loss.py 29.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define loss functions of neural network
16
import numpy as np
L
Leo Chen 已提交
17
import paddle.fluid as fluid
18
import paddle.fluid.core as core
19
import paddle
20
from .. import functional as F
21
from paddle.fluid.framework import core, in_dygraph_mode, _varbase_creator
22

L
Leo Chen 已提交
23
__all__ = [
24
    'CrossEntropyLoss',
25
    'MSELoss',
L
Leo Chen 已提交
26
    'L1Loss',
27
    'NLLLoss',
28
    'BCELoss',
29
    'KLDivLoss',
30 31
    'MarginRankingLoss',
    'SmoothL1Loss',
L
Leo Chen 已提交
32 33 34
]


35 36
class CrossEntropyLoss(fluid.dygraph.Layer):
    """
37 38
	:alias_main: paddle.nn.CrossEntropyLoss
	:alias: paddle.nn.CrossEntropyLoss,paddle.nn.layer.CrossEntropyLoss,paddle.nn.layer.loss.CrossEntropyLoss
S
swtkiwi 已提交
39

40 41
    This operator implements the cross entropy loss function. This OP combines ``LogSoftmax``,
    and ``NLLLoss`` together.
42

43 44
    It is useful when training a classification problem with ``C`` classes.
    If provided, the optional argument ``weight`` should be a 1D Variable assigning
45 46 47
    weight to each of the classes.

    For predictions label, and target label, the loss is calculated as follows.
48

49 50 51 52 53
    .. math::

        loss_j =  -\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right), j = 1,..., K

54 55
    If weight is not ``None``:

56 57 58 59 60 61
    .. math::

        loss_j =  \\text{weight[class]}(-\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right)), j = 1,..., K

    Parameters:
62 63
        input (Variable): Input tensor, the data type is float32, float64. Shape is
	    (N, C), where C is number of classes, and if shape is more than 2D, this
64 65
	    is (N, C, D1, D2,..., Dk), k >= 1.
        label (Variable): Label tensor, the data type is int64. Shape is (N), where each
66 67
	    value is 0 <= label[i] <= C-1, and if shape is more than 2D, this is
	    (N, D1, D2,..., Dk), k >= 1.
68
        weight (Variable, optional): Weight tensor, a manual rescaling weight given
69 70
            to each class and the shape is (C). It has the same dimensions as class
	    number and the data type is float32, float64. Default is ``'None'``.
71 72 73 74 75 76
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
77 78
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient. Default is ``-100``.
79

80 81
    Returns:
        The tensor variable storing the cross_entropy_loss of input and label.
82

83
    Return type: Variable.
84

85 86 87 88 89 90 91 92
    Examples:
        .. code-block:: python

            # declarative mode
            import paddle
            import paddle.fluid as fluid
            import numpy as np

93 94 95
            input = fluid.data(name='input', shape=[5, 100], dtype='float64')
            label = fluid.data(name='label', shape=[5], dtype='int64')
            weight = fluid.data(name='weight', shape=[100], dtype='float64')
96
            ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean')
97
            output = ce_loss(input, label)
98 99 100
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
101 102 103
            input_data = np.random.random([5, 100]).astype("float64")
            label_data = np.random.randint(0, 100, size=(5)).astype(np.int64)
            weight_data = np.random.random([100]).astype("float64")
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
            output = exe.run(fluid.default_main_program(),
                        feed={"input": input_data, "label": label_data,"weight": weight_data},
                        fetch_list=[output],
                        return_numpy=True)
            print(output)

            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                weight = dg.to_variable(weight_data)
                ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean')
                output = ce_loss(input, label)
                print(output.numpy())
    """

121
    def __init__(self, weight=None, ignore_index=-100, reduction='mean'):
122 123 124
        super(CrossEntropyLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
125
        self.ignore_index = ignore_index
126 127 128

    def forward(self, input, label):
        fluid.data_feeder.check_variable_and_dtype(
129 130 131
            input, 'input', ['float32', 'float64'], 'cross_entropy_loss')
        fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'],
                                                   'cross_entropy_loss')
132 133 134

        if self.reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
135 136 137 138
                "The value of 'reduction' in cross_entropy_loss should be 'sum', 'mean' or"
                " 'none', but received %s, which is not allowed." %
                self.reduction)

139 140 141
        return paddle.nn.functional.cross_entropy(
            input,
            label,
142
            weight=self.weight,
143 144
            ignore_index=self.ignore_index,
            reduction=self.reduction)
145 146


147 148
class MSELoss(fluid.dygraph.layers.Layer):
    """
149 150
	:alias_main: paddle.nn.MSELoss
	:alias: paddle.nn.MSELoss,paddle.nn.layer.MSELoss,paddle.nn.layer.loss.MSELoss
S
swtkiwi 已提交
151

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    **Mean Square Error Loss**
    Computes the mean square error (squared L2 norm) of given input and label.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

170
    where `input` and `label` are `float32` tensors of same shape.
171 172

    Parameters:
173 174
        input (Variable): Input tensor, the data type is float32,
        label (Variable): Label tensor, the data type is float32,
175 176
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
177 178 179
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
180 181 182 183 184 185 186
            Default is ``'mean'``.

    Returns:
        The tensor variable storing the MSE loss of input and label.

    Return type:
        Variable.
187 188 189

    Examples:
        .. code-block:: python
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

            import numpy as np
            import paddle
            from paddle import fluid
            import paddle.fluid.dygraph as dg

            mse_loss = paddle.nn.loss.MSELoss()
            input = fluid.data(name="input", shape=[1])
            label = fluid.data(name="label", shape=[1])
            place = fluid.CPUPlace()
            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")

            # declarative mode
            output = mse_loss(input,label)
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output_data = exe.run(
                fluid.default_main_program(),
                feed={"input":input_data, "label":label_data},
                fetch_list=[output],
                return_numpy=True)
            print(output_data)
            # [array([0.04000002], dtype=float32)]

            # imperative mode
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                output = mse_loss(input, label)
                print(output.numpy())
                # [0.04000002]
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    """

    def __init__(self, reduction='mean'):
        super(MSELoss, self).__init__()
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', "
                "but received {}.".format(reduction))
        self.reduction = reduction

    def forward(self, input, label):
        if not fluid.framework.in_dygraph_mode():
            fluid.data_feeder.check_variable_and_dtype(input, 'input',
                                                       ['float32'], 'MSELoss')
            fluid.data_feeder.check_variable_and_dtype(label, 'label',
                                                       ['float32'], 'MSELoss')

        square_out = fluid.layers.square(
            fluid.layers.elementwise_sub(input, label))
        if self.reduction == 'none':
            return square_out

        reduce_op = 'reduce_mean'
        if self.reduction == 'sum':
            reduce_op = 'reduce_sum'

        return getattr(fluid.layers, reduce_op)(square_out)


L
Leo Chen 已提交
251 252 253
class L1Loss(fluid.dygraph.Layer):
    """
    This interface is used to construct a callable object of the ``L1Loss`` class.
254
    The L1Loss layer calculates the L1 Loss of ``input`` and ``label`` as follows.
255

256
     If `reduction` set to ``'none'``, the loss is:
L
Leo Chen 已提交
257 258

    .. math::
259
        Out = \lvert input - label\rvert
260

261
    If `reduction` set to ``'mean'``, the loss is:
262

L
Leo Chen 已提交
263
    .. math::
264
        Out = MEAN(\lvert input - label\rvert)
265

266
    If `reduction` set to ``'sum'``, the loss is:
267

L
Leo Chen 已提交
268
    .. math::
269
        Out = SUM(\lvert input - label\rvert)
L
Leo Chen 已提交
270

271

L
Leo Chen 已提交
272
    Parameters:
273
        reduction (str, optional): Indicate the reduction to apply to the loss,
L
Leo Chen 已提交
274
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
275 276 277
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
L
Leo Chen 已提交
278
            Default is ``'mean'``.
279 280 281
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
282 283
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
284
        output (Tensor): The L1 Loss of ``input`` and ``label``.
285 286
            If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
287

L
Leo Chen 已提交
288 289 290
    Examples:
        .. code-block:: python
            import paddle
291 292 293
            import numpy as np

            paddle.disable_static()
294
            input_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
295
            label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
296
            input = paddle.to_variable(input_data)
297 298 299
            label = paddle.to_variable(label_data)

            l1_loss = paddle.nn.loss.L1Loss()
300
            output = l1_loss(input, label)
301
            print(output.numpy())
302 303 304
            # [0.35]

            l1_loss = paddle.nn.loss.L1Loss(reduction='sum')
305
            output = l1_loss(input, label)
306
            print(output.numpy())
307 308 309
            # [1.4]

            l1_loss = paddle.nn.loss.L1Loss(reduction='none')
310
            output = l1_loss(input, label)
311
            print(output.numpy())
312 313
            # [[0.20000005 0.19999999]
            # [0.2        0.79999995]]
L
Leo Chen 已提交
314 315
    """

316
    def __init__(self, reduction='mean', name=None):
L
Leo Chen 已提交
317 318 319 320 321 322
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)
        super(L1Loss, self).__init__()
        self.reduction = reduction
323
        self.name = name
L
Leo Chen 已提交
324

325
    def forward(self, input, label):
326
        return paddle.nn.functional.l1_loss(
327
            input, label, self.reduction, name=self.name)
C
ceci3 已提交
328 329 330 331


class BCELoss(fluid.dygraph.Layer):
    """
C
ceci3 已提交
332
    This interface is used to construct a callable object of the ``BCELoss`` class.
333 334
    The BCELoss layer measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:
C
ceci3 已提交
335

C
ceci3 已提交
336
    If :attr:`weight` is set, the loss is:
C
ceci3 已提交
337 338

    .. math::
C
ceci3 已提交
339
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
340

C
ceci3 已提交
341
    If :attr:`weight` is None, the loss is:
C
ceci3 已提交
342 343

    .. math::
C
ceci3 已提交
344 345
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

346
    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.
C
ceci3 已提交
347

C
ceci3 已提交
348
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
C
ceci3 已提交
349

C
ceci3 已提交
350 351
    .. math::
        Out = MEAN(Out)
352

C
ceci3 已提交
353
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
C
ceci3 已提交
354

C
ceci3 已提交
355 356
    .. math::
        Out = SUM(Out)
C
ceci3 已提交
357

358
    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
C
ceci3 已提交
359 360
    should be numbers between 0 and 1.

C
ceci3 已提交
361
    Parameters:
362 363
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
C
ceci3 已提交
364
            is float32, float64. Default is ``'None'``.
365
        reduction (str, optional): Indicate how to average the loss by batch_size,
C
ceci3 已提交
366
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
C
ceci3 已提交
367
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
368
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
C
ceci3 已提交
369
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
C
ceci3 已提交
370
            Default is ``'mean'``.
371 372 373 374 375 376 377 378 379 380 381 382
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        input (Tensor): 2-D tensor with shape: (N, *), N is batch_size, `*` means
            number of additional dimensions. The input ``input`` should always
            be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): 2-D tensor with the same shape as ``input``. The target
            labels which values should be numbers between 0 and 1. Available
            dtype is float32, float64.
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is scalar.
C
ceci3 已提交
383

384
    Returns:
C
ceci3 已提交
385 386
        A callable object of BCELoss.

C
ceci3 已提交
387 388
    Examples:
        .. code-block:: python
C
ceci3 已提交
389

C
ceci3 已提交
390 391 392 393
            import numpy as np
            import paddle
            input_data = np.array([0.5, 0.6, 0.7]).astype("float32")
            label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
394 395 396 397 398 399 400 401 402

            paddle.disable_static()
            input = paddle.to_variable(input_data)
            label = paddle.to_variable(label_data)
            bce_loss = paddle.nn.loss.BCELoss()
            output = bce_loss(input, label)
            print(output.numpy())  # [0.65537095]
            paddle.enable_static()

C
ceci3 已提交
403 404
    """

405
    def __init__(self, weight=None, reduction='mean', name=None):
C
ceci3 已提交
406 407 408 409 410 411 412 413
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)

        super(BCELoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
414
        self.name = name
C
ceci3 已提交
415 416

    def forward(self, input, label):
417 418 419
        out = paddle.nn.functional.binary_cross_entropy(
            input, label, self.weight, self.reduction, self.name)
        return out
420 421 422 423


class NLLLoss(fluid.dygraph.Layer):
    """
424 425
	:alias_main: paddle.nn.NLLLoss
	:alias: paddle.nn.NLLLoss,paddle.nn.layer.NLLLoss,paddle.nn.layer.loss.NLLLoss
S
swtkiwi 已提交
426

427
    This class accepts input and target label and returns negative log likelihood
428
    cross error. It is useful to train a classification problem with C classes.
429

430
    The input for the loss is epected to contain log-probabilities of
431
    each classes. It has to be a Tensor of size either (batch_size, C) or
432 433 434 435
    (batch_size, C, d1, d2, ..., dK) with K >= 1 for the K-dimensional case.
    The label for the loss should be a class index in the range [0, C-1]
    where C is the number of classes. If ignore_index is specified, the
    specified target value does not contribute to the input gradient.
436

437 438 439
    If the optional argument `weight` is provided, it should be a 1D Tensor
    assigning weight to each of the classed. This is particularly useful
    when you have an unbalanced training set.
440

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
    The loss is calculated as follows.
    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:

    .. math::
        \ell(x, y) = L = \{l_1,\dots,l_N\}^\\top, \quad
        l_n = - w_{y_n} x_{n,y_n}, \quad
        w_{c} = \\text{weight}[c] \cdot \mathbb{1}\{c \\not= \\text{ignore\\_index}\},

    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
    (default ``'mean'``), then

    .. math::
        \ell(x, y) = \\begin{cases}
            \\sum_{n=1}^N \\frac{1}{\\sum_{n=1}^N w_{y_n}} l_n, &
            \\text{if reduction} = \\text{'mean';}\\\\
            \\sum_{n=1}^N l_n,  &
            \\text{if reduction} = \\text{'sum'.}
        \\end{cases}

    Parameters:
461 462
        weight (Tensor, optional): Weight tensor, a manual rescaling weight given
            to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
463
            it treated as if having all ones. the data type is
464
            float32, float64, Default is ``'None'``.
465 466
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient.
467
        reduction (str, optional): Indicate how to average the loss,
468
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
469 470 471
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
472
            Default is ``'mean'``.
473 474
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.
475

476 477 478 479 480 481 482 483 484
    Shape:
        input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
            But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
            The data type is float32, float64.
        label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
            The data type is int64.
        output (Tensor): the `negative log likelihood loss` between input `x` and `label`.
            If `reduction` is `'none'`, the shape is `[N, *]`.
            If `reduction` is `'sum'` or `'mean'`, the shape is `[1]`.
485 486 487 488

    Examples:
        .. code-block:: python

489 490
                import paddle
                import numpy as np
491

492 493
                nll_loss = paddle.nn.layer.NLLLoss()
                log_softmax = paddle.nn.LogSoftmax(axis=1)
494

495 496 497 498 499 500
                input_np = np.array([[0.88103855, 0.9908683 , 0.6226845 ],
                                 [0.53331435, 0.07999352, 0.8549948 ],
                                 [0.25879037, 0.39530203, 0.698465  ],
                                 [0.73427284, 0.63575995, 0.18827209],
                                 [0.05689114, 0.0862954 , 0.6325046 ]]).astype(np.float32)
                label_np = np.array([0, 2, 1, 1, 0]).astype(np.int64)
501

502 503 504 505 506 507 508
                place = paddle.CPUPlace()
                paddle.disable_static(place)
                input = paddle.to_variable(input_np)
                log_out = log_softmax(input)
                label = paddle.to_variable(label_np)
                result = nll_loss(log_out, label)
                print(result.numpy()) # [1.0720209]
509

510
    """
511

512 513 514 515 516 517
    def __init__(self,
                 weight=None,
                 ignore_index=-100,
                 reduction='mean',
                 name=None):
        if reduction not in ['sum', 'mean', 'none']:
518
            raise ValueError(
519 520 521 522 523 524 525
                "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
                "'none', but received %s, which is not allowed." % reduction)
        super(NLLLoss, self).__init__()
        self._weight = weight
        self._ignore_index = ignore_index
        self._reduction = reduction
        self._name = name
526

527 528 529 530 531 532 533 534
    def forward(self, input, label):
        return F.nll_loss(
            input,
            label,
            weight=self._weight,
            ignore_index=self._ignore_index,
            reduction=self._reduction,
            name=self._name)
535 536


537 538 539 540 541 542 543 544 545 546 547
class KLDivLoss(fluid.dygraph.Layer):
    """
    This interface calculates the Kullback-Leibler divergence loss
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    Parameters:
548
        reduction (str, optional): Indicate how to average the loss,
549
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
550
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
551 552 553 554 555 556 557 558 559 560 561 562 563 564
            Default is ``'mean'``.

    Shape:
      - input: (N, *) where * means, any number of additional dimensions.
      - label: (N, *), same shape as input
      - output: tensor with shape: (1) by default.


    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn as nn
565

566 567 568 569 570 571 572 573 574 575 576
            paddle.enable_imperative()

            shape = (5, 20)
            x = np.random.uniform(-10, 10, shape).astype('float32')
            target = np.random.uniform(-10, 10, shape).astype('float32')

            # 'batchmean' reduction, loss shape will be [N]
            kldiv_criterion = nn.KLDivLoss(reduction='batchmean')
            pred_loss = kldiv_criterion(paddle.to_variable(x),
                                        paddle.to_variable(target))
            # shape=[5]
577

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
            # 'mean' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='mean')
            pred_loss = kldiv_criterion(paddle.to_variable(x),
                                        paddle.to_variable(target))
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='sum')
            pred_loss = kldiv_criterion(paddle.to_variable(x),
                                        paddle.to_variable(target))
            # shape=[1]

            # 'none' reduction, loss shape is same with X shape
            kldiv_criterion = nn.KLDivLoss(reduction='none')
            pred_loss = kldiv_criterion(paddle.to_variable(x),
                                        paddle.to_variable(target))
            # shape=[5, 20]
    """

    def __init__(self, reduction='mean'):
        super(KLDivLoss, self).__init__()
        self.reduction = reduction

    def forward(self, input, label):
        out = paddle.nn.functional.kl_div(input, label, self.reduction)
        return out


606 607 608 609
class MarginRankingLoss(fluid.dygraph.Layer):
    """

    This interface is used to construct a callable object of the ``MarginRankingLoss`` class.
610
    The MarginRankingLoss layer calculates the margin rank loss between the input, other and label
611 612
    , use the math function as follows.

613
    .. math::
614
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

633
    Shape:
634 635
        input: N-D Tensor, the shape is [N, *], N is batch size and `*` means any number of additional dimensions., available dtype is float32, float64.
        other: N-D Tensor, `other` have the same shape and dtype as `input`.
636 637
        label: N-D Tensor, label have the same shape and dtype as `input`.
        output: If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
638 639 640 641 642 643 644 645

    Returns:
        A callable object of MarginRankingLoss.

    Examples:

        .. code-block:: python

646 647 648
            import numpy as np
            import paddle

649
            paddle.disable_static()
650

651 652
            input = paddle.to_variable(np.array([[1, 2], [3, 4]]).astype("float32"))
            other = paddle.to_variable(np.array([[2, 1], [2, 4]]).astype("float32"))
653
            label = paddle.to_variable(np.array([[1, -1], [-1, -1]]).astype("float32"))
654
            margin_rank_loss = paddle.nn.MarginRankingLoss()
655
            loss = margin_rank_loss(input, other, label)
656 657 658 659 660 661
            print(loss.numpy()) # [0.75]
    """

    def __init__(self, margin=0.0, reduction='mean', name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
662
                "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
663 664 665 666 667 668
                "received %s, which is not allowed." % reduction)
        super(MarginRankingLoss, self).__init__()
        self.margin = margin
        self.reduction = reduction
        self.name = name

669
    def forward(self, input, other, label):
670
        out = paddle.nn.functional.margin_ranking_loss(
671
            input, other, label, self.margin, self.reduction, self.name)
672
        return out
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701


class SmoothL1Loss(fluid.dygraph.Layer):
    """
    This operator calculates smooth_l1_loss. Creates a criterion that uses a squared
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

         loss(x,y)=\\frac{1}{n}\\sum_{i}z_i

    where z_i is given by:

    .. math::

         \\mathop{z_i}=\\left\\{\\begin{array}{rcl}
        0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\\\
        delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise}
        \\end{array} \\right.

    Parameters:
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
702
        delta (float, optional): Specifies the hyperparameter delta to be used.
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
        name (str, optional): Name for the operation (optional, default is
            None). For more information, please refer to :ref:`api_guide_Name`.

    Call Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.

    Returns:
        The tensor variable storing the smooth_l1_loss of input and label.

    Return type: Tensor.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            paddle.disable_static()
            input_data = np.random.rand(3,3).astype("float32")
            label_data = np.random.rand(3,3).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
            loss = paddle.nn.SmoothL1Loss()
            output = loss(input, label)
            print(output.numpy())
    """

    def __init__(self, reduction='mean', delta=1.0, name=None):
        super(SmoothL1Loss, self).__init__()
        self.reduction = reduction
        self.delta = delta
        self.name = name

    def forward(self, input, label):
        return F.smooth_l1_loss(
            input,
            label,
            reduction=self.reduction,
            delta=self.delta,
            name=self.name)