loss.py 58.8 KB
Newer Older
1
# -*- coding: utf-8 -*
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
# TODO: define loss functions of neural network
17
import numpy as np
L
Leo Chen 已提交
18
import paddle.fluid as fluid
19
import paddle
20
from .. import functional as F
21
from paddle.fluid.framework import _varbase_creator, in_dygraph_mode, _in_legacy_dygraph
Z
zhiboniu 已提交
22
from .. import Layer
Z
zhiboniu 已提交
23
from paddle import in_dynamic_mode
24

25 26
__all__ = []

L
Leo Chen 已提交
27

Z
zhiboniu 已提交
28
class BCEWithLogitsLoss(Layer):
29
    r"""
30 31 32 33 34 35 36 37 38 39 40 41 42
    This operator combines the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
    Also, we can see it as the combine of ``sigmoid_cross_entropy_with_logits``
    layer and some reduce operations.

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

    First this operator calculate loss function as follows:

    .. math::
43
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
44

45
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
46 47

    .. math::
48
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
49

50
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
51 52 53
    we reformulate the loss as follows:

    .. math::
54
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

    Then, if ``weight`` or ``pos_weight`` is not None, this operator multiply the
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shapes:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``logit`` , else the shape of output is scalar.

    Returns:
        A callable object of BCEWithLogitsLoss.

    Examples:

        .. code-block:: python
            import paddle
            logit = paddle.to_tensor([5.0, 1.0, 3.0], dtype="float32")
            label = paddle.to_tensor([1.0, 0.0, 1.0], dtype="float32")
            bce_logit_loss = paddle.nn.BCEWithLogitsLoss()
            output = bce_logit_loss(logit, label)
            print(output.numpy())  # [0.45618808]

    """

    def __init__(self,
                 weight=None,
                 reduction='mean',
                 pos_weight=None,
                 name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in BCEWithLogitsLoss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)

        super(BCEWithLogitsLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
        self.pos_weight = pos_weight
        self.name = name

    def forward(self, logit, label):
        out = paddle.nn.functional.binary_cross_entropy_with_logits(
            logit, label, self.weight, self.reduction, self.pos_weight,
            self.name)
        return out


Z
zhiboniu 已提交
132
class CrossEntropyLoss(Layer):
133
    r"""
134
    By default, this operator implements the cross entropy loss function with softmax. This function 
135
    combines the calculation of the softmax operation and the cross entropy loss function 
136
    to provide a more numerically stable computing.
S
swtkiwi 已提交
137

138
    This operator will calculate the cross entropy loss function without softmax when use_softmax=False.
139

140 141 142
    By default, this operator will calculate the mean of the result, and you can also affect 
    the default behavior by using the reduction parameter. Please refer to the part of 
    parameters for details.
143

144 145 146
    This operator can be used to calculate the softmax cross entropy loss with soft and hard labels.
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels 
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
147

148
    The calculation of this operator includes the following two steps.
149

150
    -  **I.softmax cross entropy** 
151

152
        1. Hard label (each sample can only be assigned into one category)
153

154
        1.1. when use_softmax=True
155

156 157
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
158

159
            where, N is the number of samples and C is the number of categories.
160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).



    -  **II.Weight and reduction processing** 

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
                \\loss_j=loss_j*weight[label_j] 
200

201

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

            2.1 if the ``reduction`` parameter is ``none`` 

            Return the previous result directly

            2.2 if the ``reduction`` parameter is ``sum`` 

            Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to 
            the ``weight`` parameter as follows. 

            2.3.1. If the  ``weight``  parameter is ``None`` 

            Return the average value of the previous results

             .. math::
                \\loss=\sum_{j}loss_j/N

            where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

             .. math::
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j] 

            2. Soft labels (soft_label = True)

             .. math::
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
 
 
245
    Parameters:
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

        - **weight** (Tensor, optional)

            a manual rescaling weight given to each class. 
            If given, has to be a Tensor of size C and the data type is float32, float64. 
            Default is ``'None'`` .

        - **ignore_index** (int64, optional)

            Specifies a target value that is ignored
            and does not contribute to the loss. A negative value means that no label 
            value needs to be ignored. Only valid when soft_label = False.  
            Default is ``-100`` .

        - **reduction** (str, optional)

            Indicate how to average the loss by batch_size,
263 264 265 266 267
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
268

269
        - **soft_label** (bool, optional)
270

271 272 273
            Indicate whether label is soft. 
            If soft_label=False, the label is hard.  If soft_label=True, the label is soft.
            Default is ``False``.
274

275 276 277 278 279 280 281 282 283 284 285 286
        - **axis** (int, optional)

            The index of dimension to perform softmax calculations. 
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the number 
            of dimensions of input :attr:`input`. 
            Default is ``-1`` .

        - **use_softmax** (bool, optional)

            Indicate whether compute softmax before cross_entropy.
            Default is ``True``.

Z
zhiboniu 已提交
287
        - **name** (str, optional)
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

            The name of the operator. Default is ``None`` .
            For more information, please refer to :ref:`api_guide_Name` .


    Shape:

        - **input** (Tensor)

            Input tensor, the data type is float32, float64. Shape is
	    :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes ,  ``k >= 1`` . 

            Note: 

                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the 
                output of softmax operator, which will produce incorrect results.

                2. when use_softmax=False, it expects the output of softmax operator.
 

        - **label** (Tensor)

Z
zhiboniu 已提交
310
            1. If soft_label=False, the shape is 
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

            2. If soft_label=True, the shape and data type should be same with ``input`` , 
            and the sum of the labels for each sample should be 1.
 
        - **output** (Tensor)

            Return the softmax cross_entropy loss of ``input`` and ``label``.

            The data type is the same as input.

            If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.

            If :attr:`reduction` is ``'none'``:

            1. If soft_label = False, the dimension of return value is the same with ``label`` . 

            2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` . 

     Example1(hard labels):

        .. code-block:: python
            
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
            input =  paddle.rand([N, C], dtype='float64')  
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
            weight = paddle.rand([C], dtype='float64') 
            
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
                                       input,
                                       label)
            print(dy_ret.numpy()) #[5.41993642]


    Example2(soft labels):
353

354
        .. code-block:: python
C
Chen Long 已提交
355
            
356
            import paddle
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
                                                                  logits,  
                                                                  labels, 
                                                                  soft_label=True, 
                                                                  axis=axis,
                                                                  weight=weight,
                                                                  reduction=reduction)
            print(paddle_loss_mean.numpy()) #[1.12908343]

377 378
    """

379 380 381 382 383 384
    def __init__(self,
                 weight=None,
                 ignore_index=-100,
                 reduction='mean',
                 soft_label=False,
                 axis=-1,
385
                 use_softmax=True,
386
                 name=None):
387 388 389
        super(CrossEntropyLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
390
        self.ignore_index = ignore_index
391 392
        self.soft_label = soft_label
        self.axis = axis
393
        self.use_softmax = use_softmax
394
        self.name = name
395 396

    def forward(self, input, label):
397 398 399 400 401 402 403 404 405
        ret = paddle.nn.functional.cross_entropy(input,
                                                 label,
                                                 weight=self.weight,
                                                 ignore_index=self.ignore_index,
                                                 reduction=self.reduction,
                                                 soft_label=self.soft_label,
                                                 axis=self.axis,
                                                 use_softmax=self.use_softmax,
                                                 name=self.name)
406 407

        return ret
408 409


Z
zhiboniu 已提交
410
class HSigmoidLoss(Layer):
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
    """
    Hierarchical Sigmoid Layer.
    
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>_`. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        feature_size (int): The number of features.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight_attr (ParamAttr, optional): The parameter attribute for the learnable weights
            of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid will create a
            ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is
            initialized with Xavier. Default is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of hsigmoid. If it
            is set to False, no bias will be added. If it is set to None or one attribute of ParamAttr,
            hsigmoid will create a ParamAttr as bias_attr. If the Initializer of the bias_attr is not
            set, the bias is initialized zero. Default is None.
        is_custom (bool, optional): Whether use custom binary tree. If it's True, `path_table` and 
            `path_code` should be passed to its forward method, otherwise `path_table` and `path_code`
            should not be passed to its forward method. Default is False.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True,
            the gradient of weight and input will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        input (Tensor): The input tensor. The shapes is [N, D], where N is batch size and D is feature size. It's data type should be float32, float64.
        label (Tensor): It's shapes is [N, 1]. It's data type should be int64.
        output (Tensor): The HSigmoid Loss of ``input`` and ``label``. Shape is [N, 1]

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')

L
Linjie Chen 已提交
467 468 469 470 471
            input = paddle.uniform([4, 3])
            # [[0.56194401  -0.22450298  -0.10741806] # random
            #  [0.36136317  0.23556745  0.88748658] # random
            #  [0.18151939  0.80947340  -0.31078976] # random
            #  [0.68886101  -0.14239830  -0.41297770]] # random
472 473 474
            label = paddle.to_tensor([0, 1, 4, 5])
            m = paddle.nn.HSigmoidLoss(3, 5)
            out = m(input, label)
L
Linjie Chen 已提交
475 476 477 478
            # [[2.42524505]
            #  [1.74917245]
            #  [3.14571381]
            #  [2.34564662]]
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
    """

    def __init__(self,
                 feature_size,
                 num_classes,
                 weight_attr=None,
                 bias_attr=None,
                 is_custom=False,
                 is_sparse=False,
                 name=None):
        super(HSigmoidLoss, self).__init__()
        if (num_classes < 2) and (not is_custom):
            raise ValueError(
                "num_classes must not be less than 2 with default tree")

        if (not is_custom) and (is_sparse):
            print("Sparse mode should not be used without custom tree")
            is_sparse = False

        self._feature_size = feature_size
        self._num_classes = num_classes
        self._is_custom = is_custom
        self._is_sparse = is_sparse

        self._weight_attr = weight_attr
        self._bias_attr = bias_attr

        self._name = name
        self._dtype = paddle.get_default_dtype()

        remote_prefetch = is_sparse
        print("With sparse mode, if your models has only"
              " small parameter prefetch may cause speed down")

        C = self._num_classes if is_custom else self._num_classes - 1
514 515 516 517 518 519 520 521
        self.weight = self.create_parameter([C, self._feature_size],
                                            attr=self._weight_attr,
                                            is_bias=False,
                                            dtype=self._dtype)
        self.bias = self.create_parameter([C, 1],
                                          attr=self._bias_attr,
                                          is_bias=True,
                                          dtype=self._dtype)
522 523

    def forward(self, input, label, path_table=None, path_code=None):
524 525 526 527 528 529 530 531 532
        out = F.hsigmoid_loss(input,
                              label,
                              self._num_classes,
                              self.weight,
                              self.bias,
                              path_table=path_table,
                              path_code=path_code,
                              is_sparse=self._is_sparse,
                              name=self._name)
533 534 535
        return out


Z
zhiboniu 已提交
536
class MSELoss(Layer):
537
    r"""
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
    **Mean Square Error Loss**
    Computes the mean square error (squared L2 norm) of given input and label.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

556
    where `input` and `label` are `float32` tensors of same shape.
557 558 559 560

    Parameters:
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
561 562 563
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
564 565
            Default is ``'mean'``.

B
Bai Yifan 已提交
566 567 568 569
    Shape:
        input (Tensor): Input tensor, the data type is float32 or float64
        label (Tensor): Label tensor, the data type is float32 or float64
        output (Tensor): output tensor storing the MSE loss of input and label, the data type is same as input.
570 571 572

    Examples:
        .. code-block:: python
573 574 575 576 577 578 579

            import numpy as np
            import paddle

            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")

B
Bai Yifan 已提交
580 581 582 583
            mse_loss = paddle.nn.loss.MSELoss()
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
            output = mse_loss(input, label)
584
            print(output)
B
Bai Yifan 已提交
585
            # [0.04000002]
586 587 588 589 590 591 592 593 594 595 596
    """

    def __init__(self, reduction='mean'):
        super(MSELoss, self).__init__()
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', "
                "but received {}.".format(reduction))
        self.reduction = reduction

    def forward(self, input, label):
Z
zhiboniu 已提交
597
        if not in_dynamic_mode():
598 599 600 601 602 603
            fluid.data_feeder.check_variable_and_dtype(input, 'input',
                                                       ['float32', 'float64'],
                                                       'MSELoss')
            fluid.data_feeder.check_variable_and_dtype(label, 'label',
                                                       ['float32', 'float64'],
                                                       'MSELoss')
604

605 606 607 608 609
        if in_dygraph_mode():
            square_out = paddle._C_ops.final_state_square(
                paddle.subtract(input, label))
        else:
            square_out = paddle.square(paddle.subtract(input, label))
610 611 612 613 614 615 616 617 618 619
        if self.reduction == 'none':
            return square_out

        reduce_op = 'reduce_mean'
        if self.reduction == 'sum':
            reduce_op = 'reduce_sum'

        return getattr(fluid.layers, reduce_op)(square_out)


Z
zhiboniu 已提交
620
class L1Loss(Layer):
621
    r"""
L
Leo Chen 已提交
622
    This interface is used to construct a callable object of the ``L1Loss`` class.
623
    The L1Loss layer calculates the L1 Loss of ``input`` and ``label`` as follows.
624

625
     If `reduction` set to ``'none'``, the loss is:
L
Leo Chen 已提交
626 627

    .. math::
628
        Out = \lvert input - label\rvert
629

630
    If `reduction` set to ``'mean'``, the loss is:
631

L
Leo Chen 已提交
632
    .. math::
633
        Out = MEAN(\lvert input - label\rvert)
634

635
    If `reduction` set to ``'sum'``, the loss is:
636

L
Leo Chen 已提交
637
    .. math::
638
        Out = SUM(\lvert input - label\rvert)
L
Leo Chen 已提交
639

640

L
Leo Chen 已提交
641
    Parameters:
642
        reduction (str, optional): Indicate the reduction to apply to the loss,
L
Leo Chen 已提交
643
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
644 645 646
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
L
Leo Chen 已提交
647
            Default is ``'mean'``.
648 649 650
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
651 652
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
653
        output (Tensor): The L1 Loss of ``input`` and ``label``.
654 655
            If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
656

L
Leo Chen 已提交
657 658
    Examples:
        .. code-block:: python
C
Chen Long 已提交
659
            
L
Leo Chen 已提交
660
            import paddle
661
            import numpy as np
662

663 664 665 666
            input_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
            label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
667

C
Chen Long 已提交
668
            l1_loss = paddle.nn.L1Loss()
669
            output = l1_loss(input, label)
670
            print(output.numpy())
671 672
            # [0.35]

C
Chen Long 已提交
673
            l1_loss = paddle.nn.L1Loss(reduction='sum')
674
            output = l1_loss(input, label)
675
            print(output.numpy())
676 677
            # [1.4]

C
Chen Long 已提交
678
            l1_loss = paddle.nn.L1Loss(reduction='none')
679
            output = l1_loss(input, label)
C
Chen Long 已提交
680
            print(output)
681
            # [[0.20000005 0.19999999]
682
            # [0.2        0.79999995]]
L
Leo Chen 已提交
683 684
    """

685
    def __init__(self, reduction='mean', name=None):
L
Leo Chen 已提交
686 687 688 689 690 691
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)
        super(L1Loss, self).__init__()
        self.reduction = reduction
692
        self.name = name
L
Leo Chen 已提交
693

694
    def forward(self, input, label):
695 696 697 698
        return paddle.nn.functional.l1_loss(input,
                                            label,
                                            self.reduction,
                                            name=self.name)
C
ceci3 已提交
699 700


Z
zhiboniu 已提交
701
class BCELoss(Layer):
C
ceci3 已提交
702
    """
C
ceci3 已提交
703
    This interface is used to construct a callable object of the ``BCELoss`` class.
704 705
    The BCELoss layer measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:
C
ceci3 已提交
706

C
ceci3 已提交
707
    If :attr:`weight` is set, the loss is:
C
ceci3 已提交
708 709

    .. math::
C
ceci3 已提交
710
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
711

C
ceci3 已提交
712
    If :attr:`weight` is None, the loss is:
C
ceci3 已提交
713 714

    .. math::
C
ceci3 已提交
715 716
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

717
    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.
C
ceci3 已提交
718

C
ceci3 已提交
719
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
C
ceci3 已提交
720

C
ceci3 已提交
721 722
    .. math::
        Out = MEAN(Out)
723

C
ceci3 已提交
724
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
C
ceci3 已提交
725

C
ceci3 已提交
726 727
    .. math::
        Out = SUM(Out)
C
ceci3 已提交
728

729
    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
C
ceci3 已提交
730 731
    should be numbers between 0 and 1.

C
ceci3 已提交
732
    Parameters:
733 734
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
C
ceci3 已提交
735
            is float32, float64. Default is ``'None'``.
736
        reduction (str, optional): Indicate how to average the loss by batch_size,
C
ceci3 已提交
737
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
C
ceci3 已提交
738
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
739
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
C
ceci3 已提交
740
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
C
ceci3 已提交
741
            Default is ``'mean'``.
742 743 744 745
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
Z
Zhong Hui 已提交
746
        input (Tensor): 2-D tensor with shape: [N, *], N is batch_size, `*` means
747 748 749 750 751 752 753
            number of additional dimensions. The input ``input`` should always
            be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): 2-D tensor with the same shape as ``input``. The target
            labels which values should be numbers between 0 and 1. Available
            dtype is float32, float64.
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is scalar.
C
ceci3 已提交
754

755
    Returns:
C
ceci3 已提交
756 757
        A callable object of BCELoss.

C
ceci3 已提交
758 759
    Examples:
        .. code-block:: python
C
ceci3 已提交
760

C
ceci3 已提交
761 762 763 764
            import numpy as np
            import paddle
            input_data = np.array([0.5, 0.6, 0.7]).astype("float32")
            label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
765

Z
Zhong Hui 已提交
766 767
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
C
Chen Long 已提交
768
            bce_loss = paddle.nn.BCELoss()
769
            output = bce_loss(input, label)
C
Chen Long 已提交
770
            print(output)  # [0.65537095]
771

C
ceci3 已提交
772 773
    """

774
    def __init__(self, weight=None, reduction='mean', name=None):
C
ceci3 已提交
775 776 777 778 779 780 781 782
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)

        super(BCELoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
783
        self.name = name
C
ceci3 已提交
784 785

    def forward(self, input, label):
786 787 788 789
        out = paddle.nn.functional.binary_cross_entropy(input, label,
                                                        self.weight,
                                                        self.reduction,
                                                        self.name)
790
        return out
791 792


Z
zhiboniu 已提交
793
class NLLLoss(Layer):
794
    r"""
S
swtkiwi 已提交
795

796
    This class accepts input and target label and returns negative log likelihood
797
    cross error. It is useful to train a classification problem with C classes.
798

799
    The input for the loss is epected to contain log-probabilities of
800
    each classes. It has to be a Tensor of size either (batch_size, C) or
801 802 803 804
    (batch_size, C, d1, d2, ..., dK) with K >= 1 for the K-dimensional case.
    The label for the loss should be a class index in the range [0, C-1]
    where C is the number of classes. If ignore_index is specified, the
    specified target value does not contribute to the input gradient.
805

806 807 808
    If the optional argument `weight` is provided, it should be a 1D Tensor
    assigning weight to each of the classed. This is particularly useful
    when you have an unbalanced training set.
809

810 811 812 813
    The loss is calculated as follows.
    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:

    .. math::
814 815

        \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
816
        l_n = - w_{y_n} x_{n,y_n}, \quad
817
        w_{c} = \text{weight}[c] \cdot \mathbb{1}\{c \not= \text{ignore\_index}\},
818 819 820 821 822

    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
    (default ``'mean'``), then

    .. math::
823 824 825 826 827 828 829 830 831 832

        \ell(x, y) =
        \left\{
            \begin{array}{lcl}
            \sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n}} l_n, &
            \text{if  reduction} = \text{'mean';}\\
            \sum_{n=1}^N l_n,  &
            \text{if  reduction} = \text{'sum'.}
            \end{array}
        \right.
833 834

    Parameters:
835 836
        weight (Tensor, optional): Weight tensor, a manual rescaling weight given
            to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
837
            it treated as if having all ones. the data type is
838
            float32, float64, Default is ``'None'``.
839 840
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient.
841
        reduction (str, optional): Indicate how to average the loss,
842
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
843 844 845
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
846
            Default is ``'mean'``.
847 848
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.
849

850 851 852 853 854 855 856 857 858
    Shape:
        input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
            But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
            The data type is float32, float64.
        label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
            The data type is int64.
        output (Tensor): the `negative log likelihood loss` between input `x` and `label`.
            If `reduction` is `'none'`, the shape is `[N, *]`.
            If `reduction` is `'sum'` or `'mean'`, the shape is `[1]`.
859 860 861 862

    Examples:
        .. code-block:: python

863
                import paddle
864

865
                nll_loss = paddle.nn.loss.NLLLoss()
866
                log_softmax = paddle.nn.LogSoftmax(axis=1)
867

868 869 870 871 872
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                                          [0.53331435, 0.07999352, 0.8549948 ],
                                          [0.25879037, 0.39530203, 0.698465  ],
                                          [0.73427284, 0.63575995, 0.18827209],
                                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
873
                log_out = log_softmax(input)
874
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
875
                result = nll_loss(log_out, label)
876
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
877

878
    """
879

880 881 882 883 884 885
    def __init__(self,
                 weight=None,
                 ignore_index=-100,
                 reduction='mean',
                 name=None):
        if reduction not in ['sum', 'mean', 'none']:
886
            raise ValueError(
887 888 889 890 891 892 893
                "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
                "'none', but received %s, which is not allowed." % reduction)
        super(NLLLoss, self).__init__()
        self._weight = weight
        self._ignore_index = ignore_index
        self._reduction = reduction
        self._name = name
894

895
    def forward(self, input, label):
896 897 898 899 900 901
        return F.nll_loss(input,
                          label,
                          weight=self._weight,
                          ignore_index=self._ignore_index,
                          reduction=self._reduction,
                          name=self._name)
902 903


Z
zhiboniu 已提交
904
class KLDivLoss(Layer):
905
    r"""
906 907 908 909 910 911 912 913 914
    This interface calculates the Kullback-Leibler divergence loss
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    Parameters:
L
LielinJiang 已提交
915 916 917 918 919 920 921
        reduction (Tensor): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
922 923

    Shape:
924 925 926 927 928 929

        - input (Tensor): (N, *), where * means, any number of additional dimensions.

        - label (Tensor): (N, *), same shape as input.

        - output (Tensor): tensor with shape: [1] by default.
930 931 932 933 934 935 936 937


    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn as nn
938

939 940 941 942
            shape = (5, 20)
            x = np.random.uniform(-10, 10, shape).astype('float32')
            target = np.random.uniform(-10, 10, shape).astype('float32')

L
LielinJiang 已提交
943
            # 'batchmean' reduction, loss shape will be [1]
944
            kldiv_criterion = nn.KLDivLoss(reduction='batchmean')
945 946
            pred_loss = kldiv_criterion(paddle.to_tensor(x),
                                        paddle.to_tensor(target))
L
LielinJiang 已提交
947
            # shape=[1]
948

949 950
            # 'mean' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='mean')
951 952
            pred_loss = kldiv_criterion(paddle.to_tensor(x),
                                        paddle.to_tensor(target))
953 954 955 956
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='sum')
957 958
            pred_loss = kldiv_criterion(paddle.to_tensor(x),
                                        paddle.to_tensor(target))
959 960 961 962
            # shape=[1]

            # 'none' reduction, loss shape is same with X shape
            kldiv_criterion = nn.KLDivLoss(reduction='none')
963 964
            pred_loss = kldiv_criterion(paddle.to_tensor(x),
                                        paddle.to_tensor(target))
965 966 967 968 969 970 971 972
            # shape=[5, 20]
    """

    def __init__(self, reduction='mean'):
        super(KLDivLoss, self).__init__()
        self.reduction = reduction

    def forward(self, input, label):
L
LielinJiang 已提交
973
        out = F.kl_div(input, label, self.reduction)
974 975 976
        return out


Z
zhiboniu 已提交
977
class MarginRankingLoss(Layer):
978
    r"""
979 980

    This interface is used to construct a callable object of the ``MarginRankingLoss`` class.
981
    The MarginRankingLoss layer calculates the margin rank loss between the input, other and label
982 983
    , use the math function as follows.

984
    .. math::
985
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

1004
    Shape:
N
Noel 已提交
1005 1006 1007
    
        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

1008
        other: N-D Tensor, `other` have the same shape and dtype as `input`.
N
Noel 已提交
1009

1010
        label: N-D Tensor, label have the same shape and dtype as `input`.
N
Noel 已提交
1011

1012
        output: If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
1013 1014 1015 1016 1017 1018 1019 1020

    Returns:
        A callable object of MarginRankingLoss.

    Examples:

        .. code-block:: python

1021 1022
            import paddle

C
Chen Long 已提交
1023 1024
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype="float32")
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype="float32")
Z
Zhong Hui 已提交
1025
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype="float32")
1026
            margin_rank_loss = paddle.nn.MarginRankingLoss()
1027
            loss = margin_rank_loss(input, other, label)
1028 1029 1030

            print(loss)
            # [0.75]
1031 1032 1033 1034 1035
    """

    def __init__(self, margin=0.0, reduction='mean', name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
1036
                "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
1037 1038 1039 1040 1041 1042
                "received %s, which is not allowed." % reduction)
        super(MarginRankingLoss, self).__init__()
        self.margin = margin
        self.reduction = reduction
        self.name = name

1043
    def forward(self, input, other, label):
1044 1045 1046 1047
        out = paddle.nn.functional.margin_ranking_loss(input, other, label,
                                                       self.margin,
                                                       self.reduction,
                                                       self.name)
1048
        return out
1049 1050


Z
zhiboniu 已提交
1051
class CTCLoss(Layer):
1052 1053
    """

1054 1055 1056
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1057 1058 1059 1060 1061 1062 1063
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.

    Shape:
1064
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1065 1066 1067
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
1068
        norm_by_times (bool, default false) – Whether to normalize the gradients by the number of time-step, which is also the sequence’s length. There is no need to normalize the gradients if reduction mode is 'mean'.
1069 1070 1071

    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
1072

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
    Examples:

        .. code-block:: python

            # declarative mode
            import numpy as np
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

            np.random.seed(1)
            log_probs = np.array([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]]).astype("float32")
            labels = np.array([[1, 2, 2],
                            [1, 2, 2]]).astype("int32")
            input_lengths = np.array([5, 5]).astype("int64")
            label_lengths = np.array([3, 3]).astype("int64")

1110 1111 1112 1113
            log_probs = paddle.to_tensor(log_probs)
            labels = paddle.to_tensor(labels)
            input_lengths = paddle.to_tensor(input_lengths)
            label_lengths = paddle.to_tensor(label_lengths)
1114

1115 1116
            loss = paddle.nn.CTCLoss(blank=0, reduction='none')(log_probs, labels,
                input_lengths,
1117
                label_lengths)
1118
            print(loss)  #[3.9179852 2.9076521]
1119

1120 1121
            loss = paddle.nn.CTCLoss(blank=0, reduction='mean')(log_probs, labels,
                input_lengths,
1122
                label_lengths)
1123
            print(loss)  #[1.1376063]
1124 1125 1126 1127 1128 1129 1130
    """

    def __init__(self, blank=0, reduction='mean'):
        super(CTCLoss, self).__init__()
        self.blank = blank
        self.reduction = reduction

1131 1132 1133 1134 1135
    def forward(self,
                log_probs,
                labels,
                input_lengths,
                label_lengths,
H
Hui Zhang 已提交
1136
                norm_by_times=False):
1137 1138 1139 1140 1141 1142 1143
        return paddle.nn.functional.ctc_loss(log_probs,
                                             labels,
                                             input_lengths,
                                             label_lengths,
                                             self.blank,
                                             self.reduction,
                                             norm_by_times=norm_by_times)
1144 1145


Z
zhiboniu 已提交
1146
class SmoothL1Loss(Layer):
1147
    r"""
1148 1149 1150 1151 1152 1153 1154
    This operator calculates smooth_l1_loss. Creates a criterion that uses a squared
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

1155
         loss(x,y) = \frac{1}{n}\sum_{i}z_i
1156 1157 1158 1159 1160

    where z_i is given by:

    .. math::

1161 1162
        \mathop{z_i} = \left\{\begin{array}{rcl}
        0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\
1163
        delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise}
1164
        \end{array} \right.
1165 1166 1167 1168 1169 1170 1171 1172

    Parameters:
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1173
        delta (float, optional): Specifies the hyperparameter delta to be used.
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
        name (str, optional): Name for the operation (optional, default is
            None). For more information, please refer to :ref:`api_guide_Name`.

    Call Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.

    Returns:
G
Guanghua Yu 已提交
1188
        The tensor storing the smooth_l1_loss of input and label.
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202

    Return type: Tensor.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            input_data = np.random.rand(3,3).astype("float32")
            label_data = np.random.rand(3,3).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
            loss = paddle.nn.SmoothL1Loss()
            output = loss(input, label)
G
Guanghua Yu 已提交
1203
            print(output)
1204 1205 1206 1207 1208 1209 1210 1211 1212
    """

    def __init__(self, reduction='mean', delta=1.0, name=None):
        super(SmoothL1Loss, self).__init__()
        self.reduction = reduction
        self.delta = delta
        self.name = name

    def forward(self, input, label):
1213 1214 1215 1216 1217
        return F.smooth_l1_loss(input,
                                label,
                                reduction=self.reduction,
                                delta=self.delta,
                                name=self.name)
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306


class HingeEmbeddingLoss(Layer):
    r"""
    This operator calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:

        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Call Parameters:

        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.

        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64. The shape of label is the same as the shape of input.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:

        Tensor, The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            hinge_embedding_loss = nn.HingeEmbeddingLoss(margin=1.0, reduction='none')
            loss = hinge_embedding_loss(input, label)
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            hinge_embedding_loss = nn.HingeEmbeddingLoss(margin=1.0, reduction='mean')
            loss = hinge_embedding_loss(input, label)
            print(loss)
            # Tensor([0.22222222])
    """

    def __init__(self, margin=1.0, reduction="mean", name=None):
        super(HingeEmbeddingLoss, self).__init__()
        self.margin = margin
        self.reduction = reduction
        self.name = name

    def forward(self, input, label):
1307 1308 1309 1310 1311
        return F.hinge_embedding_loss(input,
                                      label,
                                      reduction=self.reduction,
                                      margin=self.margin,
                                      name=self.name)
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402


class CosineEmbeddingLoss(Layer):
    r"""
    This interface is used to construct a callable object of the ``CosineEmbeddingLoss`` class.
    The CosineEmbeddingLoss layer measures the cosine_embedding loss between input predictions ``input1``, ``input2``
    and target labels ``label`` with values 1 or 0. This is used for measuring whether two inputs are similar or
    dissimilar and is typically used for learning nonlinear embeddings or semi-supervised learning.
    The cosine embedding loss can be described as:

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

    Parameters:
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
            :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
            default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
            ``'mean'``: the sum of the output will be divided by the number of
            elements in the output, ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, 'M' means the length of input array.
                         Available dtypes are float32, float64.
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, 'M' means the length of input array.
                         Available dtypes are float32, float64.
        label (Tensor): tensor with shape: [N] or [1]. The target labels values should be -1 or 1.
                         Available dtypes are int32, int64, float32, float64.
        output (Tensor): Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
                         If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
                         If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].

    Examples:
        .. code-block:: python
          :name: code-example1

            import paddle

            input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            label = paddle.to_tensor([1, -1], 'int64')

            cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='mean')
            output = cosine_embedding_loss(input1, input2, label)
            print(output) # [0.21155193]

            cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='sum')
            output = cosine_embedding_loss(input1, input2, label)
            print(output) # [0.42310387]

            cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='none')
            output = cosine_embedding_loss(input1, input2, label)
            print(output) # [0.42310387, 0.        ]

    """

    def __init__(self, margin=0, reduction='mean', name=None):
        if margin > 1 or margin < -1:
            raise ValueError(
                "The value of 'margin' should be in the interval of [-1, 1], but received %f, which is not allowed."
                % margin)
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' should be 'sum', 'mean' or "
                "'none', but received %s, which is not allowed." % reduction)
        super(CosineEmbeddingLoss, self).__init__()
        self.margin = margin
        self.reduction = reduction
        self.name = name

    def forward(self, input1, input2, label):
        return F.cosine_embedding_loss(input1,
                                       input2,
                                       label,
                                       margin=self.margin,
                                       reduction=self.reduction,
                                       name=self.name)