
132 133 134

    .. math::

135
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
136 137 138

    In the above equation:

C
caoying03 已提交
139 140 141 142
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
143
    * :math:`Act`: The activation function.
C
caoying03 已提交
144
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
145 146

    Args:
R
ranqiu 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
162 163
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
164
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
165
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
166 167
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
168
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
169

170
    Returns:
F
fengjiayi 已提交
171
        Variable: The transformation result.
172 173

    Raises:
C
caoying03 已提交
174
        ValueError: If rank of the input tensor is less than 2.
175 176 177 178

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
179
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
180
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
181
    """
C
caoying03 已提交
182

C
caoying03 已提交
183
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
184 185 186 187

    dtype = helper.input_dtype()

    mul_results = []
188 189
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
190 191 192
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
193

Y
Yu Yang 已提交
194
        w = helper.create_parameter(
195 196
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
197
        helper.append_op(
198 199 200
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
201
            outputs={"Out": tmp},
M
mozga-intel 已提交
202 203
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
204 205 206 207
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
208
    else:
209 210
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
211 212 213 214
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
215 216 217 218
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
219 220


221 222 223
def embedding(input,
              size,
              is_sparse=False,
224
              is_distributed=False,
225 226 227
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
228
    """
229 230
    **Embedding Layer**

231
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
232 233
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
234 235 236

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
237 238

    Args:
239 240 241 242 243
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
244
        is_distributed(bool): Whether to run lookup table from remote parameter server.
245 246
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
247
            with zeros whenever lookup encounters it in :attr:`input`. If
248
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
249 250
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
251
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
252

253 254 255
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
256

257 258
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
259

C
chengduoZH 已提交
260
          dict_size = len(dataset.ids)
261
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
262
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
263 264 265 266 267 268
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
269 270
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
271 272 273 274 275
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
276 277 278 279 280
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
281 282 283
    return tmp


Y
yi.wu 已提交
284
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
285 286
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
287 288
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
289 290 291 292 293 294 295
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
296 297
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
298
    """
Y
yi.wu 已提交
299
    ${comment}
Y
Yibing Liu 已提交
300 301

    Args:
Y
yi.wu 已提交
302 303
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
304 305 306 307 308 309 310
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

311
        param_attr(ParamAttr|None): The parameter attribute for the learnable
312
                               hidden-hidden weights.
Y
Yibing Liu 已提交
313 314 315

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
316 317
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
318
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
319 320 321
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
322

323
                              1. `use_peepholes = False`
Y
yi.wu 已提交
324 325
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
326
                              2. `use_peepholes = True`
Y
yi.wu 已提交
327
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
328
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
329
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
330 331 332 333 334 335 336 337
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
338 339

    Returns:
Y
Yibing Liu 已提交
340 341
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
342

Y
Yibing Liu 已提交
343
    Examples:
Y
Yibing Liu 已提交
344 345
        .. code-block:: python

Y
Yibing Liu 已提交
346 347
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
348
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
349 350
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
351
    """
352

Y
Yu Yang 已提交
353
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
354
    size = size // 4
Y
Yu Yang 已提交
355 356 357 358 359 360 361 362 363 364 365 366
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
367 368 369 370 371 372 373 374 375 376
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
377 378 379

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
380
        inputs=inputs,
Y
Yu Yang 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
397 398 399 400 401 402 403 404 405 406 407
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
408 409
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
410 411 412
    """
    **Dynamic LSTMP Layer**

413 414 415 416 417 418
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
419 420 421 422 423

    The formula is as follows:

    .. math::

424
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
425

426
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
427

428
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
429

430
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
431

432
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
433

434
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
435

436
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
437

Y
Yibing Liu 已提交
438 439 440 441 442 443
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
444
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
445
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
446
          bias vector).
Y
Yibing Liu 已提交
447 448 449
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
450
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
451
    * :math:`h`: The hidden state.
452
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
453 454
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
455
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
456
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
457
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
458 459
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
460 461 462 463

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
464

Y
Yibing Liu 已提交
465 466 467 468 469 470 471 472 473 474 475 476
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
477
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
478 479
                               hidden-hidden weight and projection weight.

480 481
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
482 483
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
484 485
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
486 487
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
488 489 490 491 492 493
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
494
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
495 496 497
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
498
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
499 500 501 502 503 504 505 506 507
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
508
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
509 510
                              default "tanh".
        proj_activation(str): The activation for projection output.
511
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
512 513
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
514 515
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
516 517

    Returns:
518 519 520 521
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
522 523

    Examples:
524

Y
Yibing Liu 已提交
525 526
        .. code-block:: python

527 528 529 530
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
531
            hidden_dim, proj_dim = 512, 256
532
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
533
                                     act=None, bias_attr=None)
534 535 536
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
537 538 539 540
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
541
    """
542

Y
Yibing Liu 已提交
543
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
544
    size = size // 4
Y
Yibing Liu 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
589 590 591 592 593 594 595 596 597
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
598
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
599

600
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
601
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
602

G
guosheng 已提交
603 604 605 606 607 608 609 610 611
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
612

G
guosheng 已提交
613
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
614

G
guosheng 已提交
615
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
616 617
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
618 619 620 621
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
622
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
623 624

    Args:
625 626
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
627
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
628
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
629 630
            is the hidden size.
        size(int): The dimension of the gru cell.
631
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
632 633
            hidden-hidden weight matrix. Note:

634
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
635
              :math:`D` is the hidden size.
636
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
637
              The first part are weights of the update gate and reset gate with
638
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
639
              candidate hidden state with shape :math:`(D \\times D)`.
640
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
641
            hidden-hidden bias.
642
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
643 644 645
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
646
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
647
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
648 649 650 651
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
652 653

    Returns:
G
guosheng 已提交
654
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
655
            and sequence length is the same with the input.
656

G
guosheng 已提交
657
    Examples:
658

G
guosheng 已提交
659 660
        .. code-block:: python

661 662 663 664
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
665
            hidden_dim = 512
666
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
667 668 669 670 671 672 673 674 675 676
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
677
    batch_size = input.shape[0]
G
guosheng 已提交
678 679 680
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
681 682 683
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
707 708 709
def gru_unit(input,
             hidden,
             size,
710 711
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
712
             activation='tanh',
713
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
714
    """
715
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
716

717 718
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
719

720
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
721

722
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
723

724
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
725 726

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
727 728 729
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
730 731
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

732 733
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
734 735 736
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
737 738 739 740 741

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
742 743
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
744 745 746 747
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
748

749 750 751 752 753 754
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
755

756
             # assuming we have x_t_data and prev_hidden of size=10
757
             x_t = fluid.layers.fc(input=x_t_data, size=30)
758 759
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
760 761 762 763 764 765 766 767 768 769 770 771

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
772
    size = size // 3
Y
Yu Yang 已提交
773 774

    # create weight
775 776
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
777

778 779 780 781
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
782
    # create bias
783
    if helper.bias_attr:
Y
Yu Yang 已提交
784 785 786
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
787
        inputs['Bias'] = bias
Y
Yu Yang 已提交
788 789 790

    helper.append_op(
        type='gru_unit',
791
        inputs=inputs,
Y
Yu Yang 已提交
792 793 794 795 796 797
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
798 799
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
800 801 802 803 804
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
805
@templatedoc()
806
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
807 808 809 810 811 812 813
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
814
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
815 816 817 818
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
819 820 821
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
822 823

    """
Y
Yu Yang 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
849
@templatedoc()
850
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
851 852 853 854 855
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
856

Y
yuyang18 已提交
857
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
858

Y
yuyang18 已提交
859 860 861
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
862
        Variable: ${viterbi_path_comment}
863

Y
yi.wu 已提交
864 865 866 867 868
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
869
    """
Y
Yu Yang 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
883
@templatedoc()
F
fengjiayi 已提交
884
def cos_sim(X, Y):
Y
Yu Yang 已提交
885
    """
Y
yi.wu 已提交
886 887 888
    ${comment}

    Args:
889 890
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
891

Y
yi.wu 已提交
892
    Returns:
893
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
894
    """
F
fengjiayi 已提交
895
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
896 897 898 899 900 901 902 903 904 905 906 907 908
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


909
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
910 911 912 913 914
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
915
    training. The dropout operator randomly sets (according to the given dropout
916 917 918 919
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
920 921
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
922 923 924 925 926 927 928
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
929 930

    Returns:
931
        Variable: A tensor variable is the shape with `x`.
932 933

    Examples:
934

935 936
        .. code-block:: python

937 938
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
939 940
    """

F
fengjiayi 已提交
941
    helper = LayerHelper('dropout', **locals())
942 943
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
944 945 946 947

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

948 949 950 951 952
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
953 954 955 956 957 958
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
959 960 961
    return out


F
fengjiayi 已提交
962
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
963
    """
Y
Yibing Liu 已提交
964 965
    **Cross Entropy Layer**

966 967 968
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
969 970

    1) One-hot cross-entropy:
F
fengjiayi 已提交
971
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
972

Y
Yibing Liu 已提交
973
        .. math::
Y
yangyaming 已提交
974

Y
Yibing Liu 已提交
975 976 977
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
978 979
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
980 981 982 983 984

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
985
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
986 987 988
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
989 990
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
991
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
992

Y
Yibing Liu 已提交
993
    Args:
Y
yangyaming 已提交
994
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
995 996 997 998
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
999
        label (Variable|list): the ground truth which is a 2-D tensor. When
1000 1001 1002 1003
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1004
        soft_label (bool): a flag indicating whether to
1005 1006
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
1007 1008 1009 1010 1011

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1012 1013 1014 1015 1016
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1017 1018 1019 1020 1021 1022

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1023
    """
F
fengjiayi 已提交
1024
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1025 1026 1027 1028 1029 1030
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
1031
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
1032 1033 1034
    return out


F
fengjiayi 已提交
1035
def square_error_cost(input, label):
Y
Yu Yang 已提交
1036
    """
1037 1038
    **Square error cost layer**

1039 1040
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1041

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1055 1056
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1057 1058

    Returns:
G
guosheng 已提交
1059
        Variable: The tensor variable storing the element-wise squared error \
1060
                  difference of input and label.
1061 1062 1063 1064 1065 1066 1067 1068

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1069
    """
F
fengjiayi 已提交
1070
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1080 1081
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1082 1083 1084
    return square_out


Y
yi.wu 已提交
1085
@templatedoc()
Y
Yu Yang 已提交
1086 1087 1088 1089
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1090
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1091
    """
Y
yi.wu 已提交
1092
    **Chunk Evaluator**
Y
yi.wu 已提交
1093

Y
yangyaming 已提交
1094
    This function computes and outputs the precision, recall and
1095
    F1-score of chunk detection.
Y
yi.wu 已提交
1096

Y
yi.wu 已提交
1097 1098 1099 1100 1101 1102 1103 1104
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1105

Y
yi.wu 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1131

Y
yi.wu 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1156
    Args:
1157 1158 1159 1160 1161
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1162

Y
yi.wu 已提交
1163
    Returns:
Y
update  
yi.wu 已提交
1164 1165 1166
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1167

Y
yi.wu 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1180
    """
F
fengjiayi 已提交
1181
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1182 1183 1184 1185 1186

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1187 1188 1189
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1190 1191 1192 1193 1194 1195 1196 1197

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1198 1199 1200 1201
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1202 1203 1204
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1205 1206
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1207
        })
1208 1209
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1210 1211


1212
@templatedoc()
Y
Yu Yang 已提交
1213 1214 1215 1216 1217 1218 1219
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1220
                  act=None):
Y
Yu Yang 已提交
1221 1222 1223 1224
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1235

1236 1237
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1256
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1257 1258 1259 1260 1261 1262
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1263
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1264 1265 1266
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1267
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1287

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1310
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1311
    """
1312
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1313
    has the same shape as the input.
Q
qiaolongfei 已提交
1314

1315 1316 1317 1318 1319 1320
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1321
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1322 1323 1324 1325 1326 1327 1328

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1329
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1364 1365 1366
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1367 1368
           stride=1,
           padding=0,
1369
           dilation=1,
Y
Yu Yang 已提交
1370 1371 1372
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1373
           use_cudnn=True,
1374
           use_mkldnn=False,
1375 1376
           act=None,
           name=None):
Y
Yu Yang 已提交
1377
    """
C
chengduoZH 已提交
1378
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1379 1380
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1381
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1382 1383 1384 1385 1386 1387 1388
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1389 1390 1391
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1392

1393
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1394

C
chengduoZH 已提交
1395 1396
    .. math::

C
refine  
chengduoZH 已提交
1397
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1398

T
tensor-tang 已提交
1399
    Where:
C
chengduoZH 已提交
1400

1401 1402 1403 1404 1405
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1406
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1407 1408 1409

    Example:

1410 1411
        - Input:

W
weixing02 已提交
1412
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1413

W
weixing02 已提交
1414
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1415

1416
        - Output:
T
tensor-tang 已提交
1417

W
weixing02 已提交
1418
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1419

C
chengduoZH 已提交
1420
        Where
1421 1422

        .. math::
C
chengduoZH 已提交
1423

W
weixing02 已提交
1424 1425
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1426 1427

    Args:
1428
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1429
        num_filters(int): The number of filter. It is as same as the output
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1452 1453
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1454 1455 1456
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1457 1458

    Returns:
G
guosheng 已提交
1459
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1460 1461
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1462
    Raises:
1463 1464
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1465

C
chengduoZH 已提交
1466 1467 1468
    Examples:
        .. code-block:: python

1469 1470
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1471 1472 1473
    """

    num_channels = input.shape[1]
1474 1475

    l_type = 'conv2d'
X
xzl 已提交
1476 1477
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1478
        l_type = 'depthwise_conv2d'
1479 1480 1481 1482

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1483 1484 1485 1486 1487
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1488
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1489

C
chengduoZH 已提交
1490 1491 1492
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1493
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1494

C
chengduoZH 已提交
1495 1496
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1497 1498

    input_shape = input.shape
M
minqiyang 已提交
1499
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1514
        type=l_type,
Y
Yu Yang 已提交
1515 1516 1517 1518 1519
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1520 1521 1522
        attrs={
            'strides': stride,
            'paddings': padding,
1523
            'dilations': dilation,
C
chengduoZH 已提交
1524
            'groups': groups,
1525 1526
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1527
        })
Y
Yu Yang 已提交
1528 1529 1530 1531 1532 1533

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1552 1553 1554 1555 1556 1557
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1567 1568
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1569 1570 1571
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1572
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1598
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1599 1600
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1601
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1602 1603
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1604
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1605 1606
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1607
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1634 1635
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1650
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1691
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1692 1693 1694 1695

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1696
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1697
    """
Y
yangyaming 已提交
1698 1699 1700
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1712
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1713 1714 1715 1716 1717
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1718
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1719 1720 1721 1722 1723 1724 1725

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1726 1727
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1728

L
Luo Tao 已提交
1729 1730
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1731
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1732 1733 1734 1735 1736 1737 1738 1739
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1740

Y
yangyaming 已提交
1741
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1742 1743 1744 1745 1746
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1747 1748
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1749
    """
F
fengjiayi 已提交
1750
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1762 1763 1764 1765 1766
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1767 1768 1769
    return pool_out


F
fengjiayi 已提交
1770
def sequence_first_step(input):
L
Luo Tao 已提交
1771
    """
L
Luo Tao 已提交
1772
    This function gets the first step of sequence.
L
Luo Tao 已提交
1773 1774 1775 1776

    .. code-block:: text

       x is a 1-level LoDTensor:
1777
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1778 1779 1780 1781 1782
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1783
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1784
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1785

L
Luo Tao 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1795

Y
yangyaming 已提交
1796
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1797 1798 1799
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1800 1801 1802
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1803
def sequence_last_step(input):
L
Luo Tao 已提交
1804
    """
L
Luo Tao 已提交
1805
    This function gets the last step of sequence.
L
Luo Tao 已提交
1806 1807 1808 1809

    .. code-block:: text

       x is a 1-level LoDTensor:
1810
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1811 1812 1813 1814 1815
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1816
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1817
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1818

L
Luo Tao 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1828

Y
yangyaming 已提交
1829
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1830 1831 1832
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1833 1834 1835
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1836
@templatedoc()
Y
Yu Yang 已提交
1837
def pool2d(input,
C
chengduoZH 已提交
1838 1839
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1840 1841
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1842
           global_pooling=False,
C
chengduoZH 已提交
1843
           use_cudnn=True,
1844
           ceil_mode=False,
1845
           use_mkldnn=False,
C
caoying03 已提交
1846
           name=None):
Y
Yu Yang 已提交
1847
    """
F
fengjiayi 已提交
1848
    ${comment}
1849 1850

    Args:
1851 1852 1853
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1854
                          feature, and W is the width of the feature.
1855
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1856
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1857
        pool_type: ${pooling_type_comment}
1858 1859
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1860 1861 1862 1863
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1864
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1865 1866
                        layer will be named automatically.

1867
    Returns:
F
fengjiayi 已提交
1868
        Variable: The pooling result.
F
fengjiayi 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1882 1883 1884 1885
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1886
                            global_pooling=False)
Y
Yu Yang 已提交
1887 1888 1889 1890 1891
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1892

C
chengduoZH 已提交
1893 1894 1895 1896 1897
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1898 1899 1900 1901
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1902 1903
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1904

C
Add doc  
chengduoZH 已提交
1905
    l_type = 'pool2d'
1906 1907

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1908 1909 1910 1911
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1941
    pooling configurations mentioned in input parameters.
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1955

1956
    Returns:
1957
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1958 1959 1960 1961 1962
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1963

C
chengduoZH 已提交
1964 1965 1966 1967 1968
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1969 1970 1971
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1972

C
chengduoZH 已提交
1973 1974
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1975

1976 1977
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1978 1979 1980 1981
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1982
        type=l_type,
Y
Yu Yang 已提交
1983 1984 1985 1986 1987 1988 1989
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1990
            "paddings": pool_padding,
1991
            "use_cudnn": use_cudnn,
1992 1993
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2006
               data_layout='NCHW',
Y
Yang Yang 已提交
2007
               in_place=False,
2008
               use_mkldnn=False,
2009 2010
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2011
               moving_variance_name=None,
2012 2013
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2014
    """
Q
qiaolongfei 已提交
2015 2016 2017 2018
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2019

Q
qiaolongfei 已提交
2020
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2021

Q
qiaolongfei 已提交
2022 2023
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2024 2025 2026
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2039 2040

    Args:
Q
qiaolongfei 已提交
2041
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2042 2043 2044 2045
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2046 2047 2048
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2049
        in_place(bool, Default False): This argument is deprecated since 0.15.0.
Q
qiaolongfei 已提交
2050 2051 2052 2053 2054
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2055
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2056
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2057 2058

    Returns:
Q
qiaolongfei 已提交
2059
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2060 2061 2062 2063 2064 2065 2066

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2067 2068 2069 2070
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

2071 2072 2073 2074
    if in_place:
        raise warnings.warn("The argument in_place is deprecated since 0.15.0, "
                            "please do not set it True.")

Y
Yu Yang 已提交
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2094
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2095

2096 2097
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2098 2099 2100
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2101
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2102
        shape=param_shape,
2103 2104 2105 2106 2107 2108 2109
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2110
            trainable=False,
W
wanghaoshuang 已提交
2111
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2112
        shape=param_shape,
2113 2114
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2115 2116 2117 2118 2119 2120

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2121 2122
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2123

2124
    batch_norm_out = helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2142 2143 2144 2145
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2146 2147
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2148
        })
Y
Yu Yang 已提交
2149 2150 2151 2152

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2153
@templatedoc()
G
guosheng 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2164
    ${comment}
G
guosheng 已提交
2165 2166 2167

    The formula is as follows:

Y
yuyang18 已提交
2168
    ..  math::
G
guosheng 已提交
2169 2170 2171 2172 2173 2174 2175

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2176 2177 2178 2179 2180 2181 2182 2183
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2184

G
guosheng 已提交
2185 2186
    Args:
        input(Variable): The input tensor variable.
2187
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2188
            normalization.
2189
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2190
            normalization.
2191
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2192
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2193
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2194 2195 2196 2197 2198 2199
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2200
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2201 2202

    Returns:
Y
yuyang18 已提交
2203
        ${y_comment}
G
guosheng 已提交
2204 2205 2206

    Examples:

Y
yuyang18 已提交
2207 2208 2209
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2225
    if shift:
G
guosheng 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2250 2251 2252 2253
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2254 2255 2256
                     padding=0,
                     stride=1,
                     dilation=1,
2257
                     groups=None,
C
caoying03 已提交
2258
                     param_attr=None,
2259
                     bias_attr=None,
C
chengduoZH 已提交
2260
                     use_cudnn=True,
2261
                     act=None,
C
caoying03 已提交
2262
                     name=None):
Y
Yu Yang 已提交
2263
    """
2264 2265 2266 2267 2268 2269 2270 2271
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2272 2273
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2274 2275 2276
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2277 2278 2279 2280 2281

    For each input :math:`X`, the equation is:

    .. math::

2282
        Out = \sigma (W \\ast X + b)
2283

2284
    Where:
2285 2286 2287

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2288 2289 2290 2291
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2292

2293 2294 2295 2296
    Example:

        - Input:

2297
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2298

2299
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2300 2301 2302

        - Output:

2303
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2304 2305

        Where
Y
Yu Yang 已提交
2306

2307 2308 2309 2310
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2311 2312

    Args:
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2346 2347

    Returns:
2348
        Variable: The tensor variable storing the convolution transpose result.
2349 2350

    Raises:
2351 2352
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2353 2354 2355 2356

    Examples:
       .. code-block:: python

2357 2358
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2359
    """
2360 2361 2362 2363 2364 2365 2366 2367 2368

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2369 2370 2371
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2372 2373 2374
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2375

C
chengduoZH 已提交
2376 2377
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2378

Y
Yu Yang 已提交
2379 2380 2381 2382 2383
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2384

Y
Yu Yang 已提交
2385 2386
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2387

C
chengduoZH 已提交
2388
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2389
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2390
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2391
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2392
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2393 2394 2395
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2396

2397
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2398
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2399 2400 2401
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2402
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2403
    helper.append_op(
2404
        type=op_type,
Y
Yu Yang 已提交
2405 2406
        inputs={'Input': [input],
                'Filter': [img_filter]},
2407
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2408
        attrs={
2409 2410 2411 2412 2413
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2414 2415
        })

2416 2417 2418
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2419 2420


2421
def conv3d_transpose(input,
Y
Yu Yang 已提交
2422 2423 2424
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2425 2426 2427
                     padding=0,
                     stride=1,
                     dilation=1,
2428
                     groups=None,
C
caoying03 已提交
2429
                     param_attr=None,
2430
                     bias_attr=None,
C
chengduoZH 已提交
2431
                     use_cudnn=True,
2432
                     act=None,
C
caoying03 已提交
2433
                     name=None):
Y
Yu Yang 已提交
2434
    """
2435
    **Convlution3D transpose layer**
2436

2437
    The convolution3D transpose layer calculates the output based on the input,
2438
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2439 2440 2441 2442 2443 2444
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2445 2446 2447
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2448 2449 2450 2451 2452

    For each input :math:`X`, the equation is:

    .. math::

2453
        Out = \sigma (W \\ast X + b)
2454 2455 2456

    In the above equation:

2457 2458
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2459 2460 2461 2462
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2463

2464 2465 2466 2467
    Example:

        - Input:

2468
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2469

2470
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2471 2472 2473

        - Output:

2474
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2475 2476

        Where
Y
Yu Yang 已提交
2477

2478 2479
        .. math::

2480 2481 2482
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2483 2484

    Args:
2485
        input(Variable): The input image with [N, C, D, H, W] format.
2486 2487 2488
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2489
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2490 2491
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2492
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2493 2494 2495
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2496 2497
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2498
        stride(int|tuple): The stride size. If stride is a tuple, it must
2499 2500
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2501
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2502 2503 2504
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2505 2506 2507 2508 2509
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2510 2511 2512
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2513 2514 2515 2516 2517
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2518 2519

    Returns:
2520
        Variable: The tensor variable storing the convolution transpose result.
2521 2522

    Raises:
2523 2524
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2525 2526 2527 2528

    Examples:
       .. code-block:: python

2529 2530
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2531
    """
2532 2533
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2534
    if not isinstance(input, Variable):
2535
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2536 2537
    input_channel = input.shape[1]

2538 2539 2540
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2541

C
chengduoZH 已提交
2542 2543 2544
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2545 2546 2547 2548 2549 2550
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2551 2552 2553
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2554

2555
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2556
                         padding[0] - 1) // dilation[0] + 1
2557
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2558
                         padding[1] - 1) // dilation[1] + 1
2559
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2560
                         padding[2] - 1) // dilation[2] + 1
2561
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2562
    else:
2563 2564
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2565

2566
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2567
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2568 2569 2570
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2571
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2572
    helper.append_op(
2573
        type=l_type,
Y
Yu Yang 已提交
2574 2575
        inputs={'Input': [input],
                'Filter': [img_filter]},
2576
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2577 2578 2579 2580
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2581
            'groups': groups,
C
chengduoZH 已提交
2582 2583
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2584

2585 2586
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2587
    return out
Y
yangyaming 已提交
2588 2589


Y
yangyaming 已提交
2590
def sequence_expand(x, y, ref_level=-1, name=None):
2591
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2592 2593 2594 2595
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2596 2597 2598 2599 2600

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2601
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2602
                x.data = [[a], [b], [c], [d]]
2603 2604 2605
                x.dims = [4, 1]

            y is a LoDTensor:
2606 2607
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2608

Y
yangyaming 已提交
2609
            ref_level: 0
2610

Y
yangyaming 已提交
2611
            then output is a 1-level LoDTensor:
2612
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2613
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2614 2615 2616 2617
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2618
                x.data = [[a], [b], [c]]
2619 2620 2621
                x.dims = [3, 1]

            y is a LoDTensor:
2622
                y.lod = [[2, 0, 3]]
2623

Y
yangyaming 已提交
2624
            ref_level: -1
2625

Y
yangyaming 已提交
2626 2627 2628
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2629 2630 2631
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2632 2633
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2634
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2635
                        will be named automatically.
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2646
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2647
    """
Y
yangyaming 已提交
2648
    helper = LayerHelper('sequence_expand', input=x, **locals())
2649 2650 2651
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2652 2653 2654 2655 2656
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2657
    return tmp
2658 2659


F
fengjiayi 已提交
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
        pad_value(Variable): The Variable that holds values that will be fill 
            into padded steps. It can be a scalar or a tensor whose shape 
            equals to time steps in sequences. If it's a scalar, it will be 
            automatically broadcasted to the shape of time step.
        maxlen(int, default None): The length of padded sequences. It can be 
            None or any positive int. When it is None, all sequences will be 
            padded up to the length of the longest one among them; when it a 
            certain positive value, it must be greater than the length of the 
            longest original sequence."
    
    Returns:
        Variable: The padded sequence batch. All sequences has the same length.
    
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
        outputs={'Out': out},
        attrs={'padded_length': maxlen})
    return out


2705 2706 2707 2708 2709 2710 2711 2712 2713
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2714 2715
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2716 2717 2718

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2719 2720

    This layer does the search in beams for one time step. Specifically, it
2721 2722 2723 2724 2725 2726
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2727

2728 2729 2730 2731 2732 2733 2734 2735
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2736

2737
    Args:
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2763

2764
    Returns:
2765 2766
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2767 2768 2769 2770

    Examples:
        .. code-block:: python

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2799
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2817 2818 2819 2820 2821 2822 2823
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2824

2825 2826 2827 2828 2829 2830 2831 2832 2833
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2834

2835 2836 2837 2838 2839 2840
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2841

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2867 2868 2869 2870
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2871
              param_attr=None,
C
caoying03 已提交
2872 2873
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2874 2875 2876 2877
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2878
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2879

2880
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2881

2882
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2883

2884
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2885 2886 2887

            h_t & = o_t tanh(c_t)

2888 2889 2890 2891 2892 2893
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2894 2895 2896

        .. math::

2897
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2898 2899 2900 2901 2902 2903 2904 2905

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2906
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2907 2908

    Args:
Y
yangyaming 已提交
2909 2910 2911 2912 2913 2914
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2915
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2916 2917
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2918 2919
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2920 2921
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2922 2923

    Returns:
Y
yangyaming 已提交
2924
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2925 2926

    Raises:
2927 2928 2929 2930
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2931 2932 2933 2934 2935 2936

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2937
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2938
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2939
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2956
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2957 2958 2959 2960
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2961 2962
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2963 2964 2965
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2966
    size = cell_t_prev.shape[1]
2967
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2968 2969
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2970
                param_attr=param_attr,
2971
                bias_attr=bias_attr)
Y
yangyaming 已提交
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2984
    return h, c
G
guosheng 已提交
2985 2986


C
caoying03 已提交
2987
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2988
    """
Y
yangyaming 已提交
2989
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2990 2991 2992

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2993
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2994 2995
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2996 2997
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2998
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2999
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3000
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3001 3002
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3003 3004 3005

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3006

G
guosheng 已提交
3007 3008 3009 3010 3011 3012
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3013
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3014 3015 3016 3017
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3018 3019 3020 3021

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3022
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3023 3024 3025
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3026 3027 3028
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3029 3030
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3031 3032 3033 3034 3035
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3036
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3037 3038 3039 3040
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3041 3042


C
caoying03 已提交
3043
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3044
    """
Y
Yibing Liu 已提交
3045
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3046 3047 3048

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3049 3050 3051
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3052
            must be in the range :math:`[-rank(input), rank(input))`. If
3053
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3054
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3055 3056
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3057
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3058
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3059
                       will be named automatically.
G
guosheng 已提交
3060 3061

    Returns:
Y
Yibing Liu 已提交
3062
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3063

G
guosheng 已提交
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3074 3075
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3076 3077 3078 3079 3080 3081 3082

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3083 3084 3085
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3086 3087
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3088 3089 3090 3091 3092
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3093
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3094 3095 3096 3097
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3098 3099


C
caoying03 已提交
3100
def reduce_max(input, dim=None, keep_dim=False, name=None):
3101
    """
Y
yangyaming 已提交
3102
    Computes the maximum of tensor elements over the given dimension.
3103 3104 3105

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3106
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3107 3108 3109
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3110
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3111 3112
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3113
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3114 3115
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3116 3117 3118

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3119

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3131 3132 3133 3134 3135 3136 3137

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3138 3139 3140
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3141 3142
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3143 3144 3145 3146 3147
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3148
            'dim': dim if dim != None else [0],
3149 3150 3151 3152 3153 3154
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3155
def reduce_min(input, dim=None, keep_dim=False, name=None):
3156
    """
Y
yangyaming 已提交
3157
    Computes the minimum of tensor elements over the given dimension.
3158 3159 3160

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3161
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3162 3163 3164
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3165
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3166 3167
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3168
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3169 3170
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3171 3172 3173

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3174

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3186 3187 3188 3189 3190 3191 3192

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3193 3194 3195
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3196 3197
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3198 3199 3200 3201 3202
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3203
            'dim': dim if dim != None else [0],
3204 3205 3206 3207
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3208 3209


3210 3211 3212 3213 3214 3215
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3216
        dim (list|int|None): The dimensions along which the product is performed. If
3217 3218
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3219 3220
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3221 3222 3223
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3224
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3225
            layer will be named automatically.
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3240
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3241
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3242 3243 3244 3245 3246 3247 3248

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3249 3250 3251
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3252 3253
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3254 3255 3256 3257 3258
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3259
            'dim': dim if dim != None else [0],
3260 3261 3262 3263 3264 3265
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3266
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3267
    """
C
caoying03 已提交
3268
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3269 3270 3271

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3272 3273 3274 3275 3276
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3277
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3278
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3279
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3280 3281
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3282 3283

    Returns:
D
dzhwinter 已提交
3284
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3285 3286 3287 3288 3289 3290 3291 3292 3293

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3294 3295
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3325 3326 3327 3328 3329 3330 3331 3332 3333


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3334
    .. math::
3335 3336

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3337 3338 3339 3340 3341

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3342
        x(Variable|list): The input tensor to l2_normalize layer.
3343
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3344 3345
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3346
        epsilon(float): The epsilon value is used to avoid division by zero, \
3347
            the defalut value is 1e-10.
3348
        name(str|None): A name for this layer(optional). If set None, the layer \
3349
            will be named automatically.
C
caoying03 已提交
3350 3351

    Returns:
3352
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3353 3354

    Examples:
3355

C
caoying03 已提交
3356 3357
        .. code-block:: python

3358 3359 3360 3361
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3362 3363
    """

F
fengjiayi 已提交
3364 3365
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3366 3367
    helper = LayerHelper("l2_normalize", **locals())

3368 3369
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3370
    helper.append_op(
3371 3372 3373 3374
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3375
        attrs={
3376 3377
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3378 3379
        })
    return out
3380 3381


3382
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3383
    """
Y
ying 已提交
3384 3385 3386 3387
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3388

C
chengduoZH 已提交
3389
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3390
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3391

3392 3393 3394 3395 3396
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3397
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3398

C
chengduoZH 已提交
3399
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3400
      performs in the following way.
G
guosheng 已提交
3401

3402
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3403
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3404
        last two dimensions and a batched matrix multiply supporting broadcast
3405
        applies on the two tensors.
G
guosheng 已提交
3406

Y
ying 已提交
3407 3408
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3409
    removed after matrix multiplication.
G
guosheng 已提交
3410 3411 3412

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3413 3414 3415
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3416
        name(str|None): A name for this layer(optional). If set None, the layer
3417
            will be named automatically.
G
guosheng 已提交
3418 3419

    Returns:
3420
        Variable: The product Tensor variable.
G
guosheng 已提交
3421

G
guosheng 已提交
3422 3423 3424
    Examples:
        .. code-block:: python

3425
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3426 3427
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3428

3429 3430
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3431

3432 3433
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3434

3435 3436
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3437 3438 3439 3440

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3441 3442
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3443

Y
ying 已提交
3444
            # x: [M], y: [N]
3445
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3446
    """
Y
ying 已提交
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3459
            y_shape = y_shape + [1]
Y
ying 已提交
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3476
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3477
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3478
    helper.append_op(
3479 3480 3481 3482 3483 3484 3485
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3486 3487


3488
def topk(input, k, name=None):
Q
qingqing01 已提交
3489 3490 3491 3492
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3493
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3494 3495 3496 3497 3498 3499
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3521 3522 3523
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3524
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3525
                 of input.
3526
        name(str|None): A name for this layer(optional). If set None, the layer
3527
                       will be named automatically.
F
fengjiayi 已提交
3528
                       Default: None
Q
qingqing01 已提交
3529 3530

    Returns:
3531 3532 3533
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3534
        within the last dimension of input.
Q
qingqing01 已提交
3535

F
fengjiayi 已提交
3536 3537
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3538 3539 3540 3541 3542 3543 3544

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
F
fengjiayi 已提交
3545
    if k < 1 or k >= shape[-1]:
Q
qingqing01 已提交
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3563
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3564
    """
Y
ying 已提交
3565 3566 3567 3568 3569 3570 3571 3572 3573
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3574

Y
ying 已提交
3575
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3576

3577
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3578 3579
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3580
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3581

3582
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3583 3584
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3585

3586 3587 3588
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3589
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3590
                          the length of reference string.
3591
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3592
                                     calculating edit distance.
3593
        name (str): The name of this layer. It is optional.
3594

W
wanghaoshuang 已提交
3595
    Returns:
W
wanghaoshuang 已提交
3596
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3597 3598 3599 3600 3601

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3602
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3603
            cost = fluid.layers.edit_distance(input=x,label=y)
3604
    """
3605
    helper = LayerHelper("edit_distance", **locals())
3606

3607
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3608
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3609 3610 3611 3612 3613 3614 3615
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3616
            attrs={"tokens": ignored_tokens})
3617 3618 3619 3620 3621
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3622
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3623
            attrs={"tokens": ignored_tokens})
3624 3625
        label = erased_label

3626 3627
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3628
    sequence_num = helper.create_tmp_variable(dtype="int64")
3629 3630 3631 3632
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3633 3634
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3635 3636
        attrs={"normalized": normalized})

3637
    return edit_distance_out, sequence_num
3638 3639 3640 3641 3642


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3643

Y
ying 已提交
3644 3645 3646 3647
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3665
        input.lod = [[4, 4]]
3666 3667 3668 3669 3670 3671 3672

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3673
        output.lod = [[2, 1]]
3674 3675 3676

    Args:

Y
ying 已提交
3677 3678 3679 3680 3681 3682 3683 3684 3685
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3686
        name (str): The name of this layer. It is optional.
3687 3688

    Returns:
3689
        Variable: CTC greedy decode result. If all the sequences in result were
3690
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3691 3692 3693 3694 3695

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3696

3697
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3698
    """
3699
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3700
    _, topk_indices = topk(input, k=1)
3701 3702 3703 3704 3705 3706

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3707
        outputs={"Output": [ctc_out]},
3708 3709
        attrs={"merge_repeated": True,
               "blank": blank})
3710
    return ctc_out
3711 3712


F
fengjiayi 已提交
3713
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3714
    """
3715 3716
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3717
    to compute Connectionist Temporal Classification (CTC) loss.
3718 3719
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3720 3721 3722
    input tensor.

    Args:
3723
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3724 3725 3726 3727
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3728
       label (Variable): The ground truth of variable-length sequence,
3729 3730 3731
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3732 3733
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3734 3735 3736
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3737
         follewed by a mean_op.
W
wanghaoshuang 已提交
3738 3739

    Returns:
3740 3741
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3742 3743

    Examples:
3744

W
wanghaoshuang 已提交
3745
        .. code-block:: python
3746

3747 3748 3749
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3750 3751

    """
F
fengjiayi 已提交
3752
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3779 3780 3781
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3782 3783 3784 3785 3786
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3787

3788
            out.lod  = [[0, 1, 3]]
3789 3790 3791 3792

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3793 3794 3795 3796 3797 3798 3799
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3800 3801 3802

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3803 3804

    Returns:
3805

3806 3807 3808 3809 3810
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3811
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3812
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3813 3814 3815 3816 3817 3818 3819 3820 3821
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3822 3823


3824 3825 3826 3827
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3828 3829 3830 3831 3832 3833 3834
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3835 3836 3837 3838 3839 3840 3841
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3842 3843
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3844
            sample is 1.0.
3845 3846 3847
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3848

3849
    Returns:
Y
Yibing Liu 已提交
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3877
    """
Y
Yang Yu 已提交
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3897 3898 3899 3900 3901 3902 3903 3904 3905
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3922
    return cost / (num_neg_samples + 1)
3923 3924


G
guosheng 已提交
3925
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
3926 3927
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
3928
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
3929 3930 3931 3932 3933 3934 3935 3936 3937
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
3938

W
weixing02 已提交
3939
    Args:
M
minqiyang 已提交
3940
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
3941 3942 3943 3944 3945
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
3946 3947
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
3948
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
3949 3950
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
3951 3952 3953 3954 3955 3956 3957 3958

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
3959 3960 3961
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
3962 3963 3964 3965 3966 3967 3968 3969
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
3970
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
3971 3972 3973 3974 3975
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
3976 3977 3978 3979 3980 3981 3982 3983
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
3984 3985
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
3986
        inputs=inputs,
W
weixing02 已提交
3987 3988 3989 3990 3991 3992
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
3993
def transpose(x, perm, name=None):
Y
ying 已提交
3994 3995 3996 3997 3998 3999 4000
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4001 4002 4003
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4004 4005 4006 4007 4008 4009 4010 4011

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4012
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4013 4014
    """

Y
fix ci.  
ying 已提交
4015
    if len(perm) != len(x.shape):
Y
ying 已提交
4016 4017 4018
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4019 4020 4021 4022 4023 4024
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4025 4026

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4027
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4028 4029
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
4030
        inputs={'X': [x]},
Y
ying 已提交
4031 4032 4033
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
4034 4035


4036 4037 4038 4039 4040 4041 4042
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4043
    """
4044 4045 4046 4047 4048 4049 4050
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4079 4080 4081 4082 4083 4084 4085 4086 4087
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4088 4089 4090
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4091 4092 4093 4094 4095
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4123 4124 4125
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4138
            output.dims = {8, 8}
4139

4140
            output.lod = [[4, 4]]
4141

D
dzhwinter 已提交
4142
     Examples:
4143 4144 4145

        .. code-block:: python

4146 4147
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4148 4149

    """
W
wanghaoshuang 已提交
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4160 4161 4162 4163 4164 4165 4166
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4167
    helper = LayerHelper('im2sequence', **locals())
4168 4169
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4170
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4171
    return out
4172 4173


Y
yuyang18 已提交
4174
@templatedoc()
4175
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4176 4177
    """
    ${comment}
4178 4179

    Args:
Y
yuyang18 已提交
4180
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4181 4182
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4183 4184 4185 4186 4187
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4188
        ${out_comment}.
4189 4190

    Examples:
Y
yuyang18 已提交
4191 4192 4193 4194
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4207
    return helper.append_activation(out)
4208 4209


Y
yuyang18 已提交
4210
@templatedoc()
4211 4212
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4213 4214 4215 4216 4217 4218 4219
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4220 4221

    Args:
Y
yuyang18 已提交
4222 4223
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4224 4225

    Returns:
Y
yuyang18 已提交
4226
        ${out_comment}.
4227 4228
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4229 4230 4231 4232 4233 4234

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4235 4236 4237 4238 4239 4240
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4241 4242 4243 4244 4245


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
4246

4247 4248 4249 4250
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4251

4252 4253 4254
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4255

4256 4257 4258
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4259

4260
    The equation is as follows:
4261

4262
    1) Hard label (one-hot label, so every sample has exactly one class)
4263

4264 4265 4266 4267
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4268

4269 4270 4271
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4272

4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4294 4295
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4312 4313
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4314
    For each instance, it computes the smooth L1 loss element by element first
4315
    and then sums all the losses. So the shape of ouput Variable is
4316
    [batch_size, 1].
4317

4318 4319
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4320
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4321
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4322
            L1 loss op with same shape as :attr:`x`.
4323
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4324 4325
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4326
            by this tensor element by element.
4327
        outside_weight (Variable|None): A tensor with rank at least 2. This
4328 4329
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4330
            element by element.
4331
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4332 4333
           scalar with default value 1.0.

4334
    Returns:
4335
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4336 4337 4338 4339 4340

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4341 4342
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4343
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4344
            out = fluid.layers.smooth_l1(x=fc, y=label)
4345
    """
4346

4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4362 4363 4364 4365


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4366
    This layer creates the one-hot representations for input indices.
4367 4368

    Args:
Y
Yibing Liu 已提交
4369 4370
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4371 4372

    Returns:
Y
Yibing Liu 已提交
4373
        Variable: The one-hot representations of input.
4374 4375

    Examples:
C
caoying03 已提交
4376
        .. code-block:: python
4377

Y
Yibing Liu 已提交
4378 4379
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4380 4381 4382 4383 4384 4385 4386 4387 4388
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4389 4390


Y
Yu Yang 已提交
4391
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4392
    """
Y
yi.wu 已提交
4393 4394 4395
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4396 4397 4398 4399 4400 4401

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4402 4403
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4404 4405 4406 4407 4408 4409

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4410 4411
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4412 4413
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4414 4415 4416 4417 4418
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4419
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4420
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4421 4422
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4423 4424
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4425 4426 4427
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4428 4429


4430
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4431
    """
C
caoying03 已提交
4432 4433
    Gives a new shape to the input Tensor without changing its data.

4434 4435 4436 4437 4438
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4439

4440
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4441

4442 4443 4444 4445
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4446
    2. 0 means the actual dimension value is going to be copied from the
4447 4448 4449 4450
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4451 4452

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4453
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4454
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4455

4456
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4457 4458
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4459 4460
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4461
    dimensions.
C
caoying03 已提交
4462

4463
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4464 4465 4466 4467
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4468 4469

    Args:
4470
        x(variable): The input tensor.
C
caoying03 已提交
4471 4472
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4473 4474 4475 4476 4477
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4478
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4479 4480 4481 4482
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4483
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4484

4485 4486
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4487

X
Xin Pan 已提交
4488 4489 4490
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4491 4492
    Examples:
        .. code-block:: python
G
guosheng 已提交
4493

4494
            data = fluid.layers.data(
4495
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4496
            reshaped = fluid.layers.reshape(
4497
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4498 4499 4500 4501
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")
X
Xin Pan 已提交
4502 4503 4504 4505 4506
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4507

4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
4523
    helper = LayerHelper("reshape", **locals())
D
dzhwinter 已提交
4524
    out = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4525 4526
    helper.append_op(
        type="reshape",
X
Xin Pan 已提交
4527
        inputs=inputs,
D
dzhwinter 已提交
4528 4529
        attrs={"shape": shape},
        outputs={"Out": out})
C
caoying03 已提交
4530

D
dzhwinter 已提交
4531
    return helper.append_activation(out)
4532 4533


Y
yangyaming 已提交
4534
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4535
    """
Y
Yibing Liu 已提交
4536
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4537 4538 4539 4540
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4541
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4542 4543 4544 4545 4546 4547

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4548
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4549 4550 4551
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4552
            target_lod: [4, 2]
Y
yangyaming 已提交
4553 4554

            then we get a 1-level LoDTensor:
4555
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4556 4557 4558 4559 4560 4561
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4562
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4563 4564 4565 4566
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4567
                y.data = [[2, 4]]
Y
yangyaming 已提交
4568 4569 4570
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4571
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4572 4573 4574 4575 4576 4577
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4578
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4579 4580 4581 4582
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4583
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4584 4585 4586 4587
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4588
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4589 4590 4591 4592 4593
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4594
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4595
                           from :attr:`y`.
Y
yangyaming 已提交
4596
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4597
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4598 4599

    Returns:
Y
Yibing Liu 已提交
4600
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4601 4602

    Raises:
Y
Yibing Liu 已提交
4603
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4639
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4668 4669
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4697 4698 4699 4700


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4701
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4702
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4703

G
guosheng 已提交
4704 4705 4706 4707
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4730
                         The length of :attr:paddings must be
G
guosheng 已提交
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4741

G
guosheng 已提交
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4756 4757 4758 4759 4760 4761 4762 4763 4764


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4765 4766
    called label-smoothing regularization (LSR).

4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4790
                              be :math:`(1, class\_num)`.
4791 4792
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4793
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4821 4822


Y
yi.wu 已提交
4823
@templatedoc()
4824 4825
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
4826
    ${comment}
4827 4828

    Args:
Y
yi.wu 已提交
4829 4830
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
4831 4832 4833
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
4834 4835

    Returns:
Y
update  
yi.wu 已提交
4836
        Variable: ${out_comment}.
4837 4838

    Examples:
4839 4840
        .. code-block:: python

4841
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4887 4888
        .. code-block:: python

W
whs 已提交
4889 4890 4891 4892
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
4893
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
4894 4895 4896 4897 4898 4899
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4900 4901


4902 4903 4904 4905 4906
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4907
    """
Q
qiaolongfei 已提交
4908
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
4909

4910
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
4911 4912 4913
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
4914

4915
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4916

4917
    Args:
4918
        input (Variable): The input tensor of image resize layer,
4919 4920
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4921
        out_shape(list|tuple|Variable|None): Output shape of image resize
4922 4923
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4924
        scale(float|None): The multiplier for the input height or width.
4925 4926 4927
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4928 4929
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4930 4931
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4932 4933

    Returns:
Q
update  
qiaolongfei 已提交
4934 4935
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4936

4937 4938 4939
    Examples:
        .. code-block:: python

4940
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4941
    """
4942 4943 4944 4945
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4946 4947
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4948 4949
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4950 4951 4952 4953

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4954 4955 4956
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4957
    if out_shape is not None:
B
baiyf 已提交
4958 4959 4960
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4961 4962 4963 4964 4965 4966
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4967 4968 4969 4970
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4971 4972
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4973
        type=resample_methods[resample],
4974
        inputs=inputs,
4975 4976 4977 4978
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4979 4980


Y
yuyang18 已提交
4981
@templatedoc(op_type="bilinear_interp")
4982 4983
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4984 4985 4986 4987 4988 4989
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4990

Y
yuyang18 已提交
4991 4992 4993 4994 4995 4996 4997 4998
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
4999 5000 5001 5002 5003 5004 5005
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5006 5007 5008
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5009 5010 5011 5012 5013 5014 5015
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5016
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5017

5018
    Returns:
Q
update  
qiaolongfei 已提交
5019
        Variable: The output is a 4-D tensor of the shape
5020
        (num_batches, channls, out_h, out_w).
5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5031 5032 5033
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5034 5035 5036
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5037 5038
def gather(input, index):
    """
Q
qiaolongfei 已提交
5039 5040
    **Gather Layer**

5041
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5042 5043 5044 5045
    of X indexed by `index` and concatenate them together.

    .. math::

5046
        Out = X[Index]
W
whs 已提交
5047 5048 5049 5050 5051 5052 5053


    .. code-block:: text


                Given:

5054 5055
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5056 5057 5058 5059 5060 5061 5062 5063 5064 5065
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5066
        input (Variable): The source input with rank>=1.
W
whs 已提交
5067 5068 5069 5070 5071 5072
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5073

W
whs 已提交
5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5102

5103 5104 5105
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5106
    """
F
stash  
fengjiayi 已提交
5107
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5108
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5109
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5110 5111
    if seed is None:
        seed = random.randint(-65536, 65535)
F
fengjiayi 已提交
5112
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5113
    if isinstance(seed, int):
F
fengjiayi 已提交
5114 5115 5116 5117 5118
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5119 5120 5121 5122
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5123
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5124 5125
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5126 5127
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5128
    return out
W
whs 已提交
5129 5130


5131
def log(x, name=None):
W
wanghaoshuang 已提交
5132 5133 5134 5135 5136
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5137
        Out = \\ln(x)
W
wanghaoshuang 已提交
5138 5139

    Args:
5140
        x (Variable): Input tensor.
5141 5142
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5143 5144 5145 5146 5147 5148 5149 5150

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5151
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5152 5153
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5154
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5155
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5156
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5157 5158 5159
    return out


5160
def relu(x, name=None):
W
wanghaoshuang 已提交
5161 5162
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5163
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5164 5165 5166 5167
    the tensor elementwise.

    .. math::

5168
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5169 5170

    Args:
5171
        x (Variable): The input tensor.
5172 5173
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5174 5175 5176 5177 5178 5179 5180 5181

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5182
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5183 5184
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5185
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5186
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5187
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5188
    return out
5189 5190


W
whs 已提交
5191 5192 5193
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5194 5195 5196 5197
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5198
    .. math::
5199 5200

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5201

5202
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5203 5204 5205 5206 5207
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5208
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5209
                           Its shape should be the same as input.
5210
        num_classes (int): The possible number of labels.
W
whs 已提交
5211 5212 5213 5214

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5215
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5216 5217 5218 5219

    Examples:

        .. code-block:: python
5220

W
whs 已提交
5221 5222 5223 5224 5225 5226 5227 5228 5229
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5230 5231
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5232
        outputs={
W
whs 已提交
5233 5234 5235
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5236 5237 5238
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
        isinstance(shape, Variable)):
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5347

5348 5349
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5350

5351 5352 5353 5354
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5355

5356 5357 5358 5359 5360
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5361 5362 5363

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5408 5409


J
jerrywgz 已提交
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
	  name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
5476

5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
5487 5488
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
5504
        ValueError: If axis is not in range [0, rank(x)].
5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
    helper.append_op(
        type='flatten',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={"axis": axis})
    return out