loss.py 25.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define loss functions of neural network  
16
import numpy as np
L
Leo Chen 已提交
17
import paddle.fluid as fluid
18
import paddle.fluid.core as core
19
import paddle
20
from .. import functional as F
21

L
Leo Chen 已提交
22
__all__ = [
23
    #       'NCELoss',
24
    'CrossEntropyLoss',
25
    'MSELoss',
L
Leo Chen 已提交
26
    'L1Loss',
27
    'NLLLoss',
28 29
    'BCELoss',
    'MarginRankingLoss'
L
Leo Chen 已提交
30 31 32
]


33 34
class CrossEntropyLoss(fluid.dygraph.Layer):
    """
35 36
	:alias_main: paddle.nn.CrossEntropyLoss
	:alias: paddle.nn.CrossEntropyLoss,paddle.nn.layer.CrossEntropyLoss,paddle.nn.layer.loss.CrossEntropyLoss
S
swtkiwi 已提交
37

38 39
    This operator implements the cross entropy loss function. This OP combines ``LogSoftmax``,
    and ``NLLLoss`` together.
40

41 42
    It is useful when training a classification problem with ``C`` classes.
    If provided, the optional argument ``weight`` should be a 1D Variable assigning
43 44 45
    weight to each of the classes.

    For predictions label, and target label, the loss is calculated as follows.
46

47 48 49 50 51
    .. math::

        loss_j =  -\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right), j = 1,..., K

52 53
    If weight is not ``None``:

54 55 56 57 58 59
    .. math::

        loss_j =  \\text{weight[class]}(-\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right)), j = 1,..., K

    Parameters:
60 61 62 63 64 65
        input (Variable): Input tensor, the data type is float32, float64. Shape is
	    (N, C), where C is number of classes, and if shape is more than 2D, this
	    is (N, C, D1, D2,..., Dk), k >= 1. 
        label (Variable): Label tensor, the data type is int64. Shape is (N), where each 
	    value is 0 <= label[i] <= C-1, and if shape is more than 2D, this is
	    (N, D1, D2,..., Dk), k >= 1.
66
        weight (Variable, optional): Weight tensor, a manual rescaling weight given
67 68
            to each class and the shape is (C). It has the same dimensions as class
	    number and the data type is float32, float64. Default is ``'None'``.
69 70 71 72 73 74
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
75 76
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient. Default is ``-100``.
77

78 79
    Returns:
        The tensor variable storing the cross_entropy_loss of input and label.
80

81
    Return type: Variable.
82

83 84 85 86 87 88 89 90
    Examples:
        .. code-block:: python

            # declarative mode
            import paddle
            import paddle.fluid as fluid
            import numpy as np

91 92 93
            input = fluid.data(name='input', shape=[5, 100], dtype='float64')
            label = fluid.data(name='label', shape=[5], dtype='int64')
            weight = fluid.data(name='weight', shape=[100], dtype='float64')
94
            ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean')
95
            output = ce_loss(input, label)
96 97 98
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
99 100 101
            input_data = np.random.random([5, 100]).astype("float64")
            label_data = np.random.randint(0, 100, size=(5)).astype(np.int64)
            weight_data = np.random.random([100]).astype("float64")
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
            output = exe.run(fluid.default_main_program(),
                        feed={"input": input_data, "label": label_data,"weight": weight_data},
                        fetch_list=[output],
                        return_numpy=True)
            print(output)

            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                weight = dg.to_variable(weight_data)
                ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean')
                output = ce_loss(input, label)
                print(output.numpy())
    """

119
    def __init__(self, weight=None, reduction='mean', ignore_index=-100):
120 121 122
        super(CrossEntropyLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
123
        self.ignore_index = ignore_index
124 125 126

    def forward(self, input, label):
        fluid.data_feeder.check_variable_and_dtype(
127 128 129
            input, 'input', ['float32', 'float64'], 'cross_entropy_loss')
        fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'],
                                                   'cross_entropy_loss')
130 131 132

        if self.reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
133 134 135 136 137 138 139 140 141 142 143 144 145 146
                "The value of 'reduction' in cross_entropy_loss should be 'sum', 'mean' or"
                " 'none', but received %s, which is not allowed." %
                self.reduction)

        log_softmax = paddle.nn.LogSoftmax()
        log_softmax_out = log_softmax(input)
        if self.weight is not None and not isinstance(self.weight,
                                                      fluid.framework.Variable):
            raise ValueError(
                "The weight' is not a Variable, please convert to Variable.")
        nll_loss = paddle.nn.loss.NLLLoss(
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)
147

148
        return nll_loss(log_softmax_out, label)
149 150


151 152
class MSELoss(fluid.dygraph.layers.Layer):
    """
153 154
	:alias_main: paddle.nn.MSELoss
	:alias: paddle.nn.MSELoss,paddle.nn.layer.MSELoss,paddle.nn.layer.loss.MSELoss
S
swtkiwi 已提交
155

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    **Mean Square Error Loss**
    Computes the mean square error (squared L2 norm) of given input and label.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

174
    where `input` and `label` are `float32` tensors of same shape.
175 176

    Parameters:
177 178
        input (Variable): Input tensor, the data type is float32,
        label (Variable): Label tensor, the data type is float32,
179 180
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
181 182 183 184 185 186 187 188 189 190
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. 
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned. 
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned. 
            Default is ``'mean'``.

    Returns:
        The tensor variable storing the MSE loss of input and label.

    Return type:
        Variable.
191 192 193

    Examples:
        .. code-block:: python
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

            import numpy as np
            import paddle
            from paddle import fluid
            import paddle.fluid.dygraph as dg

            mse_loss = paddle.nn.loss.MSELoss()
            input = fluid.data(name="input", shape=[1])
            label = fluid.data(name="label", shape=[1])
            place = fluid.CPUPlace()
            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")

            # declarative mode
            output = mse_loss(input,label)
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output_data = exe.run(
                fluid.default_main_program(),
                feed={"input":input_data, "label":label_data},
                fetch_list=[output],
                return_numpy=True)
            print(output_data)
            # [array([0.04000002], dtype=float32)]

            # imperative mode
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                output = mse_loss(input, label)
                print(output.numpy())
                # [0.04000002]
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    """

    def __init__(self, reduction='mean'):
        super(MSELoss, self).__init__()
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', "
                "but received {}.".format(reduction))
        self.reduction = reduction

    def forward(self, input, label):
        if not fluid.framework.in_dygraph_mode():
            fluid.data_feeder.check_variable_and_dtype(input, 'input',
                                                       ['float32'], 'MSELoss')
            fluid.data_feeder.check_variable_and_dtype(label, 'label',
                                                       ['float32'], 'MSELoss')

        square_out = fluid.layers.square(
            fluid.layers.elementwise_sub(input, label))
        if self.reduction == 'none':
            return square_out

        reduce_op = 'reduce_mean'
        if self.reduction == 'sum':
            reduce_op = 'reduce_sum'

        return getattr(fluid.layers, reduce_op)(square_out)


L
Leo Chen 已提交
255 256 257
class L1Loss(fluid.dygraph.Layer):
    """
    This interface is used to construct a callable object of the ``L1Loss`` class.
258 259 260
    The L1Loss layer calculates the L1 Loss of ``x`` and ``label`` as follows.

     If :attr:`reduction` set to ``'none'``, the loss is:
L
Leo Chen 已提交
261 262

    .. math::
263 264 265 266
        Out = \lvert x - label\rvert

    If :attr:`reduction` set to ``'mean'``, the loss is:

L
Leo Chen 已提交
267
    .. math::
268 269 270 271
        Out = MEAN(\lvert x - label\rvert)

    If :attr:`reduction` set to ``'sum'``, the loss is:

L
Leo Chen 已提交
272
    .. math::
273
        Out = SUM(\lvert x - label\rvert)
L
Leo Chen 已提交
274 275 276 277 278 279 280 281 282

    
    Parameters:
        reduction (str, optional): Indicate the reduction to apply to the loss, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned; 
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. 
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. 
            Default is ``'mean'``.
283 284 285 286 287 288 289 290 291
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        x (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, *], same shape as ``x`` . It's data type should be float32, float64, int32, int64.
        output (Tensor): The L1 Loss of ``x`` and ``label``. 
            If :attr:`reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``x`` .
            If :attr:`reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1], which means the output is a scalar.
            
L
Leo Chen 已提交
292 293 294
    Examples:
        .. code-block:: python
            import paddle
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
            import numpy as np

            paddle.disable_static()
            x_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
            label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
            x = paddle.to_variable(x_data)
            label = paddle.to_variable(label_data)

            l1_loss = paddle.nn.loss.L1Loss()
            output = l1_loss(x, label)
            print(output.numpy())  
            # [0.35]

            l1_loss = paddle.nn.loss.L1Loss(reduction='sum')
            output = l1_loss(x, label)
            print(output.numpy())  
            # [1.4]

            l1_loss = paddle.nn.loss.L1Loss(reduction='none')
            output = l1_loss(x, label)
            print(output.numpy())  
            # [[0.20000005 0.19999999]
            # [0.2        0.79999995]]
L
Leo Chen 已提交
318 319
    """

320
    def __init__(self, reduction='mean', name=None):
L
Leo Chen 已提交
321 322 323 324 325 326
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)
        super(L1Loss, self).__init__()
        self.reduction = reduction
327
        self.name = name
L
Leo Chen 已提交
328

329 330 331
    def forward(self, x, label):
        return paddle.nn.functional.l1_loss(
            x, label, self.reduction, name=self.name)
C
ceci3 已提交
332 333 334 335


class BCELoss(fluid.dygraph.Layer):
    """
336 337
	:alias_main: paddle.nn.BCELoss
	:alias: paddle.nn.BCELoss,paddle.nn.layer.BCELoss,paddle.nn.layer.loss.BCELoss
S
swtkiwi 已提交
338

C
ceci3 已提交
339 340 341 342
    This interface is used to construct a callable object of the ``BCELoss`` class.
    The BCELoss layer measures the binary_cross_entropy loss between input predictions 
    and target labels. The binary_cross_entropy loss can be described as:

C
ceci3 已提交
343
    If :attr:`weight` is set, the loss is:
C
ceci3 已提交
344 345

    .. math::
C
ceci3 已提交
346 347
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
    If :attr:`weight` is None, the loss is:
C
ceci3 已提交
348 349

    .. math::
C
ceci3 已提交
350 351 352
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the unreduced loss is:
C
ceci3 已提交
353

C
ceci3 已提交
354 355 356
    .. math::
        Out = Out
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
C
ceci3 已提交
357

C
ceci3 已提交
358 359 360
    .. math::
        Out = MEAN(Out)
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
C
ceci3 已提交
361

C
ceci3 已提交
362 363
    .. math::
        Out = SUM(Out)
C
ceci3 已提交
364 365 366 367 368 369 370 371

    Note that the input predictions always be the output of sigmoid, and the target labels 
    should be numbers between 0 and 1.

    The shape of input predictions and target labels are [N, *], where N is batch_size and `*` 
    means any number of additional dimensions. If ``reduction`` is ``'none'``, the shape of 
    output is scalar, else the shape of output is same as input.

C
ceci3 已提交
372
    Parameters:
C
ceci3 已提交
373 374 375
        weight (Variable, optional): A manual rescaling weight given to the loss of each 
            batch element. If given, has to be a Variable of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
C
ceci3 已提交
376 377
        reduction (str, optional): Indicate how to average the loss by batch_size, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
C
ceci3 已提交
378
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
C
ceci3 已提交
379
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; 
C
ceci3 已提交
380
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
C
ceci3 已提交
381
            Default is ``'mean'``.
C
ceci3 已提交
382 383 384 385

    Returns: 
        A callable object of BCELoss.

C
ceci3 已提交
386 387
    Examples:
        .. code-block:: python
C
ceci3 已提交
388

C
ceci3 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
            # declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            input = fluid.data(name="input", shape=[3, 1], dtype='float32')
            label = fluid.data(name="label", shape=[3, 1], dtype='float32')
            bce_loss = paddle.nn.loss.BCELoss()
            output = bce_loss(input, label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
    
            input_data = np.array([0.5, 0.6, 0.7]).astype("float32")
            label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
            output_data = exe.run(fluid.default_main_program(),
                    feed={"input":input_data, "label":label_data},
                    fetch_list=[output],
                    return_numpy=True)
    
            print(output_data)  # [array([0.65537095], dtype=float32)]
            
            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                output = bce_loss(input, label)
                print(output.numpy())  # [0.65537095]
    """

    def __init__(self, weight=None, reduction='mean'):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)

        super(BCELoss, self).__init__()
        self.weight = weight
        self.reduction = reduction

    def forward(self, input, label):
        dtype = self._helper.input_dtype(input)

        fluid.data_feeder.check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'bce_loss')
        fluid.data_feeder.check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'bce_loss')

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        self._helper.append_op(
            type='bce_loss',
            inputs={
                'X': [input],
                'Label': [label],
            },
            outputs={'Out': [out]})

        if self.weight is not None:
            if isinstance(self.weight, fluid.framework.Variable):
                w = self.weight
C
ceci3 已提交
449
                out = fluid.layers.elementwise_mul(out, w, axis=-1)
C
ceci3 已提交
450 451 452 453 454 455 456 457 458 459
            else:
                raise ValueError(
                    "The weight is not a Variable, please convert to Variable.")

        if self.reduction == 'sum':
            return fluid.layers.reduce_sum(out)
        elif self.reduction == 'mean':
            return fluid.layers.reduce_mean(out)
        else:
            return out
460 461 462 463


class NLLLoss(fluid.dygraph.Layer):
    """
464 465
	:alias_main: paddle.nn.NLLLoss
	:alias: paddle.nn.NLLLoss,paddle.nn.layer.NLLLoss,paddle.nn.layer.loss.NLLLoss
S
swtkiwi 已提交
466

467
    This class accepts input and target label and returns negative log likelihood
468 469 470
    cross error. It is useful to train a classification problem with C classes.
     
    The input for the loss is epected to contain log-probabilities of
471
    each classes. It has to be a Tensor of size either (batch_size, C) or
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
    (batch_size, C, d1, d2, ..., dK) with K >= 1 for the K-dimensional case.
    The label for the loss should be a class index in the range [0, C-1]
    where C is the number of classes. If ignore_index is specified, the
    specified target value does not contribute to the input gradient.
    
    If the optional argument `weight` is provided, it should be a 1D Tensor
    assigning weight to each of the classed. This is particularly useful
    when you have an unbalanced training set.
 
    The loss is calculated as follows.
    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:

    .. math::
        \ell(x, y) = L = \{l_1,\dots,l_N\}^\\top, \quad
        l_n = - w_{y_n} x_{n,y_n}, \quad
        w_{c} = \\text{weight}[c] \cdot \mathbb{1}\{c \\not= \\text{ignore\\_index}\},

    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
    (default ``'mean'``), then

    .. math::
        \ell(x, y) = \\begin{cases}
            \\sum_{n=1}^N \\frac{1}{\\sum_{n=1}^N w_{y_n}} l_n, &
            \\text{if reduction} = \\text{'mean';}\\\\
            \\sum_{n=1}^N l_n,  &
            \\text{if reduction} = \\text{'sum'.}
        \\end{cases}

    Parameters:
501 502
        weight (Tensor, optional): Weight tensor, a manual rescaling weight given
            to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
503 504
            it treated as if having all ones. the data type is 
            float32, float64, Default is ``'None'``.
505 506
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient.
507 508
        reduction (str, optional): Indicate how to average the loss, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
509 510 511
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
512
            Default is ``'mean'``.
513 514
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.
515

516 517 518 519 520 521 522 523 524
    Shape:
        input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
            But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
            The data type is float32, float64.
        label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
            The data type is int64.
        output (Tensor): the `negative log likelihood loss` between input `x` and `label`.
            If `reduction` is `'none'`, the shape is `[N, *]`.
            If `reduction` is `'sum'` or `'mean'`, the shape is `[1]`.
525 526 527 528

    Examples:
        .. code-block:: python

529 530
                import paddle
                import numpy as np
531

532 533
                nll_loss = paddle.nn.layer.NLLLoss()
                log_softmax = paddle.nn.LogSoftmax(axis=1)
534

535 536 537 538 539 540
                input_np = np.array([[0.88103855, 0.9908683 , 0.6226845 ],
                                 [0.53331435, 0.07999352, 0.8549948 ],
                                 [0.25879037, 0.39530203, 0.698465  ],
                                 [0.73427284, 0.63575995, 0.18827209],
                                 [0.05689114, 0.0862954 , 0.6325046 ]]).astype(np.float32)
                label_np = np.array([0, 2, 1, 1, 0]).astype(np.int64)
541

542 543 544 545 546 547 548
                place = paddle.CPUPlace()
                paddle.disable_static(place)
                input = paddle.to_variable(input_np)
                log_out = log_softmax(input)
                label = paddle.to_variable(label_np)
                result = nll_loss(log_out, label)
                print(result.numpy()) # [1.0720209]
549

550
    """
551

552 553 554 555 556 557
    def __init__(self,
                 weight=None,
                 ignore_index=-100,
                 reduction='mean',
                 name=None):
        if reduction not in ['sum', 'mean', 'none']:
558
            raise ValueError(
559 560 561 562 563 564 565
                "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
                "'none', but received %s, which is not allowed." % reduction)
        super(NLLLoss, self).__init__()
        self._weight = weight
        self._ignore_index = ignore_index
        self._reduction = reduction
        self._name = name
566

567 568 569 570 571 572 573 574
    def forward(self, input, label):
        return F.nll_loss(
            input,
            label,
            weight=self._weight,
            ignore_index=self._ignore_index,
            reduction=self._reduction,
            name=self._name)
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643


class MarginRankingLoss(fluid.dygraph.Layer):
    """

    This interface is used to construct a callable object of the ``MarginRankingLoss`` class.
    The MarginRankingLoss layer calculates the margin rank loss between the input, other and target 
    , use the math function as follows.

    .. math:: 
        margin\_rank\_loss = max(0, -target * (input - other) + margin)

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape: 
        input: N-D Tensor, the shape is [N, *], N is batch size and `*` means any number of additional dimensions., available dtype is float32, float64.
        other: N-D Tensor, `other` have the same shape and dtype as `input`.
        target: N-D Tensor, target have the same shape and dtype as `input`.
        out: If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.

    Returns:
        A callable object of MarginRankingLoss.

    Examples:

        .. code-block:: python

            import numpy as np 
            import paddle 
            
            paddle.disable_static()
             
            input = paddle.to_variable(np.array([[1, 2], [3, 4]]).astype("float32"))
            other = paddle.to_variable(np.array([[2, 1], [2, 4]]).astype("float32"))
            target = paddle.to_variable(np.array([[1, -1], [-1, -1]]).astype("float32"))
            margin_rank_loss = paddle.nn.MarginRankingLoss()
            loss = margin_rank_loss(input, other, target) 
            print(loss.numpy()) # [0.75]
    """

    def __init__(self, margin=0.0, reduction='mean', name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)
        super(MarginRankingLoss, self).__init__()
        self.margin = margin
        self.reduction = reduction
        self.name = name

    def forward(self, input, other, target):
        out = paddle.nn.functional.margin_ranking_loss(
            input, other, target, self.margin, self.reduction, self.name)
        return out