loss.py 49.1 KB
Newer Older
1
# -*- coding: utf-8 -*
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
# TODO: define loss functions of neural network
17
import numpy as np
L
Leo Chen 已提交
18
import paddle.fluid as fluid
19
import paddle.fluid.core as core
20
import paddle
21
from .. import functional as F
22
from paddle.fluid.framework import core, in_dygraph_mode, _varbase_creator
23

L
Leo Chen 已提交
24
__all__ = [
25
    'BCEWithLogitsLoss',
26
    'CrossEntropyLoss',
27
    'HSigmoidLoss',
28
    'MSELoss',
L
Leo Chen 已提交
29
    'L1Loss',
30
    'NLLLoss',
31
    'BCELoss',
32
    'KLDivLoss',
33
    'MarginRankingLoss',
34
    'CTCLoss',
35
    'SmoothL1Loss',
L
Leo Chen 已提交
36 37 38
]


39
class BCEWithLogitsLoss(fluid.dygraph.Layer):
40
    r"""
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    This operator combines the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
    Also, we can see it as the combine of ``sigmoid_cross_entropy_with_logits``
    layer and some reduce operations.

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

    First this operator calculate loss function as follows:

    .. math::
           Out = -Labels * \\log(\\sigma(Logit)) - (1 - Labels) * \\log(1 - \\sigma(Logit))

    We know that :math:`\\sigma(Logit) = \\frac{1}{1 + \\e^{-Logit}}`. By substituting this we get:

    .. math::
           Out = Logit - Logit * Labels + \\log(1 + \\e^{-Logit})

    For stability and to prevent overflow of :math:`\\e^{-Logit}` when Logit < 0,
    we reformulate the loss as follows:

    .. math::
           Out = \\max(Logit, 0) - Logit * Labels + \\log(1 + \\e^{-\|Logit\|})

    Then, if ``weight`` or ``pos_weight`` is not None, this operator multiply the
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shapes:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``logit`` , else the shape of output is scalar.

    Returns:
        A callable object of BCEWithLogitsLoss.

    Examples:

        .. code-block:: python
            import paddle
            logit = paddle.to_tensor([5.0, 1.0, 3.0], dtype="float32")
            label = paddle.to_tensor([1.0, 0.0, 1.0], dtype="float32")
            bce_logit_loss = paddle.nn.BCEWithLogitsLoss()
            output = bce_logit_loss(logit, label)
            print(output.numpy())  # [0.45618808]

    """

    def __init__(self,
                 weight=None,
                 reduction='mean',
                 pos_weight=None,
                 name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in BCEWithLogitsLoss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)

        super(BCEWithLogitsLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
        self.pos_weight = pos_weight
        self.name = name

    def forward(self, logit, label):
        out = paddle.nn.functional.binary_cross_entropy_with_logits(
            logit, label, self.weight, self.reduction, self.pos_weight,
            self.name)
        return out


143
class CrossEntropyLoss(fluid.dygraph.Layer):
144
    r"""
145
    By default, this operator implements the cross entropy loss function with softmax. This function 
146
    combines the calculation of the softmax operation and the cross entropy loss function 
147
    to provide a more numerically stable computing.
S
swtkiwi 已提交
148

149
    This operator will calculate the cross entropy loss function without softmax when use_softmax=False.
150

151 152 153
    By default, this operator will calculate the mean of the result, and you can also affect 
    the default behavior by using the reduction parameter. Please refer to the part of 
    parameters for details.
154

155 156 157
    This operator can be used to calculate the softmax cross entropy loss with soft and hard labels.
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels 
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
158

159
    The calculation of this operator includes the following two steps.
160

161
    -  **I.softmax cross entropy** 
162

163
        1. Hard label (each sample can only be assigned into one category)
164

165
        1.1. when use_softmax=True
166

167 168
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
169

170
            where, N is the number of samples and C is the number of categories.
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).



    -  **II.Weight and reduction processing** 

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
                \\loss_j=loss_j*weight[label_j] 
211

212

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

            2.1 if the ``reduction`` parameter is ``none`` 

            Return the previous result directly

            2.2 if the ``reduction`` parameter is ``sum`` 

            Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to 
            the ``weight`` parameter as follows. 

            2.3.1. If the  ``weight``  parameter is ``None`` 

            Return the average value of the previous results

             .. math::
                \\loss=\sum_{j}loss_j/N

            where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

             .. math::
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j] 

            2. Soft labels (soft_label = True)

             .. math::
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
 
 
256
    Parameters:
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

        - **weight** (Tensor, optional)

            a manual rescaling weight given to each class. 
            If given, has to be a Tensor of size C and the data type is float32, float64. 
            Default is ``'None'`` .

        - **ignore_index** (int64, optional)

            Specifies a target value that is ignored
            and does not contribute to the loss. A negative value means that no label 
            value needs to be ignored. Only valid when soft_label = False.  
            Default is ``-100`` .

        - **reduction** (str, optional)

            Indicate how to average the loss by batch_size,
274 275 276 277 278
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
279

280
        - **soft_label** (bool, optional)
281

282 283 284
            Indicate whether label is soft. 
            If soft_label=False, the label is hard.  If soft_label=True, the label is soft.
            Default is ``False``.
285

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        - **axis** (int, optional)

            The index of dimension to perform softmax calculations. 
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the number 
            of dimensions of input :attr:`input`. 
            Default is ``-1`` .

        - **use_softmax** (bool, optional)

            Indicate whether compute softmax before cross_entropy.
            Default is ``True``.

        - **name** (str,optional)

            The name of the operator. Default is ``None`` .
            For more information, please refer to :ref:`api_guide_Name` .


    Shape:

        - **input** (Tensor)

            Input tensor, the data type is float32, float64. Shape is
	    :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes ,  ``k >= 1`` . 

            Note: 

                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the 
                output of softmax operator, which will produce incorrect results.

                2. when use_softmax=False, it expects the output of softmax operator.
 

        - **label** (Tensor)

            1. If soft_label=False,the shape is 
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

            2. If soft_label=True, the shape and data type should be same with ``input`` , 
            and the sum of the labels for each sample should be 1.
 
        - **output** (Tensor)

            Return the softmax cross_entropy loss of ``input`` and ``label``.

            The data type is the same as input.

            If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.

            If :attr:`reduction` is ``'none'``:

            1. If soft_label = False, the dimension of return value is the same with ``label`` . 

            2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` . 

     Example1(hard labels):

        .. code-block:: python
            
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
            input =  paddle.rand([N, C], dtype='float64')  
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
            weight = paddle.rand([C], dtype='float64') 
            
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
                                       input,
                                       label)
            print(dy_ret.numpy()) #[5.41993642]


    Example2(soft labels):
364

365
        .. code-block:: python
C
Chen Long 已提交
366
            
367
            import paddle
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
                                                                  logits,  
                                                                  labels, 
                                                                  soft_label=True, 
                                                                  axis=axis,
                                                                  weight=weight,
                                                                  reduction=reduction)
            print(paddle_loss_mean.numpy()) #[1.12908343]

388 389
    """

390 391 392 393 394 395
    def __init__(self,
                 weight=None,
                 ignore_index=-100,
                 reduction='mean',
                 soft_label=False,
                 axis=-1,
396
                 use_softmax=True,
397
                 name=None):
398 399 400
        super(CrossEntropyLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
401
        self.ignore_index = ignore_index
402 403
        self.soft_label = soft_label
        self.axis = axis
404
        self.use_softmax = use_softmax
405
        self.name = name
406 407

    def forward(self, input, label):
408
        ret = paddle.nn.functional.cross_entropy(
409 410
            input,
            label,
411
            weight=self.weight,
412
            ignore_index=self.ignore_index,
413 414 415
            reduction=self.reduction,
            soft_label=self.soft_label,
            axis=self.axis,
416
            use_softmax=self.use_softmax,
417 418 419
            name=self.name)

        return ret
420 421


422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
class HSigmoidLoss(fluid.dygraph.Layer):
    """
    Hierarchical Sigmoid Layer.
    
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>_`. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        feature_size (int): The number of features.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight_attr (ParamAttr, optional): The parameter attribute for the learnable weights
            of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid will create a
            ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is
            initialized with Xavier. Default is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of hsigmoid. If it
            is set to False, no bias will be added. If it is set to None or one attribute of ParamAttr,
            hsigmoid will create a ParamAttr as bias_attr. If the Initializer of the bias_attr is not
            set, the bias is initialized zero. Default is None.
        is_custom (bool, optional): Whether use custom binary tree. If it's True, `path_table` and 
            `path_code` should be passed to its forward method, otherwise `path_table` and `path_code`
            should not be passed to its forward method. Default is False.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True,
            the gradient of weight and input will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        input (Tensor): The input tensor. The shapes is [N, D], where N is batch size and D is feature size. It's data type should be float32, float64.
        label (Tensor): It's shapes is [N, 1]. It's data type should be int64.
        output (Tensor): The HSigmoid Loss of ``input`` and ``label``. Shape is [N, 1]

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')

            input = paddle.uniform([2, 3])
            # [[-0.2820413   0.9528898  -0.81638825] # random
            #  [-0.6733154  -0.33866507  0.25770962]] # random
            label = paddle.to_tensor([0, 1, 4, 5])
            m = paddle.nn.HSigmoidLoss(3, 5)
            out = m(input, label)
            # [[2.4543471]
            #  [1.9359267]]
    """

    def __init__(self,
                 feature_size,
                 num_classes,
                 weight_attr=None,
                 bias_attr=None,
                 is_custom=False,
                 is_sparse=False,
                 name=None):
        super(HSigmoidLoss, self).__init__()
        if (num_classes < 2) and (not is_custom):
            raise ValueError(
                "num_classes must not be less than 2 with default tree")

        if (not is_custom) and (is_sparse):
            print("Sparse mode should not be used without custom tree")
            is_sparse = False

        self._feature_size = feature_size
        self._num_classes = num_classes
        self._is_custom = is_custom
        self._is_sparse = is_sparse

        self._weight_attr = weight_attr
        self._bias_attr = bias_attr

        self._name = name
        self._dtype = paddle.get_default_dtype()

        remote_prefetch = is_sparse
        print("With sparse mode, if your models has only"
              " small parameter prefetch may cause speed down")

        C = self._num_classes if is_custom else self._num_classes - 1
        self.weight = self.create_parameter(
            [C, self._feature_size],
            attr=self._weight_attr,
            is_bias=False,
            dtype=self._dtype)
        self.bias = self.create_parameter(
            [C, 1], attr=self._bias_attr, is_bias=True, dtype=self._dtype)

    def forward(self, input, label, path_table=None, path_code=None):
        out = F.hsigmoid_loss(
            input,
            label,
            self._num_classes,
            self.weight,
            self.bias,
            path_table=path_table,
            path_code=path_code,
            is_sparse=self._is_sparse,
            name=self._name)
        return out


544
class MSELoss(fluid.dygraph.layers.Layer):
545
    r"""
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
    **Mean Square Error Loss**
    Computes the mean square error (squared L2 norm) of given input and label.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

564
    where `input` and `label` are `float32` tensors of same shape.
565 566 567 568

    Parameters:
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
569 570 571
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
572 573
            Default is ``'mean'``.

B
Bai Yifan 已提交
574 575 576 577
    Shape:
        input (Tensor): Input tensor, the data type is float32 or float64
        label (Tensor): Label tensor, the data type is float32 or float64
        output (Tensor): output tensor storing the MSE loss of input and label, the data type is same as input.
578 579 580

    Examples:
        .. code-block:: python
581 582 583 584 585 586 587

            import numpy as np
            import paddle

            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")

B
Bai Yifan 已提交
588 589 590 591
            mse_loss = paddle.nn.loss.MSELoss()
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
            output = mse_loss(input, label)
592
            print(output)
B
Bai Yifan 已提交
593
            # [0.04000002]
594 595 596 597 598 599 600 601 602 603 604 605
    """

    def __init__(self, reduction='mean'):
        super(MSELoss, self).__init__()
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', "
                "but received {}.".format(reduction))
        self.reduction = reduction

    def forward(self, input, label):
        if not fluid.framework.in_dygraph_mode():
B
Bai Yifan 已提交
606 607 608 609
            fluid.data_feeder.check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'MSELoss')
            fluid.data_feeder.check_variable_and_dtype(
                label, 'label', ['float32', 'float64'], 'MSELoss')
610 611 612 613 614 615 616 617 618 619 620 621 622

        square_out = fluid.layers.square(
            fluid.layers.elementwise_sub(input, label))
        if self.reduction == 'none':
            return square_out

        reduce_op = 'reduce_mean'
        if self.reduction == 'sum':
            reduce_op = 'reduce_sum'

        return getattr(fluid.layers, reduce_op)(square_out)


L
Leo Chen 已提交
623
class L1Loss(fluid.dygraph.Layer):
624
    r"""
L
Leo Chen 已提交
625
    This interface is used to construct a callable object of the ``L1Loss`` class.
626
    The L1Loss layer calculates the L1 Loss of ``input`` and ``label`` as follows.
627

628
     If `reduction` set to ``'none'``, the loss is:
L
Leo Chen 已提交
629 630

    .. math::
631
        Out = \lvert input - label\rvert
632

633
    If `reduction` set to ``'mean'``, the loss is:
634

L
Leo Chen 已提交
635
    .. math::
636
        Out = MEAN(\lvert input - label\rvert)
637

638
    If `reduction` set to ``'sum'``, the loss is:
639

L
Leo Chen 已提交
640
    .. math::
641
        Out = SUM(\lvert input - label\rvert)
L
Leo Chen 已提交
642

643

L
Leo Chen 已提交
644
    Parameters:
645
        reduction (str, optional): Indicate the reduction to apply to the loss,
L
Leo Chen 已提交
646
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
647 648 649
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
L
Leo Chen 已提交
650
            Default is ``'mean'``.
651 652 653
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
654 655
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
656
        output (Tensor): The L1 Loss of ``input`` and ``label``.
657 658
            If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
659

L
Leo Chen 已提交
660 661
    Examples:
        .. code-block:: python
C
Chen Long 已提交
662
            
L
Leo Chen 已提交
663
            import paddle
664
            import numpy as np
665

666 667 668 669
            input_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
            label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
670

C
Chen Long 已提交
671
            l1_loss = paddle.nn.L1Loss()
672
            output = l1_loss(input, label)
673
            print(output.numpy())
674 675
            # [0.35]

C
Chen Long 已提交
676
            l1_loss = paddle.nn.L1Loss(reduction='sum')
677
            output = l1_loss(input, label)
678
            print(output.numpy())
679 680
            # [1.4]

C
Chen Long 已提交
681
            l1_loss = paddle.nn.L1Loss(reduction='none')
682
            output = l1_loss(input, label)
C
Chen Long 已提交
683
            print(output)
684
            # [[0.20000005 0.19999999]
685
            # [0.2        0.79999995]]
L
Leo Chen 已提交
686 687
    """

688
    def __init__(self, reduction='mean', name=None):
L
Leo Chen 已提交
689 690 691 692 693 694
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)
        super(L1Loss, self).__init__()
        self.reduction = reduction
695
        self.name = name
L
Leo Chen 已提交
696

697
    def forward(self, input, label):
698
        return paddle.nn.functional.l1_loss(
699
            input, label, self.reduction, name=self.name)
C
ceci3 已提交
700 701 702 703


class BCELoss(fluid.dygraph.Layer):
    """
C
ceci3 已提交
704
    This interface is used to construct a callable object of the ``BCELoss`` class.
705 706
    The BCELoss layer measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:
C
ceci3 已提交
707

C
ceci3 已提交
708
    If :attr:`weight` is set, the loss is:
C
ceci3 已提交
709 710

    .. math::
C
ceci3 已提交
711
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
712

C
ceci3 已提交
713
    If :attr:`weight` is None, the loss is:
C
ceci3 已提交
714 715

    .. math::
C
ceci3 已提交
716 717
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

718
    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.
C
ceci3 已提交
719

C
ceci3 已提交
720
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
C
ceci3 已提交
721

C
ceci3 已提交
722 723
    .. math::
        Out = MEAN(Out)
724

C
ceci3 已提交
725
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
C
ceci3 已提交
726

C
ceci3 已提交
727 728
    .. math::
        Out = SUM(Out)
C
ceci3 已提交
729

730
    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
C
ceci3 已提交
731 732
    should be numbers between 0 and 1.

C
ceci3 已提交
733
    Parameters:
734 735
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
C
ceci3 已提交
736
            is float32, float64. Default is ``'None'``.
737
        reduction (str, optional): Indicate how to average the loss by batch_size,
C
ceci3 已提交
738
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
C
ceci3 已提交
739
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
740
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
C
ceci3 已提交
741
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
C
ceci3 已提交
742
            Default is ``'mean'``.
743 744 745 746
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
Z
Zhong Hui 已提交
747
        input (Tensor): 2-D tensor with shape: [N, *], N is batch_size, `*` means
748 749 750 751 752 753 754
            number of additional dimensions. The input ``input`` should always
            be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): 2-D tensor with the same shape as ``input``. The target
            labels which values should be numbers between 0 and 1. Available
            dtype is float32, float64.
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is scalar.
C
ceci3 已提交
755

756
    Returns:
C
ceci3 已提交
757 758
        A callable object of BCELoss.

C
ceci3 已提交
759 760
    Examples:
        .. code-block:: python
C
ceci3 已提交
761

C
ceci3 已提交
762 763 764 765
            import numpy as np
            import paddle
            input_data = np.array([0.5, 0.6, 0.7]).astype("float32")
            label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
766

Z
Zhong Hui 已提交
767 768
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
C
Chen Long 已提交
769
            bce_loss = paddle.nn.BCELoss()
770
            output = bce_loss(input, label)
C
Chen Long 已提交
771
            print(output)  # [0.65537095]
772

C
ceci3 已提交
773 774
    """

775
    def __init__(self, weight=None, reduction='mean', name=None):
C
ceci3 已提交
776 777 778 779 780 781 782 783
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)

        super(BCELoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
784
        self.name = name
C
ceci3 已提交
785 786

    def forward(self, input, label):
787 788 789
        out = paddle.nn.functional.binary_cross_entropy(
            input, label, self.weight, self.reduction, self.name)
        return out
790 791 792


class NLLLoss(fluid.dygraph.Layer):
793
    r"""
794 795
	:alias_main: paddle.nn.NLLLoss
	:alias: paddle.nn.NLLLoss,paddle.nn.layer.NLLLoss,paddle.nn.layer.loss.NLLLoss
S
swtkiwi 已提交
796

797
    This class accepts input and target label and returns negative log likelihood
798
    cross error. It is useful to train a classification problem with C classes.
799

800
    The input for the loss is epected to contain log-probabilities of
801
    each classes. It has to be a Tensor of size either (batch_size, C) or
802 803 804 805
    (batch_size, C, d1, d2, ..., dK) with K >= 1 for the K-dimensional case.
    The label for the loss should be a class index in the range [0, C-1]
    where C is the number of classes. If ignore_index is specified, the
    specified target value does not contribute to the input gradient.
806

807 808 809
    If the optional argument `weight` is provided, it should be a 1D Tensor
    assigning weight to each of the classed. This is particularly useful
    when you have an unbalanced training set.
810

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
    The loss is calculated as follows.
    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:

    .. math::
        \ell(x, y) = L = \{l_1,\dots,l_N\}^\\top, \quad
        l_n = - w_{y_n} x_{n,y_n}, \quad
        w_{c} = \\text{weight}[c] \cdot \mathbb{1}\{c \\not= \\text{ignore\\_index}\},

    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
    (default ``'mean'``), then

    .. math::
        \ell(x, y) = \\begin{cases}
            \\sum_{n=1}^N \\frac{1}{\\sum_{n=1}^N w_{y_n}} l_n, &
            \\text{if reduction} = \\text{'mean';}\\\\
            \\sum_{n=1}^N l_n,  &
            \\text{if reduction} = \\text{'sum'.}
        \\end{cases}

    Parameters:
831 832
        weight (Tensor, optional): Weight tensor, a manual rescaling weight given
            to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
833
            it treated as if having all ones. the data type is
834
            float32, float64, Default is ``'None'``.
835 836
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient.
837
        reduction (str, optional): Indicate how to average the loss,
838
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
839 840 841
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
842
            Default is ``'mean'``.
843 844
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.
845

846 847 848 849 850 851 852 853 854
    Shape:
        input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
            But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
            The data type is float32, float64.
        label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
            The data type is int64.
        output (Tensor): the `negative log likelihood loss` between input `x` and `label`.
            If `reduction` is `'none'`, the shape is `[N, *]`.
            If `reduction` is `'sum'` or `'mean'`, the shape is `[1]`.
855 856 857 858

    Examples:
        .. code-block:: python

859
                import paddle
860

861
                nll_loss = paddle.nn.loss.NLLLoss()
862
                log_softmax = paddle.nn.LogSoftmax(axis=1)
863

864 865 866 867 868
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                                          [0.53331435, 0.07999352, 0.8549948 ],
                                          [0.25879037, 0.39530203, 0.698465  ],
                                          [0.73427284, 0.63575995, 0.18827209],
                                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
869
                log_out = log_softmax(input)
870
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
871
                result = nll_loss(log_out, label)
872
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
873

874
    """
875

876 877 878 879 880 881
    def __init__(self,
                 weight=None,
                 ignore_index=-100,
                 reduction='mean',
                 name=None):
        if reduction not in ['sum', 'mean', 'none']:
882
            raise ValueError(
883 884 885 886 887 888 889
                "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
                "'none', but received %s, which is not allowed." % reduction)
        super(NLLLoss, self).__init__()
        self._weight = weight
        self._ignore_index = ignore_index
        self._reduction = reduction
        self._name = name
890

891 892 893 894 895 896 897 898
    def forward(self, input, label):
        return F.nll_loss(
            input,
            label,
            weight=self._weight,
            ignore_index=self._ignore_index,
            reduction=self._reduction,
            name=self._name)
899 900


901
class KLDivLoss(fluid.dygraph.Layer):
902
    r"""
903 904 905 906 907 908 909 910 911
    This interface calculates the Kullback-Leibler divergence loss
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    Parameters:
L
LielinJiang 已提交
912 913 914 915 916 917 918
        reduction (Tensor): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
919 920

    Shape:
921 922 923 924 925 926

        - input (Tensor): (N, *), where * means, any number of additional dimensions.

        - label (Tensor): (N, *), same shape as input.

        - output (Tensor): tensor with shape: [1] by default.
927 928 929 930 931 932 933 934


    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn as nn
935

936 937 938 939
            shape = (5, 20)
            x = np.random.uniform(-10, 10, shape).astype('float32')
            target = np.random.uniform(-10, 10, shape).astype('float32')

L
LielinJiang 已提交
940
            # 'batchmean' reduction, loss shape will be [1]
941
            kldiv_criterion = nn.KLDivLoss(reduction='batchmean')
942 943
            pred_loss = kldiv_criterion(paddle.to_tensor(x),
                                        paddle.to_tensor(target))
L
LielinJiang 已提交
944
            # shape=[1]
945

946 947
            # 'mean' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='mean')
948 949
            pred_loss = kldiv_criterion(paddle.to_tensor(x),
                                        paddle.to_tensor(target))
950 951 952 953
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='sum')
954 955
            pred_loss = kldiv_criterion(paddle.to_tensor(x),
                                        paddle.to_tensor(target))
956 957 958 959
            # shape=[1]

            # 'none' reduction, loss shape is same with X shape
            kldiv_criterion = nn.KLDivLoss(reduction='none')
960 961
            pred_loss = kldiv_criterion(paddle.to_tensor(x),
                                        paddle.to_tensor(target))
962 963 964 965 966 967 968 969
            # shape=[5, 20]
    """

    def __init__(self, reduction='mean'):
        super(KLDivLoss, self).__init__()
        self.reduction = reduction

    def forward(self, input, label):
L
LielinJiang 已提交
970
        out = F.kl_div(input, label, self.reduction)
971 972 973
        return out


974
class MarginRankingLoss(fluid.dygraph.Layer):
975
    r"""
976 977

    This interface is used to construct a callable object of the ``MarginRankingLoss`` class.
978
    The MarginRankingLoss layer calculates the margin rank loss between the input, other and label
979 980
    , use the math function as follows.

981
    .. math::
982
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

1001
    Shape:
N
Noel 已提交
1002 1003 1004
    
        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

1005
        other: N-D Tensor, `other` have the same shape and dtype as `input`.
N
Noel 已提交
1006

1007
        label: N-D Tensor, label have the same shape and dtype as `input`.
N
Noel 已提交
1008

1009
        output: If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
1010 1011 1012 1013 1014 1015 1016 1017

    Returns:
        A callable object of MarginRankingLoss.

    Examples:

        .. code-block:: python

1018 1019
            import paddle

C
Chen Long 已提交
1020 1021
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype="float32")
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype="float32")
Z
Zhong Hui 已提交
1022
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype="float32")
1023
            margin_rank_loss = paddle.nn.MarginRankingLoss()
1024
            loss = margin_rank_loss(input, other, label)
1025 1026 1027

            print(loss)
            # [0.75]
1028 1029 1030 1031 1032
    """

    def __init__(self, margin=0.0, reduction='mean', name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
1033
                "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
1034 1035 1036 1037 1038 1039
                "received %s, which is not allowed." % reduction)
        super(MarginRankingLoss, self).__init__()
        self.margin = margin
        self.reduction = reduction
        self.name = name

1040
    def forward(self, input, other, label):
1041
        out = paddle.nn.functional.margin_ranking_loss(
1042
            input, other, label, self.margin, self.reduction, self.name)
1043
        return out
1044 1045


1046 1047 1048
class CTCLoss(fluid.dygraph.Layer):
    """

1049 1050 1051
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1052 1053 1054 1055 1056 1057 1058
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.

    Shape:
1059
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1060 1061 1062
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
1063
        norm_by_times (bool, default false) – Whether to normalize the gradients by the number of time-step, which is also the sequence’s length. There is no need to normalize the gradients if reduction mode is 'mean'.
1064 1065 1066

    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
1067

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
    Examples:

        .. code-block:: python

            # declarative mode
            import numpy as np
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

            np.random.seed(1)
            log_probs = np.array([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]]).astype("float32")
            labels = np.array([[1, 2, 2],
                            [1, 2, 2]]).astype("int32")
            input_lengths = np.array([5, 5]).astype("int64")
            label_lengths = np.array([3, 3]).astype("int64")

1105 1106 1107 1108
            log_probs = paddle.to_tensor(log_probs)
            labels = paddle.to_tensor(labels)
            input_lengths = paddle.to_tensor(input_lengths)
            label_lengths = paddle.to_tensor(label_lengths)
1109

1110 1111
            loss = paddle.nn.CTCLoss(blank=0, reduction='none')(log_probs, labels,
                input_lengths,
1112
                label_lengths)
1113
            print(loss)  #[3.9179852 2.9076521]
1114

1115 1116
            loss = paddle.nn.CTCLoss(blank=0, reduction='mean')(log_probs, labels,
                input_lengths,
1117
                label_lengths)
1118
            print(loss)  #[1.1376063]
1119 1120 1121 1122 1123 1124 1125
    """

    def __init__(self, blank=0, reduction='mean'):
        super(CTCLoss, self).__init__()
        self.blank = blank
        self.reduction = reduction

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
    def forward(self,
                log_probs,
                labels,
                input_lengths,
                label_lengths,
                norm_by_times=False):
        return paddle.nn.functional.ctc_loss(
            log_probs,
            labels,
            input_lengths,
            label_lengths,
            self.blank,
            self.reduction,
            norm_by_times=norm_by_times)
1140 1141


1142
class SmoothL1Loss(fluid.dygraph.Layer):
1143
    r"""
1144 1145 1146 1147 1148 1149 1150
    This operator calculates smooth_l1_loss. Creates a criterion that uses a squared
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

G
Guanghua Yu 已提交
1151
         loss(x,y) = \\frac{1}{n}\\sum_{i}z_i
1152 1153 1154 1155 1156

    where z_i is given by:

    .. math::

G
Guanghua Yu 已提交
1157
         \\mathop{z_i} = \\left\\{\\begin{array}{rcl}
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
        0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\\\
        delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise}
        \\end{array} \\right.

    Parameters:
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1169
        delta (float, optional): Specifies the hyperparameter delta to be used.
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
        name (str, optional): Name for the operation (optional, default is
            None). For more information, please refer to :ref:`api_guide_Name`.

    Call Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.

    Returns:
G
Guanghua Yu 已提交
1184
        The tensor storing the smooth_l1_loss of input and label.
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

    Return type: Tensor.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            input_data = np.random.rand(3,3).astype("float32")
            label_data = np.random.rand(3,3).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
            loss = paddle.nn.SmoothL1Loss()
            output = loss(input, label)
G
Guanghua Yu 已提交
1199
            print(output)
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
    """

    def __init__(self, reduction='mean', delta=1.0, name=None):
        super(SmoothL1Loss, self).__init__()
        self.reduction = reduction
        self.delta = delta
        self.name = name

    def forward(self, input, label):
        return F.smooth_l1_loss(
            input,
            label,
            reduction=self.reduction,
            delta=self.delta,
            name=self.name)