loss.py 28.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define loss functions of neural network  
16
import numpy as np
L
Leo Chen 已提交
17
import paddle.fluid as fluid
18
import paddle.fluid.core as core
19
import paddle
20
from .. import functional as F
21

L
Leo Chen 已提交
22
__all__ = [
23
    #       'NCELoss',
24
    'CrossEntropyLoss',
25
    'MSELoss',
L
Leo Chen 已提交
26
    'L1Loss',
27
    'NLLLoss',
28
    'BCELoss',
29
    'KLDivLoss',
30
    'MarginRankingLoss'
L
Leo Chen 已提交
31 32 33
]


34 35
class CrossEntropyLoss(fluid.dygraph.Layer):
    """
36 37
	:alias_main: paddle.nn.CrossEntropyLoss
	:alias: paddle.nn.CrossEntropyLoss,paddle.nn.layer.CrossEntropyLoss,paddle.nn.layer.loss.CrossEntropyLoss
S
swtkiwi 已提交
38

39 40
    This operator implements the cross entropy loss function. This OP combines ``LogSoftmax``,
    and ``NLLLoss`` together.
41

42 43
    It is useful when training a classification problem with ``C`` classes.
    If provided, the optional argument ``weight`` should be a 1D Variable assigning
44 45 46
    weight to each of the classes.

    For predictions label, and target label, the loss is calculated as follows.
47

48 49 50 51 52
    .. math::

        loss_j =  -\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right), j = 1,..., K

53 54
    If weight is not ``None``:

55 56 57 58 59 60
    .. math::

        loss_j =  \\text{weight[class]}(-\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right)), j = 1,..., K

    Parameters:
61 62 63 64 65 66
        input (Variable): Input tensor, the data type is float32, float64. Shape is
	    (N, C), where C is number of classes, and if shape is more than 2D, this
	    is (N, C, D1, D2,..., Dk), k >= 1. 
        label (Variable): Label tensor, the data type is int64. Shape is (N), where each 
	    value is 0 <= label[i] <= C-1, and if shape is more than 2D, this is
	    (N, D1, D2,..., Dk), k >= 1.
67
        weight (Variable, optional): Weight tensor, a manual rescaling weight given
68 69
            to each class and the shape is (C). It has the same dimensions as class
	    number and the data type is float32, float64. Default is ``'None'``.
70 71 72 73 74 75
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
76 77
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient. Default is ``-100``.
78

79 80
    Returns:
        The tensor variable storing the cross_entropy_loss of input and label.
81

82
    Return type: Variable.
83

84 85 86 87 88 89 90 91
    Examples:
        .. code-block:: python

            # declarative mode
            import paddle
            import paddle.fluid as fluid
            import numpy as np

92 93 94
            input = fluid.data(name='input', shape=[5, 100], dtype='float64')
            label = fluid.data(name='label', shape=[5], dtype='int64')
            weight = fluid.data(name='weight', shape=[100], dtype='float64')
95
            ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean')
96
            output = ce_loss(input, label)
97 98 99
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
100 101 102
            input_data = np.random.random([5, 100]).astype("float64")
            label_data = np.random.randint(0, 100, size=(5)).astype(np.int64)
            weight_data = np.random.random([100]).astype("float64")
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
            output = exe.run(fluid.default_main_program(),
                        feed={"input": input_data, "label": label_data,"weight": weight_data},
                        fetch_list=[output],
                        return_numpy=True)
            print(output)

            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                weight = dg.to_variable(weight_data)
                ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean')
                output = ce_loss(input, label)
                print(output.numpy())
    """

120
    def __init__(self, weight=None, reduction='mean', ignore_index=-100):
121 122 123
        super(CrossEntropyLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
124
        self.ignore_index = ignore_index
125 126 127

    def forward(self, input, label):
        fluid.data_feeder.check_variable_and_dtype(
128 129 130
            input, 'input', ['float32', 'float64'], 'cross_entropy_loss')
        fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'],
                                                   'cross_entropy_loss')
131 132 133

        if self.reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
134 135 136 137 138 139 140 141 142 143 144 145 146 147
                "The value of 'reduction' in cross_entropy_loss should be 'sum', 'mean' or"
                " 'none', but received %s, which is not allowed." %
                self.reduction)

        log_softmax = paddle.nn.LogSoftmax()
        log_softmax_out = log_softmax(input)
        if self.weight is not None and not isinstance(self.weight,
                                                      fluid.framework.Variable):
            raise ValueError(
                "The weight' is not a Variable, please convert to Variable.")
        nll_loss = paddle.nn.loss.NLLLoss(
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)
148

149
        return nll_loss(log_softmax_out, label)
150 151


152 153
class MSELoss(fluid.dygraph.layers.Layer):
    """
154 155
	:alias_main: paddle.nn.MSELoss
	:alias: paddle.nn.MSELoss,paddle.nn.layer.MSELoss,paddle.nn.layer.loss.MSELoss
S
swtkiwi 已提交
156

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    **Mean Square Error Loss**
    Computes the mean square error (squared L2 norm) of given input and label.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

175
    where `input` and `label` are `float32` tensors of same shape.
176 177

    Parameters:
178 179
        input (Variable): Input tensor, the data type is float32,
        label (Variable): Label tensor, the data type is float32,
180 181
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
182 183 184 185 186 187 188 189 190 191
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. 
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned. 
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned. 
            Default is ``'mean'``.

    Returns:
        The tensor variable storing the MSE loss of input and label.

    Return type:
        Variable.
192 193 194

    Examples:
        .. code-block:: python
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

            import numpy as np
            import paddle
            from paddle import fluid
            import paddle.fluid.dygraph as dg

            mse_loss = paddle.nn.loss.MSELoss()
            input = fluid.data(name="input", shape=[1])
            label = fluid.data(name="label", shape=[1])
            place = fluid.CPUPlace()
            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")

            # declarative mode
            output = mse_loss(input,label)
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output_data = exe.run(
                fluid.default_main_program(),
                feed={"input":input_data, "label":label_data},
                fetch_list=[output],
                return_numpy=True)
            print(output_data)
            # [array([0.04000002], dtype=float32)]

            # imperative mode
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                output = mse_loss(input, label)
                print(output.numpy())
                # [0.04000002]
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    """

    def __init__(self, reduction='mean'):
        super(MSELoss, self).__init__()
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', "
                "but received {}.".format(reduction))
        self.reduction = reduction

    def forward(self, input, label):
        if not fluid.framework.in_dygraph_mode():
            fluid.data_feeder.check_variable_and_dtype(input, 'input',
                                                       ['float32'], 'MSELoss')
            fluid.data_feeder.check_variable_and_dtype(label, 'label',
                                                       ['float32'], 'MSELoss')

        square_out = fluid.layers.square(
            fluid.layers.elementwise_sub(input, label))
        if self.reduction == 'none':
            return square_out

        reduce_op = 'reduce_mean'
        if self.reduction == 'sum':
            reduce_op = 'reduce_sum'

        return getattr(fluid.layers, reduce_op)(square_out)


L
Leo Chen 已提交
256 257 258
class L1Loss(fluid.dygraph.Layer):
    """
    This interface is used to construct a callable object of the ``L1Loss`` class.
259 260 261
    The L1Loss layer calculates the L1 Loss of ``x`` and ``label`` as follows.

     If :attr:`reduction` set to ``'none'``, the loss is:
L
Leo Chen 已提交
262 263

    .. math::
264 265 266 267
        Out = \lvert x - label\rvert

    If :attr:`reduction` set to ``'mean'``, the loss is:

L
Leo Chen 已提交
268
    .. math::
269 270 271 272
        Out = MEAN(\lvert x - label\rvert)

    If :attr:`reduction` set to ``'sum'``, the loss is:

L
Leo Chen 已提交
273
    .. math::
274
        Out = SUM(\lvert x - label\rvert)
L
Leo Chen 已提交
275 276 277 278 279 280 281 282 283

    
    Parameters:
        reduction (str, optional): Indicate the reduction to apply to the loss, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned; 
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. 
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. 
            Default is ``'mean'``.
284 285 286 287 288 289 290 291 292
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        x (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, *], same shape as ``x`` . It's data type should be float32, float64, int32, int64.
        output (Tensor): The L1 Loss of ``x`` and ``label``. 
            If :attr:`reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``x`` .
            If :attr:`reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1], which means the output is a scalar.
            
L
Leo Chen 已提交
293 294 295
    Examples:
        .. code-block:: python
            import paddle
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
            import numpy as np

            paddle.disable_static()
            x_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
            label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
            x = paddle.to_variable(x_data)
            label = paddle.to_variable(label_data)

            l1_loss = paddle.nn.loss.L1Loss()
            output = l1_loss(x, label)
            print(output.numpy())  
            # [0.35]

            l1_loss = paddle.nn.loss.L1Loss(reduction='sum')
            output = l1_loss(x, label)
            print(output.numpy())  
            # [1.4]

            l1_loss = paddle.nn.loss.L1Loss(reduction='none')
            output = l1_loss(x, label)
            print(output.numpy())  
            # [[0.20000005 0.19999999]
            # [0.2        0.79999995]]
L
Leo Chen 已提交
319 320
    """

321
    def __init__(self, reduction='mean', name=None):
L
Leo Chen 已提交
322 323 324 325 326 327
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)
        super(L1Loss, self).__init__()
        self.reduction = reduction
328
        self.name = name
L
Leo Chen 已提交
329

330 331 332
    def forward(self, x, label):
        return paddle.nn.functional.l1_loss(
            x, label, self.reduction, name=self.name)
C
ceci3 已提交
333 334 335 336


class BCELoss(fluid.dygraph.Layer):
    """
337 338
	:alias_main: paddle.nn.BCELoss
	:alias: paddle.nn.BCELoss,paddle.nn.layer.BCELoss,paddle.nn.layer.loss.BCELoss
S
swtkiwi 已提交
339

C
ceci3 已提交
340 341 342 343
    This interface is used to construct a callable object of the ``BCELoss`` class.
    The BCELoss layer measures the binary_cross_entropy loss between input predictions 
    and target labels. The binary_cross_entropy loss can be described as:

C
ceci3 已提交
344
    If :attr:`weight` is set, the loss is:
C
ceci3 已提交
345 346

    .. math::
C
ceci3 已提交
347 348
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
    If :attr:`weight` is None, the loss is:
C
ceci3 已提交
349 350

    .. math::
C
ceci3 已提交
351 352 353
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the unreduced loss is:
C
ceci3 已提交
354

C
ceci3 已提交
355 356 357
    .. math::
        Out = Out
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
C
ceci3 已提交
358

C
ceci3 已提交
359 360 361
    .. math::
        Out = MEAN(Out)
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
C
ceci3 已提交
362

C
ceci3 已提交
363 364
    .. math::
        Out = SUM(Out)
C
ceci3 已提交
365 366 367 368 369 370 371 372

    Note that the input predictions always be the output of sigmoid, and the target labels 
    should be numbers between 0 and 1.

    The shape of input predictions and target labels are [N, *], where N is batch_size and `*` 
    means any number of additional dimensions. If ``reduction`` is ``'none'``, the shape of 
    output is scalar, else the shape of output is same as input.

C
ceci3 已提交
373
    Parameters:
C
ceci3 已提交
374 375 376
        weight (Variable, optional): A manual rescaling weight given to the loss of each 
            batch element. If given, has to be a Variable of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
C
ceci3 已提交
377 378
        reduction (str, optional): Indicate how to average the loss by batch_size, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
C
ceci3 已提交
379
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
C
ceci3 已提交
380
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; 
C
ceci3 已提交
381
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
C
ceci3 已提交
382
            Default is ``'mean'``.
C
ceci3 已提交
383 384 385 386

    Returns: 
        A callable object of BCELoss.

C
ceci3 已提交
387 388
    Examples:
        .. code-block:: python
C
ceci3 已提交
389

C
ceci3 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
            # declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            input = fluid.data(name="input", shape=[3, 1], dtype='float32')
            label = fluid.data(name="label", shape=[3, 1], dtype='float32')
            bce_loss = paddle.nn.loss.BCELoss()
            output = bce_loss(input, label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
    
            input_data = np.array([0.5, 0.6, 0.7]).astype("float32")
            label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
            output_data = exe.run(fluid.default_main_program(),
                    feed={"input":input_data, "label":label_data},
                    fetch_list=[output],
                    return_numpy=True)
    
            print(output_data)  # [array([0.65537095], dtype=float32)]
            
            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                output = bce_loss(input, label)
                print(output.numpy())  # [0.65537095]
    """

    def __init__(self, weight=None, reduction='mean'):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)

        super(BCELoss, self).__init__()
        self.weight = weight
        self.reduction = reduction

    def forward(self, input, label):
        dtype = self._helper.input_dtype(input)

        fluid.data_feeder.check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'bce_loss')
        fluid.data_feeder.check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'bce_loss')

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        self._helper.append_op(
            type='bce_loss',
            inputs={
                'X': [input],
                'Label': [label],
            },
            outputs={'Out': [out]})

        if self.weight is not None:
            if isinstance(self.weight, fluid.framework.Variable):
                w = self.weight
C
ceci3 已提交
450
                out = fluid.layers.elementwise_mul(out, w, axis=-1)
C
ceci3 已提交
451 452 453 454 455 456 457 458 459 460
            else:
                raise ValueError(
                    "The weight is not a Variable, please convert to Variable.")

        if self.reduction == 'sum':
            return fluid.layers.reduce_sum(out)
        elif self.reduction == 'mean':
            return fluid.layers.reduce_mean(out)
        else:
            return out
461 462 463 464


class NLLLoss(fluid.dygraph.Layer):
    """
465 466
	:alias_main: paddle.nn.NLLLoss
	:alias: paddle.nn.NLLLoss,paddle.nn.layer.NLLLoss,paddle.nn.layer.loss.NLLLoss
S
swtkiwi 已提交
467

468
    This class accepts input and target label and returns negative log likelihood
469 470 471
    cross error. It is useful to train a classification problem with C classes.
     
    The input for the loss is epected to contain log-probabilities of
472
    each classes. It has to be a Tensor of size either (batch_size, C) or
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    (batch_size, C, d1, d2, ..., dK) with K >= 1 for the K-dimensional case.
    The label for the loss should be a class index in the range [0, C-1]
    where C is the number of classes. If ignore_index is specified, the
    specified target value does not contribute to the input gradient.
    
    If the optional argument `weight` is provided, it should be a 1D Tensor
    assigning weight to each of the classed. This is particularly useful
    when you have an unbalanced training set.
 
    The loss is calculated as follows.
    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:

    .. math::
        \ell(x, y) = L = \{l_1,\dots,l_N\}^\\top, \quad
        l_n = - w_{y_n} x_{n,y_n}, \quad
        w_{c} = \\text{weight}[c] \cdot \mathbb{1}\{c \\not= \\text{ignore\\_index}\},

    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
    (default ``'mean'``), then

    .. math::
        \ell(x, y) = \\begin{cases}
            \\sum_{n=1}^N \\frac{1}{\\sum_{n=1}^N w_{y_n}} l_n, &
            \\text{if reduction} = \\text{'mean';}\\\\
            \\sum_{n=1}^N l_n,  &
            \\text{if reduction} = \\text{'sum'.}
        \\end{cases}

    Parameters:
502 503
        weight (Tensor, optional): Weight tensor, a manual rescaling weight given
            to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
504 505
            it treated as if having all ones. the data type is 
            float32, float64, Default is ``'None'``.
506 507
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient.
508 509
        reduction (str, optional): Indicate how to average the loss, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
510 511 512
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
513
            Default is ``'mean'``.
514 515
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.
516

517 518 519 520 521 522 523 524 525
    Shape:
        input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
            But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
            The data type is float32, float64.
        label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
            The data type is int64.
        output (Tensor): the `negative log likelihood loss` between input `x` and `label`.
            If `reduction` is `'none'`, the shape is `[N, *]`.
            If `reduction` is `'sum'` or `'mean'`, the shape is `[1]`.
526 527 528 529

    Examples:
        .. code-block:: python

530 531
                import paddle
                import numpy as np
532

533 534
                nll_loss = paddle.nn.layer.NLLLoss()
                log_softmax = paddle.nn.LogSoftmax(axis=1)
535

536 537 538 539 540 541
                input_np = np.array([[0.88103855, 0.9908683 , 0.6226845 ],
                                 [0.53331435, 0.07999352, 0.8549948 ],
                                 [0.25879037, 0.39530203, 0.698465  ],
                                 [0.73427284, 0.63575995, 0.18827209],
                                 [0.05689114, 0.0862954 , 0.6325046 ]]).astype(np.float32)
                label_np = np.array([0, 2, 1, 1, 0]).astype(np.int64)
542

543 544 545 546 547 548 549
                place = paddle.CPUPlace()
                paddle.disable_static(place)
                input = paddle.to_variable(input_np)
                log_out = log_softmax(input)
                label = paddle.to_variable(label_np)
                result = nll_loss(log_out, label)
                print(result.numpy()) # [1.0720209]
550

551
    """
552

553 554 555 556 557 558
    def __init__(self,
                 weight=None,
                 ignore_index=-100,
                 reduction='mean',
                 name=None):
        if reduction not in ['sum', 'mean', 'none']:
559
            raise ValueError(
560 561 562 563 564 565 566
                "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
                "'none', but received %s, which is not allowed." % reduction)
        super(NLLLoss, self).__init__()
        self._weight = weight
        self._ignore_index = ignore_index
        self._reduction = reduction
        self._name = name
567

568 569 570 571 572 573 574 575
    def forward(self, input, label):
        return F.nll_loss(
            input,
            label,
            weight=self._weight,
            ignore_index=self._ignore_index,
            reduction=self._reduction,
            name=self._name)
576 577


578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
class KLDivLoss(fluid.dygraph.Layer):
    """
    This interface calculates the Kullback-Leibler divergence loss
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    Parameters:
        reduction (str, optional): Indicate how to average the loss, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; 
            Default is ``'mean'``.

    Shape:
      - input: (N, *) where * means, any number of additional dimensions.
      - label: (N, *), same shape as input
      - output: tensor with shape: (1) by default.


    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn as nn
            
            paddle.enable_imperative()

            shape = (5, 20)
            x = np.random.uniform(-10, 10, shape).astype('float32')
            target = np.random.uniform(-10, 10, shape).astype('float32')

            # 'batchmean' reduction, loss shape will be [N]
            kldiv_criterion = nn.KLDivLoss(reduction='batchmean')
            pred_loss = kldiv_criterion(paddle.to_variable(x),
                                        paddle.to_variable(target))
            # shape=[5]
            
            # 'mean' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='mean')
            pred_loss = kldiv_criterion(paddle.to_variable(x),
                                        paddle.to_variable(target))
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='sum')
            pred_loss = kldiv_criterion(paddle.to_variable(x),
                                        paddle.to_variable(target))
            # shape=[1]

            # 'none' reduction, loss shape is same with X shape
            kldiv_criterion = nn.KLDivLoss(reduction='none')
            pred_loss = kldiv_criterion(paddle.to_variable(x),
                                        paddle.to_variable(target))
            # shape=[5, 20]
    """

    def __init__(self, reduction='mean'):
        super(KLDivLoss, self).__init__()
        self.reduction = reduction

    def forward(self, input, label):
        out = paddle.nn.functional.kl_div(input, label, self.reduction)
        return out


647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
class MarginRankingLoss(fluid.dygraph.Layer):
    """

    This interface is used to construct a callable object of the ``MarginRankingLoss`` class.
    The MarginRankingLoss layer calculates the margin rank loss between the input, other and target 
    , use the math function as follows.

    .. math:: 
        margin\_rank\_loss = max(0, -target * (input - other) + margin)

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape: 
        input: N-D Tensor, the shape is [N, *], N is batch size and `*` means any number of additional dimensions., available dtype is float32, float64.
        other: N-D Tensor, `other` have the same shape and dtype as `input`.
        target: N-D Tensor, target have the same shape and dtype as `input`.
        out: If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.

    Returns:
        A callable object of MarginRankingLoss.

    Examples:

        .. code-block:: python

            import numpy as np 
            import paddle 
            
            paddle.disable_static()
             
            input = paddle.to_variable(np.array([[1, 2], [3, 4]]).astype("float32"))
            other = paddle.to_variable(np.array([[2, 1], [2, 4]]).astype("float32"))
            target = paddle.to_variable(np.array([[1, -1], [-1, -1]]).astype("float32"))
            margin_rank_loss = paddle.nn.MarginRankingLoss()
            loss = margin_rank_loss(input, other, target) 
            print(loss.numpy()) # [0.75]
    """

    def __init__(self, margin=0.0, reduction='mean', name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)
        super(MarginRankingLoss, self).__init__()
        self.margin = margin
        self.reduction = reduction
        self.name = name

    def forward(self, input, other, target):
        out = paddle.nn.functional.margin_ranking_loss(
            input, other, target, self.margin, self.reduction, self.name)
        return out