loss.py 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define loss functions of neural network  
L
Leo Chen 已提交
16 17 18 19 20 21 22
import paddle.fluid as fluid
__all__ = [
    #'NCELoss',
    #    'CrossEntropyLoss',
    #    'MSELoss',
    'L1Loss',
    #    'NLLLoss',
C
ceci3 已提交
23
    'BCELoss'
L
Leo Chen 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
]


class L1Loss(fluid.dygraph.Layer):
    """
    This interface is used to construct a callable object of the ``L1Loss`` class.
    The L1Loss layer calculates the L1 Loss of input predictions and target 
    labels as follows.

    If :attr:`reduction` set to ``'none'``, the unreduced loss is:
    .. math::
        Out = |input - label|
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
    .. math::
        Out = MEAN(|input - label|)
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
    .. math::
        Out = SUM(|input - label|)

    The shape of input predictions and target labels are [N, *], where N is batch_size and `*` 
    means any number of additional dimensions.
    If :attr:`reduction` is ``'none'``, the shape of output loss is [N, *], the same as input.
    If :attr:`reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1], which means the output is a scalar.
    
    Parameters:
        reduction (str, optional): Indicate the reduction to apply to the loss, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned; 
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. 
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. 
            Default is ``'mean'``.
    Returns:
        A callable object of L1Loss.
    Examples:
        .. code-block:: python
            # declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            input = fluid.data(name="input", shape=[1])
            label = fluid.data(name="label", shape=[1])
            l1_loss = paddle.nn.loss.L1Loss(reduction='mean')
            output = l1_loss(input,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
    
            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")
            output_data = exe.run(fluid.default_main_program(),
                    feed={"input":input_data, "label":label_data},
                    fetch_list=[output],
                    return_numpy=True)
    
            print(output_data)  # [array([0.2], dtype=float32)]
            
            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                l1_loss = paddle.nn.loss.L1Loss(reduction='mean')
                output = l1_loss(input,label)
                print(output.numpy())  # [0.2]
    """

    def __init__(self, reduction='mean'):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)
        super(L1Loss, self).__init__()
        self.reduction = reduction

    def forward(self, input, label):
        fluid.data_feeder.check_variable_and_dtype(
            input, 'input', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')
        fluid.data_feeder.check_variable_and_dtype(
            label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')

        unreduced = fluid.layers.elementwise_sub(input, label, act='abs')

        if self.reduction == 'sum':
            return fluid.layers.reduce_sum(unreduced)
        elif self.reduction == 'mean':
            return fluid.layers.reduce_mean(unreduced)
        else:
            return unreduced
C
ceci3 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220


class BCELoss(fluid.dygraph.Layer):
    """
    This op accepts input predictions and target label and returns binary 
    cross entropy error.
    For predictions label, and target label, the loss is calculated as follows.
    If :attr:`weight` is set, the loss is:
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
    If :attr:`weight` is None, the loss is:
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the unreduced loss is:
    .. math::
        Out = Out
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
    .. math::
        Out = MEAN(Out)
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
    .. math::
        Out = SUM(Out)
    Parameters:
        input (Variable): Input tensor, the data type is float32,
            float64. Input must in (0, 1).
        label (Variable): Label tensor, has the same shape with input, 
            the data type is float32, float64.
        weight (Variable, optional): Weight tensor, a manual rescaling weight given
            to each class. It has the same dimensions as class number and the data type
            is float32, float64, int32, int64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; 
            Default is ``'mean'``.
    Returns:
        The tensor variable storing the bce_loss of input and label.
    Return type: Variable.
    Examples:
        .. code-block:: python
            # declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            input = fluid.data(name="input", shape=[3, 1], dtype='float32')
            label = fluid.data(name="label", shape=[3, 1], dtype='float32')
            bce_loss = paddle.nn.loss.BCELoss()
            output = bce_loss(input, label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
    
            input_data = np.array([0.5, 0.6, 0.7]).astype("float32")
            label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
            output_data = exe.run(fluid.default_main_program(),
                    feed={"input":input_data, "label":label_data},
                    fetch_list=[output],
                    return_numpy=True)
    
            print(output_data)  # [array([0.65537095], dtype=float32)]
            
            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                output = bce_loss(input, label)
                print(output.numpy())  # [0.65537095]
    """

    def __init__(self, weight=None, reduction='mean'):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)

        super(BCELoss, self).__init__()
        self.weight = weight
        self.reduction = reduction

    def forward(self, input, label):
        dtype = self._helper.input_dtype(input)

        fluid.data_feeder.check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'bce_loss')
        fluid.data_feeder.check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'bce_loss')

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        self._helper.append_op(
            type='bce_loss',
            inputs={
                'X': [input],
                'Label': [label],
            },
            outputs={'Out': [out]})

        if self.weight is not None:
            if isinstance(self.weight, fluid.framework.Variable):
                w = self.weight
                out = fluid.layers.elementwise_mul(out, w, axis=0)
            else:
                raise ValueError(
                    "The weight is not a Variable, please convert to Variable.")

        if self.reduction == 'sum':
            return fluid.layers.reduce_sum(out)
        elif self.reduction == 'mean':
            return fluid.layers.reduce_mean(out)
        else:
            return out