loss.py 43.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define loss functions of neural network
16
import numpy as np
L
Leo Chen 已提交
17
import paddle.fluid as fluid
18
import paddle.fluid.core as core
19
import paddle
20
from .. import functional as F
21
from paddle.fluid.framework import core, in_dygraph_mode, _varbase_creator
22

L
Leo Chen 已提交
23
__all__ = [
24
    'BCEWithLogitsLoss',
25
    'CrossEntropyLoss',
26
    'HSigmoidLoss',
27
    'MSELoss',
L
Leo Chen 已提交
28
    'L1Loss',
29
    'NLLLoss',
30
    'BCELoss',
31
    'KLDivLoss',
32
    'MarginRankingLoss',
33
    'CTCLoss',
34
    'SmoothL1Loss',
L
Leo Chen 已提交
35 36 37
]


38
class BCEWithLogitsLoss(fluid.dygraph.Layer):
39
    r"""
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    This operator combines the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
    Also, we can see it as the combine of ``sigmoid_cross_entropy_with_logits``
    layer and some reduce operations.

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

    First this operator calculate loss function as follows:

    .. math::
           Out = -Labels * \\log(\\sigma(Logit)) - (1 - Labels) * \\log(1 - \\sigma(Logit))

    We know that :math:`\\sigma(Logit) = \\frac{1}{1 + \\e^{-Logit}}`. By substituting this we get:

    .. math::
           Out = Logit - Logit * Labels + \\log(1 + \\e^{-Logit})

    For stability and to prevent overflow of :math:`\\e^{-Logit}` when Logit < 0,
    we reformulate the loss as follows:

    .. math::
           Out = \\max(Logit, 0) - Logit * Labels + \\log(1 + \\e^{-\|Logit\|})

    Then, if ``weight`` or ``pos_weight`` is not None, this operator multiply the
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shapes:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``logit`` , else the shape of output is scalar.

    Returns:
        A callable object of BCEWithLogitsLoss.

    Examples:

        .. code-block:: python
            import paddle
            paddle.disable_static()
            logit = paddle.to_tensor([5.0, 1.0, 3.0], dtype="float32")
            label = paddle.to_tensor([1.0, 0.0, 1.0], dtype="float32")
            bce_logit_loss = paddle.nn.BCEWithLogitsLoss()
            output = bce_logit_loss(logit, label)
            print(output.numpy())  # [0.45618808]

    """

    def __init__(self,
                 weight=None,
                 reduction='mean',
                 pos_weight=None,
                 name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in BCEWithLogitsLoss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)

        super(BCEWithLogitsLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
        self.pos_weight = pos_weight
        self.name = name

    def forward(self, logit, label):
        out = paddle.nn.functional.binary_cross_entropy_with_logits(
            logit, label, self.weight, self.reduction, self.pos_weight,
            self.name)
        return out


143
class CrossEntropyLoss(fluid.dygraph.Layer):
144
    r"""
145 146 147
    This operator implements the cross entropy loss function with softmax. This function 
    combines the calculation of the softmax operation and the cross entropy loss function 
    to provide a more numerically stable gradient.
S
swtkiwi 已提交
148

149 150 151
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
152

153 154 155 156
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
157

158 159 160
    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)
161

162 163
    .. math::

164 165
        loss_j =  -\\text{logits}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logits}_i)\\right), j = 1,..., K
166

167
    2) Soft label (each sample can have a distribution over all classes)
168

169 170
    .. math::

171 172 173 174 175 176 177
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logits}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logits}_i)\\right)\\right), j = 1,...,K

 
    It is useful when training a classification problem with ``C`` classes.

178 179

    Parameters:
180
        input (Tensor): Input tensor, the data type is float32, float64. Shape is
181
	    (N, C), where C is number of classes, and if shape is more than 2D, this
182
	    is (N, C, D1, D2,..., Dk), k >= 1.
183
        label (Tensor): Label tensor, the data type is int64. Shape is (N), where each
184 185
	    value is 0 <= label[i] <= C-1, and if shape is more than 2D, this is
	    (N, D1, D2,..., Dk), k >= 1.
186 187 188
        weight (Tensor, optional): Weight tensor, a manual rescaling weight given
            to each class and the shape is (C). It has the same dimensions as class
	    number and the data type is float32, float64. Default is ``'None'``.
189 190 191 192 193 194
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
195 196
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient. Default is ``-100``.
197 198 199 200 201 202
        soft_label (bool): indicate whether label is soft. Default False, meaning that
                the label is hard. If soft_label=True, the label is soft.
        axis (int, optional): The index of dimension to perform softmax calculations. It 
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

203

204
    Returns:
205
        Tensor. The tensor storing the cross_entropy_loss of input and label.
206 207


208 209 210 211
    Examples:
        .. code-block:: python
            import paddle
            import numpy as np
212 213 214 215 216 217 218 219 220 221 222

            input_data = paddle.uniform([5, 100], dtype="float64")
            label_data = np.random.randint(0, 100, size=(5)).astype(np.int64)
            weight_data = np.random.random([100]).astype("float64")
            input =  paddle.to_tensor(input_data)
            label =  paddle.to_tensor(label_data)
            weight = paddle.to_tensor(weight_data)
            ce_loss = paddle.nn.CrossEntropyLoss(weight=weight, reduction='mean')
            output = ce_loss(input, label)
            print(output)
            # [4.84496039]
223 224
    """

225 226 227 228 229 230 231
    def __init__(self,
                 weight=None,
                 ignore_index=-100,
                 reduction='mean',
                 soft_label=False,
                 axis=-1,
                 name=None):
232 233 234
        super(CrossEntropyLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
235
        self.ignore_index = ignore_index
236 237 238
        self.soft_label = soft_label
        self.axis = axis
        self.name = name
239 240

    def forward(self, input, label):
241
        ret = paddle.nn.functional.cross_entropy(
242 243
            input,
            label,
244
            weight=self.weight,
245
            ignore_index=self.ignore_index,
246 247 248 249 250 251
            reduction=self.reduction,
            soft_label=self.soft_label,
            axis=self.axis,
            name=self.name)

        return ret
252 253


254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
class HSigmoidLoss(fluid.dygraph.Layer):
    """
    Hierarchical Sigmoid Layer.
    
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>_`. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        feature_size (int): The number of features.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight_attr (ParamAttr, optional): The parameter attribute for the learnable weights
            of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid will create a
            ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is
            initialized with Xavier. Default is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of hsigmoid. If it
            is set to False, no bias will be added. If it is set to None or one attribute of ParamAttr,
            hsigmoid will create a ParamAttr as bias_attr. If the Initializer of the bias_attr is not
            set, the bias is initialized zero. Default is None.
        is_custom (bool, optional): Whether use custom binary tree. If it's True, `path_table` and 
            `path_code` should be passed to its forward method, otherwise `path_table` and `path_code`
            should not be passed to its forward method. Default is False.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True,
            the gradient of weight and input will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        input (Tensor): The input tensor. The shapes is [N, D], where N is batch size and D is feature size. It's data type should be float32, float64.
        label (Tensor): It's shapes is [N, 1]. It's data type should be int64.
        output (Tensor): The HSigmoid Loss of ``input`` and ``label``. Shape is [N, 1]

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')

            input = paddle.uniform([2, 3])
            # [[-0.2820413   0.9528898  -0.81638825] # random
            #  [-0.6733154  -0.33866507  0.25770962]] # random
            label = paddle.to_tensor([0, 1, 4, 5])
            m = paddle.nn.HSigmoidLoss(3, 5)
            out = m(input, label)
            # [[2.4543471]
            #  [1.9359267]]
    """

    def __init__(self,
                 feature_size,
                 num_classes,
                 weight_attr=None,
                 bias_attr=None,
                 is_custom=False,
                 is_sparse=False,
                 name=None):
        super(HSigmoidLoss, self).__init__()
        if (num_classes < 2) and (not is_custom):
            raise ValueError(
                "num_classes must not be less than 2 with default tree")

        if (not is_custom) and (is_sparse):
            print("Sparse mode should not be used without custom tree")
            is_sparse = False

        self._feature_size = feature_size
        self._num_classes = num_classes
        self._is_custom = is_custom
        self._is_sparse = is_sparse

        self._weight_attr = weight_attr
        self._bias_attr = bias_attr

        self._name = name
        self._dtype = paddle.get_default_dtype()

        remote_prefetch = is_sparse
        print("With sparse mode, if your models has only"
              " small parameter prefetch may cause speed down")

        C = self._num_classes if is_custom else self._num_classes - 1
        self.weight = self.create_parameter(
            [C, self._feature_size],
            attr=self._weight_attr,
            is_bias=False,
            dtype=self._dtype)
        self.bias = self.create_parameter(
            [C, 1], attr=self._bias_attr, is_bias=True, dtype=self._dtype)

    def forward(self, input, label, path_table=None, path_code=None):
        out = F.hsigmoid_loss(
            input,
            label,
            self._num_classes,
            self.weight,
            self.bias,
            path_table=path_table,
            path_code=path_code,
            is_sparse=self._is_sparse,
            name=self._name)
        return out


376
class MSELoss(fluid.dygraph.layers.Layer):
377
    r"""
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    **Mean Square Error Loss**
    Computes the mean square error (squared L2 norm) of given input and label.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

396
    where `input` and `label` are `float32` tensors of same shape.
397 398 399 400

    Parameters:
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
401 402 403
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
404 405
            Default is ``'mean'``.

B
Bai Yifan 已提交
406 407 408 409
    Shape:
        input (Tensor): Input tensor, the data type is float32 or float64
        label (Tensor): Label tensor, the data type is float32 or float64
        output (Tensor): output tensor storing the MSE loss of input and label, the data type is same as input.
410 411 412

    Examples:
        .. code-block:: python
413 414 415 416 417 418 419

            import numpy as np
            import paddle

            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")

B
Bai Yifan 已提交
420 421 422 423
            mse_loss = paddle.nn.loss.MSELoss()
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
            output = mse_loss(input, label)
424
            print(output)
B
Bai Yifan 已提交
425
            # [0.04000002]
426 427 428 429 430 431 432 433 434 435 436 437
    """

    def __init__(self, reduction='mean'):
        super(MSELoss, self).__init__()
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', "
                "but received {}.".format(reduction))
        self.reduction = reduction

    def forward(self, input, label):
        if not fluid.framework.in_dygraph_mode():
B
Bai Yifan 已提交
438 439 440 441
            fluid.data_feeder.check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'MSELoss')
            fluid.data_feeder.check_variable_and_dtype(
                label, 'label', ['float32', 'float64'], 'MSELoss')
442 443 444 445 446 447 448 449 450 451 452 453 454

        square_out = fluid.layers.square(
            fluid.layers.elementwise_sub(input, label))
        if self.reduction == 'none':
            return square_out

        reduce_op = 'reduce_mean'
        if self.reduction == 'sum':
            reduce_op = 'reduce_sum'

        return getattr(fluid.layers, reduce_op)(square_out)


L
Leo Chen 已提交
455
class L1Loss(fluid.dygraph.Layer):
456
    r"""
L
Leo Chen 已提交
457
    This interface is used to construct a callable object of the ``L1Loss`` class.
458
    The L1Loss layer calculates the L1 Loss of ``input`` and ``label`` as follows.
459

460
     If `reduction` set to ``'none'``, the loss is:
L
Leo Chen 已提交
461 462

    .. math::
463
        Out = \lvert input - label\rvert
464

465
    If `reduction` set to ``'mean'``, the loss is:
466

L
Leo Chen 已提交
467
    .. math::
468
        Out = MEAN(\lvert input - label\rvert)
469

470
    If `reduction` set to ``'sum'``, the loss is:
471

L
Leo Chen 已提交
472
    .. math::
473
        Out = SUM(\lvert input - label\rvert)
L
Leo Chen 已提交
474

475

L
Leo Chen 已提交
476
    Parameters:
477
        reduction (str, optional): Indicate the reduction to apply to the loss,
L
Leo Chen 已提交
478
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
479 480 481
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
L
Leo Chen 已提交
482
            Default is ``'mean'``.
483 484 485
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
486 487
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
488
        output (Tensor): The L1 Loss of ``input`` and ``label``.
489 490
            If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
491

L
Leo Chen 已提交
492 493 494
    Examples:
        .. code-block:: python
            import paddle
495
            import numpy as np
496

497 498 499 500 501
            paddle.disable_static()
            input_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
            label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
502 503

            l1_loss = paddle.nn.loss.L1Loss()
504
            output = l1_loss(input, label)
505
            print(output.numpy())
506 507 508
            # [0.35]

            l1_loss = paddle.nn.loss.L1Loss(reduction='sum')
509
            output = l1_loss(input, label)
510
            print(output.numpy())
511 512 513
            # [1.4]

            l1_loss = paddle.nn.loss.L1Loss(reduction='none')
514
            output = l1_loss(input, label)
515
            print(output.numpy())
516
            # [[0.20000005 0.19999999]
517
            # [0.2        0.79999995]]
L
Leo Chen 已提交
518 519
    """

520
    def __init__(self, reduction='mean', name=None):
L
Leo Chen 已提交
521 522 523 524 525 526
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)
        super(L1Loss, self).__init__()
        self.reduction = reduction
527
        self.name = name
L
Leo Chen 已提交
528

529
    def forward(self, input, label):
530
        return paddle.nn.functional.l1_loss(
531
            input, label, self.reduction, name=self.name)
C
ceci3 已提交
532 533 534 535


class BCELoss(fluid.dygraph.Layer):
    """
C
ceci3 已提交
536
    This interface is used to construct a callable object of the ``BCELoss`` class.
537 538
    The BCELoss layer measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:
C
ceci3 已提交
539

C
ceci3 已提交
540
    If :attr:`weight` is set, the loss is:
C
ceci3 已提交
541 542

    .. math::
C
ceci3 已提交
543
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
544

C
ceci3 已提交
545
    If :attr:`weight` is None, the loss is:
C
ceci3 已提交
546 547

    .. math::
C
ceci3 已提交
548 549
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

550
    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.
C
ceci3 已提交
551

C
ceci3 已提交
552
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
C
ceci3 已提交
553

C
ceci3 已提交
554 555
    .. math::
        Out = MEAN(Out)
556

C
ceci3 已提交
557
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
C
ceci3 已提交
558

C
ceci3 已提交
559 560
    .. math::
        Out = SUM(Out)
C
ceci3 已提交
561

562
    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
C
ceci3 已提交
563 564
    should be numbers between 0 and 1.

C
ceci3 已提交
565
    Parameters:
566 567
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
C
ceci3 已提交
568
            is float32, float64. Default is ``'None'``.
569
        reduction (str, optional): Indicate how to average the loss by batch_size,
C
ceci3 已提交
570
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
C
ceci3 已提交
571
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
572
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
C
ceci3 已提交
573
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
C
ceci3 已提交
574
            Default is ``'mean'``.
575 576 577 578
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
Z
Zhong Hui 已提交
579
        input (Tensor): 2-D tensor with shape: [N, *], N is batch_size, `*` means
580 581 582 583 584 585 586
            number of additional dimensions. The input ``input`` should always
            be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): 2-D tensor with the same shape as ``input``. The target
            labels which values should be numbers between 0 and 1. Available
            dtype is float32, float64.
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is scalar.
C
ceci3 已提交
587

588
    Returns:
C
ceci3 已提交
589 590
        A callable object of BCELoss.

C
ceci3 已提交
591 592
    Examples:
        .. code-block:: python
C
ceci3 已提交
593

C
ceci3 已提交
594 595 596 597
            import numpy as np
            import paddle
            input_data = np.array([0.5, 0.6, 0.7]).astype("float32")
            label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
598 599

            paddle.disable_static()
Z
Zhong Hui 已提交
600 601
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
602 603 604 605
            bce_loss = paddle.nn.loss.BCELoss()
            output = bce_loss(input, label)
            print(output.numpy())  # [0.65537095]

C
ceci3 已提交
606 607
    """

608
    def __init__(self, weight=None, reduction='mean', name=None):
C
ceci3 已提交
609 610 611 612 613 614 615 616
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)

        super(BCELoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
617
        self.name = name
C
ceci3 已提交
618 619

    def forward(self, input, label):
620 621 622
        out = paddle.nn.functional.binary_cross_entropy(
            input, label, self.weight, self.reduction, self.name)
        return out
623 624 625


class NLLLoss(fluid.dygraph.Layer):
626
    r"""
627 628
	:alias_main: paddle.nn.NLLLoss
	:alias: paddle.nn.NLLLoss,paddle.nn.layer.NLLLoss,paddle.nn.layer.loss.NLLLoss
S
swtkiwi 已提交
629

630
    This class accepts input and target label and returns negative log likelihood
631
    cross error. It is useful to train a classification problem with C classes.
632

633
    The input for the loss is epected to contain log-probabilities of
634
    each classes. It has to be a Tensor of size either (batch_size, C) or
635 636 637 638
    (batch_size, C, d1, d2, ..., dK) with K >= 1 for the K-dimensional case.
    The label for the loss should be a class index in the range [0, C-1]
    where C is the number of classes. If ignore_index is specified, the
    specified target value does not contribute to the input gradient.
639

640 641 642
    If the optional argument `weight` is provided, it should be a 1D Tensor
    assigning weight to each of the classed. This is particularly useful
    when you have an unbalanced training set.
643

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
    The loss is calculated as follows.
    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:

    .. math::
        \ell(x, y) = L = \{l_1,\dots,l_N\}^\\top, \quad
        l_n = - w_{y_n} x_{n,y_n}, \quad
        w_{c} = \\text{weight}[c] \cdot \mathbb{1}\{c \\not= \\text{ignore\\_index}\},

    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
    (default ``'mean'``), then

    .. math::
        \ell(x, y) = \\begin{cases}
            \\sum_{n=1}^N \\frac{1}{\\sum_{n=1}^N w_{y_n}} l_n, &
            \\text{if reduction} = \\text{'mean';}\\\\
            \\sum_{n=1}^N l_n,  &
            \\text{if reduction} = \\text{'sum'.}
        \\end{cases}

    Parameters:
664 665
        weight (Tensor, optional): Weight tensor, a manual rescaling weight given
            to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
666
            it treated as if having all ones. the data type is
667
            float32, float64, Default is ``'None'``.
668 669
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient.
670
        reduction (str, optional): Indicate how to average the loss,
671
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
672 673 674
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
675
            Default is ``'mean'``.
676 677
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.
678

679 680 681 682 683 684 685 686 687
    Shape:
        input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
            But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
            The data type is float32, float64.
        label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
            The data type is int64.
        output (Tensor): the `negative log likelihood loss` between input `x` and `label`.
            If `reduction` is `'none'`, the shape is `[N, *]`.
            If `reduction` is `'sum'` or `'mean'`, the shape is `[1]`.
688 689 690 691

    Examples:
        .. code-block:: python

692
                import paddle
693

694
                nll_loss = paddle.nn.loss.NLLLoss()
695
                log_softmax = paddle.nn.LogSoftmax(axis=1)
696

697 698 699 700 701
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                                          [0.53331435, 0.07999352, 0.8549948 ],
                                          [0.25879037, 0.39530203, 0.698465  ],
                                          [0.73427284, 0.63575995, 0.18827209],
                                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
702
                log_out = log_softmax(input)
703
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
704
                result = nll_loss(log_out, label)
705
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
706

707
    """
708

709 710 711 712 713 714
    def __init__(self,
                 weight=None,
                 ignore_index=-100,
                 reduction='mean',
                 name=None):
        if reduction not in ['sum', 'mean', 'none']:
715
            raise ValueError(
716 717 718 719 720 721 722
                "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
                "'none', but received %s, which is not allowed." % reduction)
        super(NLLLoss, self).__init__()
        self._weight = weight
        self._ignore_index = ignore_index
        self._reduction = reduction
        self._name = name
723

724 725 726 727 728 729 730 731
    def forward(self, input, label):
        return F.nll_loss(
            input,
            label,
            weight=self._weight,
            ignore_index=self._ignore_index,
            reduction=self._reduction,
            name=self._name)
732 733


734
class KLDivLoss(fluid.dygraph.Layer):
735
    r"""
736 737 738 739 740 741 742 743 744
    This interface calculates the Kullback-Leibler divergence loss
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    Parameters:
L
LielinJiang 已提交
745 746 747 748 749 750 751
        reduction (Tensor): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
752 753

    Shape:
754 755 756 757 758 759

        - input (Tensor): (N, *), where * means, any number of additional dimensions.

        - label (Tensor): (N, *), same shape as input.

        - output (Tensor): tensor with shape: [1] by default.
760 761 762 763 764 765 766 767


    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn as nn
768

769 770 771 772
            shape = (5, 20)
            x = np.random.uniform(-10, 10, shape).astype('float32')
            target = np.random.uniform(-10, 10, shape).astype('float32')

L
LielinJiang 已提交
773
            # 'batchmean' reduction, loss shape will be [1]
774
            kldiv_criterion = nn.KLDivLoss(reduction='batchmean')
775 776
            pred_loss = kldiv_criterion(paddle.to_tensor(x),
                                        paddle.to_tensor(target))
L
LielinJiang 已提交
777
            # shape=[1]
778

779 780
            # 'mean' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='mean')
781 782
            pred_loss = kldiv_criterion(paddle.to_tensor(x),
                                        paddle.to_tensor(target))
783 784 785 786
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='sum')
787 788
            pred_loss = kldiv_criterion(paddle.to_tensor(x),
                                        paddle.to_tensor(target))
789 790 791 792
            # shape=[1]

            # 'none' reduction, loss shape is same with X shape
            kldiv_criterion = nn.KLDivLoss(reduction='none')
793 794
            pred_loss = kldiv_criterion(paddle.to_tensor(x),
                                        paddle.to_tensor(target))
795 796 797 798 799 800 801 802
            # shape=[5, 20]
    """

    def __init__(self, reduction='mean'):
        super(KLDivLoss, self).__init__()
        self.reduction = reduction

    def forward(self, input, label):
L
LielinJiang 已提交
803
        out = F.kl_div(input, label, self.reduction)
804 805 806
        return out


807
class MarginRankingLoss(fluid.dygraph.Layer):
808
    r"""
809 810

    This interface is used to construct a callable object of the ``MarginRankingLoss`` class.
811
    The MarginRankingLoss layer calculates the margin rank loss between the input, other and label
812 813
    , use the math function as follows.

814
    .. math::
815
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

834
    Shape:
N
Noel 已提交
835 836 837
    
        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

838
        other: N-D Tensor, `other` have the same shape and dtype as `input`.
N
Noel 已提交
839

840
        label: N-D Tensor, label have the same shape and dtype as `input`.
N
Noel 已提交
841

842
        output: If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
843 844 845 846 847 848 849 850

    Returns:
        A callable object of MarginRankingLoss.

    Examples:

        .. code-block:: python

851 852
            import paddle

Z
Zhong Hui 已提交
853 854 855
            input = paddle.to_tensor([[1, 2], [3, 4]]), dtype="float32")
            other = paddle.to_tensor([[2, 1], [2, 4]]), dtype="float32")
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype="float32")
856
            margin_rank_loss = paddle.nn.MarginRankingLoss()
857
            loss = margin_rank_loss(input, other, label)
858 859 860

            print(loss)
            # [0.75]
861 862 863 864 865
    """

    def __init__(self, margin=0.0, reduction='mean', name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
866
                "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
867 868 869 870 871 872
                "received %s, which is not allowed." % reduction)
        super(MarginRankingLoss, self).__init__()
        self.margin = margin
        self.reduction = reduction
        self.name = name

873
    def forward(self, input, other, label):
874
        out = paddle.nn.functional.margin_ranking_loss(
875
            input, other, label, self.margin, self.reduction, self.name)
876
        return out
877 878


879 880 881
class CTCLoss(fluid.dygraph.Layer):
    """

882 883 884
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
885 886 887 888 889 890 891
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.

    Shape:
892
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
893 894 895 896 897 898
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.

    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
899

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
    Examples:

        .. code-block:: python

            # declarative mode
            import numpy as np
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

            np.random.seed(1)
            log_probs = np.array([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]]).astype("float32")
            labels = np.array([[1, 2, 2],
                            [1, 2, 2]]).astype("int32")
            input_lengths = np.array([5, 5]).astype("int64")
            label_lengths = np.array([3, 3]).astype("int64")

937 938 939 940
            log_probs = paddle.to_tensor(log_probs)
            labels = paddle.to_tensor(labels)
            input_lengths = paddle.to_tensor(input_lengths)
            label_lengths = paddle.to_tensor(label_lengths)
941

942 943
            loss = paddle.nn.CTCLoss(blank=0, reduction='none')(log_probs, labels,
                input_lengths,
944
                label_lengths)
945
            print(loss)  #[3.9179852 2.9076521]
946

947 948
            loss = paddle.nn.CTCLoss(blank=0, reduction='mean')(log_probs, labels,
                input_lengths,
949
                label_lengths)
950
            print(loss)  #[1.1376063]
951 952 953 954 955 956 957 958 959 960 961 962 963
    """

    def __init__(self, blank=0, reduction='mean'):
        super(CTCLoss, self).__init__()
        self.blank = blank
        self.reduction = reduction

    def forward(self, log_probs, labels, input_lengths, label_lengths):
        return paddle.nn.functional.ctc_loss(log_probs, labels, input_lengths,
                                             label_lengths, self.blank,
                                             self.reduction)


964
class SmoothL1Loss(fluid.dygraph.Layer):
965
    r"""
966 967 968 969 970 971 972
    This operator calculates smooth_l1_loss. Creates a criterion that uses a squared
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

G
Guanghua Yu 已提交
973
         loss(x,y) = \\frac{1}{n}\\sum_{i}z_i
974 975 976 977 978

    where z_i is given by:

    .. math::

G
Guanghua Yu 已提交
979
         \\mathop{z_i} = \\left\\{\\begin{array}{rcl}
980 981 982 983 984 985 986 987 988 989 990
        0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\\\
        delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise}
        \\end{array} \\right.

    Parameters:
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
991
        delta (float, optional): Specifies the hyperparameter delta to be used.
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
        name (str, optional): Name for the operation (optional, default is
            None). For more information, please refer to :ref:`api_guide_Name`.

    Call Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.

    Returns:
G
Guanghua Yu 已提交
1006
        The tensor storing the smooth_l1_loss of input and label.
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

    Return type: Tensor.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            input_data = np.random.rand(3,3).astype("float32")
            label_data = np.random.rand(3,3).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
            loss = paddle.nn.SmoothL1Loss()
            output = loss(input, label)
G
Guanghua Yu 已提交
1021
            print(output)
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
    """

    def __init__(self, reduction='mean', delta=1.0, name=None):
        super(SmoothL1Loss, self).__init__()
        self.reduction = reduction
        self.delta = delta
        self.name = name

    def forward(self, input, label):
        return F.smooth_l1_loss(
            input,
            label,
            reduction=self.reduction,
            delta=self.delta,
            name=self.name)