nn.py 278.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
68
    'sequence_slice',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
99
    'roi_align',
X
Xin Pan 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
113
    'margin_rank_loss',
X
Xin Pan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
W
whs 已提交
157
    'affine_grid',
S
sneaxiy 已提交
158
    'sequence_reverse',
159
    'affine_channel',
M
minqiyang 已提交
160
    'hash',
G
gmcather 已提交
161 162
    'log_loss',
    'add_position_encoding',
Y
Yu Yang 已提交
163 164 165 166 167 168 169 170 171
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
172
       is_test=False,
173
       name=None):
Y
Yu Yang 已提交
174
    """
175
    **Fully Connected Layer**
Y
Yu Yang 已提交
176

177 178 179 180 181 182 183 184
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
185
    to the output as well.
C
caoying03 已提交
186

C
caoying03 已提交
187
    This process can be formulated as follows:
188 189 190

    .. math::

191
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
192 193 194

    In the above equation:

C
caoying03 已提交
195 196 197 198
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
199
    * :math:`Act`: The activation function.
C
caoying03 已提交
200
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
201 202

    Args:
R
ranqiu 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
218 219
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
220
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
221
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
222
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
223

224
    Returns:
F
fengjiayi 已提交
225
        Variable: The transformation result.
226 227

    Raises:
C
caoying03 已提交
228
        ValueError: If rank of the input tensor is less than 2.
229 230 231 232

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
233
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
234
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
235
    """
C
caoying03 已提交
236

C
caoying03 已提交
237
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
238 239 240 241

    dtype = helper.input_dtype()

    mul_results = []
242 243
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
244 245 246
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
247

Y
Yu Yang 已提交
248
        w = helper.create_parameter(
249
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
250
        tmp = helper.create_variable_for_type_inference(dtype)
251
        helper.append_op(
252 253 254
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
255
            outputs={"Out": tmp},
M
mozga-intel 已提交
256 257
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
258 259 260 261
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
262
    else:
X
Xin Pan 已提交
263
        pre_bias = helper.create_variable_for_type_inference(dtype)
264
        helper.append_op(
265 266 267
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
268
            attrs={"use_mkldnn": False})
269 270 271 272
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
273 274


275 276 277
def embedding(input,
              size,
              is_sparse=False,
278
              is_distributed=False,
279 280 281
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
282
    """
283 284
    **Embedding Layer**

285
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
286 287
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
288 289 290

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
291 292

    Args:
293 294 295 296 297
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
298
        is_distributed(bool): Whether to run lookup table from remote parameter server.
299 300
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
301
            with zeros whenever lookup encounters it in :attr:`input`. If
302
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
303 304
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
305
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
306

307 308 309
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
310

311 312
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
313

C
chengduoZH 已提交
314
          dict_size = len(dataset.ids)
315
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
316
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
317 318 319 320 321
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
322
    tmp = helper.create_variable_for_type_inference(dtype)
323 324
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
325 326 327 328 329
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
330 331 332 333 334
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
335 336 337
    return tmp


Y
yi.wu 已提交
338
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
339 340
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
341 342
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
343 344 345 346 347 348 349
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
350 351
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
352
    """
Y
yi.wu 已提交
353
    ${comment}
Y
Yibing Liu 已提交
354 355

    Args:
Y
yi.wu 已提交
356 357
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
358 359 360 361 362 363
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
364
        param_attr(ParamAttr|None): The parameter attribute for the learnable
365
                               hidden-hidden weights.
Y
Yibing Liu 已提交
366 367 368

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
369 370
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduo 已提交
371 372 373 374 375

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
376
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
377 378 379
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
380

381
                              1. `use_peepholes = False`
Y
yi.wu 已提交
382 383
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
384
                              2. `use_peepholes = True`
Y
yi.wu 已提交
385
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
386
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
387
                                 - The shape is (1 x 7D).
C
chengduo 已提交
388 389 390 391 392

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
393 394 395 396 397 398 399 400
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
401 402

    Returns:
Y
Yibing Liu 已提交
403 404
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
405

Y
Yibing Liu 已提交
406
    Examples:
Y
Yibing Liu 已提交
407 408
        .. code-block:: python

Y
Yibing Liu 已提交
409 410
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduo 已提交
411
                                           bias_attr=False)
Y
Yibing Liu 已提交
412 413
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
414
    """
C
chengduo 已提交
415
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
416
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
417
    size = size // 4
Y
Yu Yang 已提交
418 419 420 421 422 423 424 425
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
426 427 428 429
    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yancey 已提交
430 431 432 433 434 435 436 437 438 439
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
440 441 442

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
443
        inputs=inputs,
Y
Yu Yang 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
460 461 462 463 464 465 466 467 468 469 470
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
471 472
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
473 474 475
    """
    **Dynamic LSTMP Layer**

476 477 478 479 480 481
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
482 483 484 485 486

    The formula is as follows:

    .. math::

487
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
488

489
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
490

491
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
492

493
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
494

495
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
496

497
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
498

499
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
500

Y
Yibing Liu 已提交
501 502 503 504 505 506
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
507
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
508
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
509
          bias vector).
Y
Yibing Liu 已提交
510 511 512
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
513
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
514
    * :math:`h`: The hidden state.
515
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
516 517
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
518
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
519
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
520
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
521 522
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
523 524 525 526

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
527

Y
Yibing Liu 已提交
528 529 530 531 532 533 534 535 536 537 538 539
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
540
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
541 542
                               hidden-hidden weight and projection weight.

543 544
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
545 546
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
547 548
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
549
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
550 551 552 553 554

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
555
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
556 557 558 559 560 561
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
562
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
563 564 565
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
566
                                - The shape is (1 x 7D).
C
chengduo 已提交
567 568 569 570 571

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
572 573 574 575 576 577 578 579 580
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
581
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
582 583
                              default "tanh".
        proj_activation(str): The activation for projection output.
584
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
585 586
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
587 588
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
589 590

    Returns:
591 592 593 594
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
595 596

    Examples:
597

Y
Yibing Liu 已提交
598 599
        .. code-block:: python

600 601 602 603
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
604
            hidden_dim, proj_dim = 512, 256
605
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
606
                                     act=None, bias_attr=None)
607 608 609
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
610 611 612 613
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
614
    """
615

C
chengduo 已提交
616
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
617
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
618
    size = size // 4
Y
Yibing Liu 已提交
619 620 621 622 623 624 625 626 627 628
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
629 630 631 632 633 634
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
663 664 665 666 667 668 669 670 671
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
672
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
673

674
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
675
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
676

G
guosheng 已提交
677 678 679 680 681 682 683 684 685
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
686

G
guosheng 已提交
687
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
688

G
guosheng 已提交
689
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
690 691
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
692 693 694 695
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
696
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
697 698

    Args:
699 700
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
701
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
702
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
703 704
            is the hidden size.
        size(int): The dimension of the gru cell.
705
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
706 707
            hidden-hidden weight matrix. Note:

708
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
709
              :math:`D` is the hidden size.
710
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
711
              The first part are weights of the update gate and reset gate with
712
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
713
              candidate hidden state with shape :math:`(D \\times D)`.
714 715 716 717 718 719 720 721 722 723 724 725

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, dynamic_gru will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
726
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
727 728 729
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
730
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
731
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
732 733 734 735
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
736 737

    Returns:
G
guosheng 已提交
738
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
739
            and sequence length is the same with the input.
740

G
guosheng 已提交
741
    Examples:
742

G
guosheng 已提交
743 744
        .. code-block:: python

745 746 747 748
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
749
            hidden_dim = 512
750
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
751 752 753 754 755 756 757 758 759 760
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
761
    batch_size = input.shape[0]
G
guosheng 已提交
762
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
763
    if h_0:
G
guosheng 已提交
764
        assert h_0.shape == (
Y
Yancey 已提交
765 766 767
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
768

X
Xin Pan 已提交
769 770 771 772
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
791 792 793
def gru_unit(input,
             hidden,
             size,
794 795
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
796
             activation='tanh',
797
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
798
    """
799
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
800

801 802
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
803

804
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
805

806
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
807

808
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
809 810

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
811 812 813
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
814 815
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

816 817
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
818 819 820
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
821 822 823

    Args:
        input (Variable): The fc transformed input value of current step.
824
        hidden (Variable): The hidden value of gru unit from previous step.
825
        size (integer): The input dimension value.
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, gru_unit will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
847 848 849 850
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
851

852 853 854 855 856 857
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
858

859
             # assuming we have x_t_data and prev_hidden of size=10
860
             x_t = fluid.layers.fc(input=x_t_data, size=30)
861 862
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
863 864 865 866 867 868 869 870 871 872 873 874

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
875
    size = size // 3
Y
Yu Yang 已提交
876 877

    # create weight
878 879
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
880

X
Xin Pan 已提交
881 882 883
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
884
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
885
    # create bias
886
    if helper.bias_attr:
Y
Yu Yang 已提交
887 888 889
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
890
        inputs['Bias'] = bias
Y
Yu Yang 已提交
891 892 893

    helper.append_op(
        type='gru_unit',
894
        inputs=inputs,
Y
Yu Yang 已提交
895 896 897 898 899 900
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
901 902
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
903 904 905 906 907
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
908
@templatedoc()
909
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
910 911 912 913 914 915 916
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
917
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
918 919 920 921
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
922 923 924
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
925 926

    """
Y
Yu Yang 已提交
927 928 929 930 931 932
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
933 934 935 936 937 938 939 940
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
956
@templatedoc()
957
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
958 959 960 961 962
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
963

Y
yuyang18 已提交
964
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
965

Y
yuyang18 已提交
966 967 968
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
969
        Variable: ${viterbi_path_comment}
970

Y
yi.wu 已提交
971 972 973 974 975
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
976
    """
Y
Yu Yang 已提交
977 978
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
X
Xin Pan 已提交
979 980
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
981 982 983 984 985 986 987 988 989 990
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
991
@templatedoc()
F
fengjiayi 已提交
992
def cos_sim(X, Y):
Y
Yu Yang 已提交
993
    """
Y
yi.wu 已提交
994 995 996
    ${comment}

    Args:
997 998
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
999

Y
yi.wu 已提交
1000
    Returns:
1001
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1002
    """
F
fengjiayi 已提交
1003
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1004 1005 1006
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1017 1018 1019 1020 1021
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1022
            dropout_implementation="downgrade_in_infer"):
1023 1024 1025 1026 1027
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1028
    training. The dropout operator randomly sets (according to the given dropout
1029 1030 1031 1032
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1033 1034
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1035 1036 1037 1038 1039 1040 1041
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                           dropout op can be removed from the program. 
                                           the program will be efficient
                                        
P
phlrain 已提交
1056

1057 1058

    Returns:
1059
        Variable: A tensor variable is the shape with `x`.
1060 1061

    Examples:
1062

1063 1064
        .. code-block:: python

1065 1066
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1067 1068
    """

F
fengjiayi 已提交
1069
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1070 1071 1072
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1073 1074 1075 1076

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1077 1078 1079 1080 1081
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1082 1083 1084 1085
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1086 1087
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1088
        })
1089 1090 1091
    return out


1092
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1093
    """
Y
Yibing Liu 已提交
1094 1095
    **Cross Entropy Layer**

1096 1097 1098
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1099 1100

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1101
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1102

Y
Yibing Liu 已提交
1103
        .. math::
Y
yangyaming 已提交
1104

Y
Yibing Liu 已提交
1105 1106 1107
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1108 1109
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1110 1111 1112 1113 1114

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1115
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1116 1117 1118
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1119 1120
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1121
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1122

Y
Yibing Liu 已提交
1123
    Args:
Y
yangyaming 已提交
1124
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1125 1126 1127 1128
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1129
        label (Variable|list): the ground truth which is a 2-D tensor. When
1130 1131 1132 1133
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1134
        soft_label (bool): a flag indicating whether to
1135
                                           interpretate the given labels as soft
1136
                                           labels. Default: `False`.
M
minqiyang 已提交
1137 1138
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1139
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1140 1141 1142 1143 1144

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1145 1146 1147 1148 1149
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1150 1151 1152 1153 1154 1155

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1156
    """
F
fengjiayi 已提交
1157
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1158
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1159 1160 1161 1162 1163
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1164 1165
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1166 1167 1168
    return out


F
fengjiayi 已提交
1169
def square_error_cost(input, label):
Y
Yu Yang 已提交
1170
    """
1171 1172
    **Square error cost layer**

1173 1174
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1175

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1189 1190
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1191 1192

    Returns:
G
guosheng 已提交
1193
        Variable: The tensor variable storing the element-wise squared error \
1194
                  difference of input and label.
1195 1196 1197 1198 1199 1200 1201 1202

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1203
    """
F
fengjiayi 已提交
1204
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1205
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1206 1207 1208 1209 1210 1211
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1212
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1213
    helper.append_op(
F
fengjiayi 已提交
1214 1215
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1216 1217 1218
    return square_out


Y
yi.wu 已提交
1219
@templatedoc()
Y
Yu Yang 已提交
1220 1221 1222 1223
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1224
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1225
    """
Y
yi.wu 已提交
1226
    **Chunk Evaluator**
Y
yi.wu 已提交
1227

Y
yangyaming 已提交
1228
    This function computes and outputs the precision, recall and
1229
    F1-score of chunk detection.
Y
yi.wu 已提交
1230

Y
yi.wu 已提交
1231 1232 1233 1234 1235 1236 1237 1238
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1239

Y
yi.wu 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1265

Y
yi.wu 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1290
    Args:
1291 1292 1293 1294 1295
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1296

Y
yi.wu 已提交
1297
    Returns:
Y
update  
yi.wu 已提交
1298 1299 1300
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1301

Y
yi.wu 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1314
    """
F
fengjiayi 已提交
1315
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1316 1317

    # prepare output
X
Xin Pan 已提交
1318 1319 1320 1321 1322 1323 1324
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1325 1326 1327 1328 1329 1330 1331 1332

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1333 1334 1335 1336
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1337 1338 1339
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1340 1341
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1342
        })
1343 1344
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1345 1346


1347
@templatedoc()
Y
Yu Yang 已提交
1348 1349 1350 1351 1352 1353 1354
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1355 1356
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1357 1358 1359 1360
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1361 1362 1363 1364 1365 1366 1367

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1381

1382 1383
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1384 1385 1386 1387 1388 1389 1390
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1391
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1402
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1403 1404 1405 1406 1407 1408
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1409
def sequence_softmax(input, use_cudnn=False, name=None):
1410 1411 1412
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1413
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1430 1431 1432
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1433

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1445 1446
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1447
    softmax_out = helper.create_variable_for_type_inference(dtype)
1448 1449 1450 1451 1452 1453 1454 1455
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1456
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1457
    """
1458
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1459
    has the same shape as the input.
Q
qiaolongfei 已提交
1460

1461 1462 1463 1464 1465 1466
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1467
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1468 1469 1470 1471 1472 1473 1474

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1475
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1476 1477 1478 1479 1480 1481 1482 1483

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1484 1485 1486
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1499 1500
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1501
    softmax_out = helper.create_variable_for_type_inference(dtype)
1502 1503 1504 1505 1506 1507 1508 1509
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1510 1511 1512
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1513 1514
           stride=1,
           padding=0,
1515
           dilation=1,
Y
Yu Yang 已提交
1516 1517 1518
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1519
           use_cudnn=True,
1520 1521
           act=None,
           name=None):
Y
Yu Yang 已提交
1522
    """
C
chengduoZH 已提交
1523
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1524 1525
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1526
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1527 1528 1529 1530 1531 1532 1533
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1534 1535 1536
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1537

1538
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1539

C
chengduoZH 已提交
1540 1541
    .. math::

C
refine  
chengduoZH 已提交
1542
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1543

T
tensor-tang 已提交
1544
    Where:
C
chengduoZH 已提交
1545

1546 1547 1548 1549 1550
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1551
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1552 1553 1554

    Example:

1555 1556
        - Input:

W
weixing02 已提交
1557
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1558

W
weixing02 已提交
1559
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1560

1561
        - Output:
T
tensor-tang 已提交
1562

W
weixing02 已提交
1563
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1564

C
chengduoZH 已提交
1565
        Where
1566 1567

        .. math::
C
chengduoZH 已提交
1568

W
weixing02 已提交
1569 1570
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1571 1572

    Args:
1573
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1574
        num_filters(int): The number of filter. It is as same as the output
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1603 1604
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1605 1606
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1607
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1608
            will be named automatically. Default: None
C
chengduoZH 已提交
1609 1610

    Returns:
G
guosheng 已提交
1611
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1612 1613
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1614
    Raises:
1615 1616
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1617

C
chengduoZH 已提交
1618 1619 1620
    Examples:
        .. code-block:: python

1621 1622
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1623 1624 1625
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1626
    assert param_attr is not False, "param_attr should not be False here."
1627
    l_type = 'conv2d'
X
xzl 已提交
1628 1629
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1630
        l_type = 'depthwise_conv2d'
1631 1632 1633 1634

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1635 1636 1637 1638 1639
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1640
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1641

C
chengduoZH 已提交
1642 1643 1644
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1645
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1646

C
chengduoZH 已提交
1647 1648
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1649 1650

    input_shape = input.shape
M
minqiyang 已提交
1651
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1652 1653

    def _get_default_param_initializer():
C
chengduo 已提交
1654 1655
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1656 1657 1658 1659 1660 1661 1662 1663
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1664
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1665 1666

    helper.append_op(
1667
        type=l_type,
Y
Yu Yang 已提交
1668 1669 1670 1671 1672
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1673 1674 1675
        attrs={
            'strides': stride,
            'paddings': padding,
1676
            'dilations': dilation,
C
chengduoZH 已提交
1677
            'groups': groups,
1678
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1679
            'use_mkldnn': False
C
chengduoZH 已提交
1680
        })
Y
Yu Yang 已提交
1681 1682 1683 1684 1685 1686

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1704 1705 1706 1707 1708 1709
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1719 1720
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1721 1722 1723
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1724
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1750
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1751 1752
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1753
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1754 1755
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1756
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1757 1758
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1759
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1760 1761 1762 1763 1764 1765
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1776 1777
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1778 1779
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1780
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1781
            will be named automatically. Default: None.
C
chengduoZH 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1794 1795
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1796 1797 1798
    """

    l_type = 'conv3d'
C
chengduo 已提交
1799
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1810
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1824 1825 1826
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1827 1828 1829 1830 1831 1832 1833 1834
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1835
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1850
            'use_mkldnn': False
C
chengduoZH 已提交
1851 1852
        })

1853
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1854 1855 1856 1857

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1858
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1859
    """
Y
yangyaming 已提交
1860 1861 1862
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1874
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1875 1876 1877 1878 1879
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1880
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1881 1882 1883 1884 1885 1886 1887

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1888 1889
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1890

L
Luo Tao 已提交
1891 1892
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1893
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1894
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1895
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1896 1897 1898 1899 1900 1901 1902

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1903

Y
yangyaming 已提交
1904
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1905 1906 1907 1908 1909
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1910 1911
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1912
    """
F
fengjiayi 已提交
1913
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1914
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1915 1916
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1917 1918 1919 1920 1921 1922

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1923 1924
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1925

Y
yangyaming 已提交
1926 1927 1928 1929 1930
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1931 1932 1933
    return pool_out


C
add doc  
chengduoZH 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1953
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1954 1955 1956 1957 1958
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1959
def sequence_first_step(input):
L
Luo Tao 已提交
1960
    """
L
Luo Tao 已提交
1961
    This function gets the first step of sequence.
L
Luo Tao 已提交
1962 1963 1964 1965

    .. code-block:: text

       x is a 1-level LoDTensor:
1966
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1967 1968 1969 1970 1971
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1972
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1973
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1974

L
Luo Tao 已提交
1975 1976 1977 1978 1979 1980 1981 1982 1983
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1984

Y
yangyaming 已提交
1985
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1986 1987 1988
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1989 1990 1991
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1992
def sequence_last_step(input):
L
Luo Tao 已提交
1993
    """
L
Luo Tao 已提交
1994
    This function gets the last step of sequence.
L
Luo Tao 已提交
1995 1996 1997 1998

    .. code-block:: text

       x is a 1-level LoDTensor:
1999
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2000 2001 2002 2003 2004
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2005
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2006
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2007

L
Luo Tao 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2017

Y
yangyaming 已提交
2018
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2019 2020 2021
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2022 2023 2024
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2025 2026 2027 2028
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2029
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2030 2031 2032 2033 2034
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2035

Y
Yibing Liu 已提交
2036 2037
	- Case:

2038
            Given the input Variable **input**:
2039

2040 2041 2042
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2043

2044
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2045

2046
            the output Variable will be
2047

2048 2049 2050
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2051 2052

    NOTE: The first dimension size of **input**, **offset** and **length**
2053
          should be equal. The **offset** should start from 0.
2054

Y
Yibing Liu 已提交
2055
    Args:
2056
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2057
                         sequences.
Y
Yibing Liu 已提交
2058 2059 2060 2061 2062 2063
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2064
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2075
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2076 2077 2078 2079
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2080
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2095
@templatedoc()
Y
Yu Yang 已提交
2096
def pool2d(input,
C
chengduoZH 已提交
2097 2098
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2099 2100
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2101
           global_pooling=False,
C
chengduoZH 已提交
2102
           use_cudnn=True,
2103
           ceil_mode=False,
C
caoying03 已提交
2104
           name=None):
Y
Yu Yang 已提交
2105
    """
F
fengjiayi 已提交
2106
    ${comment}
2107 2108

    Args:
2109 2110 2111
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2112
                          feature, and W is the width of the feature.
2113
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2114
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2115
        pool_type: ${pooling_type_comment}
2116 2117
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
2118 2119 2120
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
2121
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2122 2123
                        layer will be named automatically.

2124
    Returns:
F
fengjiayi 已提交
2125
        Variable: The pooling result.
F
fengjiayi 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2139 2140 2141 2142
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2143
                            global_pooling=False)
Y
Yu Yang 已提交
2144 2145 2146 2147 2148
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2149

C
chengduoZH 已提交
2150 2151 2152 2153 2154
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2155 2156 2157 2158
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2159 2160
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2161

C
Add doc  
chengduoZH 已提交
2162
    l_type = 'pool2d'
2163 2164

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2165
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2166
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2167 2168

    helper.append_op(
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2180
            "use_mkldnn": False
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2197
    pooling configurations mentioned in input parameters.
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2210

2211
    Returns:
2212
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2213 2214 2215 2216 2217
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2218

C
chengduoZH 已提交
2219 2220 2221 2222 2223
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2224 2225 2226
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2227

C
chengduoZH 已提交
2228 2229
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2230

2231 2232
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2233
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2234
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2235 2236

    helper.append_op(
2237
        type=l_type,
Y
Yu Yang 已提交
2238 2239 2240 2241 2242 2243 2244
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2245
            "paddings": pool_padding,
2246
            "use_cudnn": use_cudnn,
2247
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2248
            "use_mkldnn": False
Y
Yu Yang 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2261
               data_layout='NCHW',
Y
Yang Yang 已提交
2262
               in_place=False,
2263 2264
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2265
               moving_variance_name=None,
2266 2267
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2268
    """
Q
qiaolongfei 已提交
2269 2270 2271 2272
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2273

Q
qiaolongfei 已提交
2274
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2275

Q
qiaolongfei 已提交
2276 2277
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2278 2279 2280
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2293 2294

    Args:
Q
qiaolongfei 已提交
2295
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2296 2297 2298 2299
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2300 2301 2302 2303 2304 2305 2306 2307
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2308
        data_layout(string, default NCHW): NCHW|NHWC
2309
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2310 2311 2312 2313
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2314
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2315
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2316 2317

    Returns:
Q
qiaolongfei 已提交
2318
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2319 2320 2321 2322 2323 2324 2325

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2326
    """
C
chengduo 已提交
2327
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2350
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2351

2352 2353
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2354 2355 2356
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2357
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2358
        shape=param_shape,
2359 2360 2361 2362 2363 2364 2365
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2366
            trainable=False,
W
wanghaoshuang 已提交
2367
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2368
        shape=param_shape,
2369 2370
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2371 2372 2373 2374 2375 2376

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2377 2378 2379 2380
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2381

X
Xin Pan 已提交
2382 2383
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2401 2402 2403 2404
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2405
            "use_mkldnn": False,
2406
            "fuse_with_relu": fuse_with_relu
2407
        })
Y
Yu Yang 已提交
2408 2409 2410 2411

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2412
@templatedoc()
G
guosheng 已提交
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2423
    ${comment}
G
guosheng 已提交
2424 2425 2426

    The formula is as follows:

Y
yuyang18 已提交
2427
    ..  math::
G
guosheng 已提交
2428 2429 2430 2431 2432 2433 2434

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2435 2436 2437 2438 2439 2440 2441 2442
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2443

G
guosheng 已提交
2444 2445
    Args:
        input(Variable): The input tensor variable.
2446
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2447
            normalization. Default True.
2448
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2449 2450
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2451
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2452
            Default 1.
2453
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2454
            division by zero. Default 1e-05.
G
guosheng 已提交
2455
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2456 2457
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2458 2459
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2460
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2461 2462
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2463
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2464
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2465
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2466 2467 2468
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2469 2470

    Returns:
Y
yuyang18 已提交
2471
        ${y_comment}
G
guosheng 已提交
2472 2473 2474

    Examples:

Y
yuyang18 已提交
2475 2476 2477
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2493
    if shift:
G
guosheng 已提交
2494 2495 2496 2497 2498 2499
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2500 2501 2502 2503 2504
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2520 2521 2522 2523
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2524 2525 2526
                     padding=0,
                     stride=1,
                     dilation=1,
2527
                     groups=None,
C
caoying03 已提交
2528
                     param_attr=None,
2529
                     bias_attr=None,
C
chengduoZH 已提交
2530
                     use_cudnn=True,
2531
                     act=None,
C
caoying03 已提交
2532
                     name=None):
Y
Yu Yang 已提交
2533
    """
2534 2535 2536 2537 2538 2539 2540 2541
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2542 2543
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2544 2545 2546
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2547 2548 2549 2550 2551

    For each input :math:`X`, the equation is:

    .. math::

2552
        Out = \sigma (W \\ast X + b)
2553

2554
    Where:
2555 2556 2557

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2558 2559 2560 2561
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2562

2563 2564 2565 2566
    Example:

        - Input:

2567
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2568

2569
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2570 2571 2572

        - Output:

2573
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2574 2575

        Where
Y
Yu Yang 已提交
2576

2577 2578
        .. math::

2579 2580 2581 2582
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2583 2584

    Args:
2585 2586 2587 2588
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2589 2590 2591 2592
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2621
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2622 2623 2624
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2625
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2626
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2627 2628

    Returns:
2629
        Variable: The tensor variable storing the convolution transpose result.
2630 2631

    Raises:
2632 2633
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2634 2635 2636 2637

    Examples:
       .. code-block:: python

2638 2639
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2640
    """
C
chengduo 已提交
2641
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2642 2643 2644 2645 2646 2647 2648 2649
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2650 2651 2652
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2653 2654 2655
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2656

C
chengduoZH 已提交
2657 2658
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2659

Y
Yu Yang 已提交
2660 2661 2662 2663 2664
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2665

Y
Yu Yang 已提交
2666 2667
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2668

C
chengduoZH 已提交
2669
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2670
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2671
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2672
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2673
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2674 2675 2676
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2677

2678 2679 2680 2681 2682 2683 2684
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2685
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2686
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2687

Y
Yu Yang 已提交
2688 2689 2690
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2691
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2692
    helper.append_op(
2693
        type=op_type,
Y
Yu Yang 已提交
2694 2695
        inputs={'Input': [input],
                'Filter': [img_filter]},
2696
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2697
        attrs={
2698
            'output_size': output_size,
2699 2700 2701 2702 2703
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2704 2705
        })

2706 2707 2708
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2709 2710


2711
def conv3d_transpose(input,
Y
Yu Yang 已提交
2712 2713 2714
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2715 2716 2717
                     padding=0,
                     stride=1,
                     dilation=1,
2718
                     groups=None,
C
caoying03 已提交
2719
                     param_attr=None,
2720
                     bias_attr=None,
C
chengduoZH 已提交
2721
                     use_cudnn=True,
2722
                     act=None,
C
caoying03 已提交
2723
                     name=None):
Y
Yu Yang 已提交
2724
    """
2725
    **Convlution3D transpose layer**
2726

2727
    The convolution3D transpose layer calculates the output based on the input,
2728
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2729 2730 2731 2732 2733 2734
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2735 2736 2737
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2738 2739 2740 2741 2742

    For each input :math:`X`, the equation is:

    .. math::

2743
        Out = \sigma (W \\ast X + b)
2744 2745 2746

    In the above equation:

2747 2748
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2749 2750 2751 2752
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2753

2754 2755 2756 2757
    Example:

        - Input:

2758
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2759

2760
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2761 2762 2763

        - Output:

2764
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2765 2766

        Where
Y
Yu Yang 已提交
2767

2768 2769
        .. math::

2770 2771 2772
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2773 2774

    Args:
2775
        input(Variable): The input image with [N, C, D, H, W] format.
2776 2777 2778
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2779
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2780 2781
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2782
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2783 2784 2785
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2786 2787
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2788
        stride(int|tuple): The stride size. If stride is a tuple, it must
2789 2790
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2791
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2792 2793 2794
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2795 2796 2797 2798 2799
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2800 2801 2802 2803 2804 2805 2806 2807 2808
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2809 2810
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2811 2812
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2813 2814
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2815 2816

    Returns:
2817
        Variable: The tensor variable storing the convolution transpose result.
2818 2819

    Raises:
2820 2821
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2822 2823 2824 2825

    Examples:
       .. code-block:: python

2826 2827
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2828
    """
C
chengduo 已提交
2829
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2830 2831
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2832
    if not isinstance(input, Variable):
2833
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2834 2835
    input_channel = input.shape[1]

2836 2837 2838
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2839

C
chengduoZH 已提交
2840 2841 2842
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2843 2844 2845 2846 2847 2848
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2849 2850 2851
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2852

2853
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2854
                         padding[0] - 1) // dilation[0] + 1
2855
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2856
                         padding[1] - 1) // dilation[1] + 1
2857
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2858
                         padding[2] - 1) // dilation[2] + 1
2859
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2860
    else:
2861 2862
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2863

2864
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2865
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2866 2867 2868
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2869
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2870
    helper.append_op(
2871
        type=l_type,
Y
Yu Yang 已提交
2872 2873
        inputs={'Input': [input],
                'Filter': [img_filter]},
2874
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2875 2876 2877 2878
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2879
            'groups': groups,
C
chengduoZH 已提交
2880 2881
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2882

2883 2884
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2885
    return out
Y
yangyaming 已提交
2886 2887


Y
yangyaming 已提交
2888
def sequence_expand(x, y, ref_level=-1, name=None):
2889
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2890 2891 2892 2893
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2894 2895 2896 2897 2898

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2899
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2900
                x.data = [[a], [b], [c], [d]]
2901 2902 2903
                x.dims = [4, 1]

            y is a LoDTensor:
2904 2905
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2906

Y
yangyaming 已提交
2907
            ref_level: 0
2908

Y
yangyaming 已提交
2909
            then output is a 1-level LoDTensor:
2910
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2911
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2912 2913 2914 2915
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2916
                x.data = [[a], [b], [c]]
2917 2918 2919
                x.dims = [3, 1]

            y is a LoDTensor:
2920
                y.lod = [[2, 0, 3]]
2921

Y
yangyaming 已提交
2922
            ref_level: -1
2923

Y
yangyaming 已提交
2924 2925 2926
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2927 2928 2929
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2930 2931
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2932
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2933
                        will be named automatically.
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2944
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2945
    """
Y
yangyaming 已提交
2946
    helper = LayerHelper('sequence_expand', input=x, **locals())
2947
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2948
    tmp = helper.create_variable_for_type_inference(dtype)
2949
    helper.append_op(
Y
yangyaming 已提交
2950 2951 2952 2953 2954
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2955
    return tmp
2956 2957


C
chengduo 已提交
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3014
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3015 3016 3017 3018 3019 3020 3021 3022
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3023
@templatedoc()
3024
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3025 3026 3027 3028 3029
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3030 3031 3032
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3033
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3034 3035 3036 3037
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3038 3039 3040
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3041

F
fengjiayi 已提交
3042
    Returns:
M
minqiyang 已提交
3043
        Variable: The padded sequence batch and the original lengths before
3044
                  padding. All sequences has the same length.
M
minqiyang 已提交
3045

F
fengjiayi 已提交
3046 3047 3048 3049 3050 3051 3052
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3053 3054
            pad_value = fluid.layers.assign(
                input=numpy.array([0], dtype=numpy.float32))
F
fengjiayi 已提交
3055 3056 3057 3058 3059
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3060 3061
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3062 3063 3064 3065

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3066 3067 3068 3069 3070 3071
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3072 3073
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3074
        attrs={'padded_length': maxlen})
3075
    return out, length
F
fengjiayi 已提交
3076 3077


3078
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3079
    """
3080
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3081

3082 3083
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3084 3085 3086 3087 3088 3089 3090 3091 3092
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3093 3094 3095
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3096
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3097 3098 3099 3100 3101 3102

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3103
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3104 3105 3106 3107 3108 3109

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3110 3111
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3126
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3138 3139 3140 3141 3142 3143 3144 3145 3146
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3147 3148
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3149 3150 3151

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3152 3153

    This layer does the search in beams for one time step. Specifically, it
3154 3155 3156 3157 3158 3159
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3160

3161 3162 3163 3164 3165 3166 3167 3168
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3169

3170
    Args:
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3196

3197
    Returns:
3198 3199
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3200 3201 3202 3203

    Examples:
        .. code-block:: python

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3221 3222 3223 3224
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3225 3226 3227
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3228 3229 3230 3231 3232

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3233
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3251 3252 3253 3254 3255 3256 3257
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3258

3259 3260 3261 3262 3263 3264 3265 3266 3267
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3268

3269 3270 3271 3272 3273 3274
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3275

3276 3277 3278 3279 3280 3281 3282 3283
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3284 3285
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3301 3302 3303 3304
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3305
              param_attr=None,
C
caoying03 已提交
3306 3307
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3308 3309 3310 3311
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3312
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3313

3314
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3315

3316
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3317

3318
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3319 3320 3321

            h_t & = o_t tanh(c_t)

3322 3323 3324 3325 3326 3327
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3328 3329 3330

        .. math::

3331
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3332 3333 3334 3335 3336 3337 3338 3339

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3340
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3341 3342

    Args:
Y
yangyaming 已提交
3343 3344 3345 3346 3347 3348
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3349
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3362 3363
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3364 3365

    Returns:
Y
yangyaming 已提交
3366
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3367 3368

    Raises:
3369 3370 3371 3372
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3373 3374 3375 3376 3377 3378

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3379
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3380
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3381
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3398
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3399 3400 3401 3402
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3403 3404
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3405 3406 3407
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3408
    size = cell_t_prev.shape[1]
3409
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3410 3411
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3412
                param_attr=param_attr,
3413
                bias_attr=bias_attr)
Y
yangyaming 已提交
3414
    dtype = x_t.dtype
X
Xin Pan 已提交
3415 3416
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3417 3418 3419 3420 3421 3422 3423 3424 3425

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3426
    return h, c
G
guosheng 已提交
3427 3428


C
caoying03 已提交
3429
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3430
    """
Y
yangyaming 已提交
3431
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3432 3433 3434

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3435
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3436 3437
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3438 3439
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3440
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3441
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3442
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3443 3444
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3445 3446 3447

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3448

G
guosheng 已提交
3449 3450 3451 3452 3453 3454
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3455
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3456 3457 3458 3459
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3460 3461 3462 3463

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3464
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3465 3466 3467
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3468 3469
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3470
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3471 3472
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3473 3474 3475 3476 3477
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3478
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3479 3480 3481 3482
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3483 3484


C
caoying03 已提交
3485
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3486
    """
Y
Yibing Liu 已提交
3487
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3488 3489 3490

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3491 3492 3493
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3494
            must be in the range :math:`[-rank(input), rank(input))`. If
3495
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3496
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3497 3498
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3499
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3500
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3501
                       will be named automatically.
G
guosheng 已提交
3502 3503

    Returns:
Y
Yibing Liu 已提交
3504
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3505

G
guosheng 已提交
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3516 3517
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3518 3519 3520 3521 3522 3523 3524

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3525 3526
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3527
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3528 3529
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3530 3531 3532 3533 3534
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3535
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3536 3537 3538 3539
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3540 3541


C
caoying03 已提交
3542
def reduce_max(input, dim=None, keep_dim=False, name=None):
3543
    """
Y
yangyaming 已提交
3544
    Computes the maximum of tensor elements over the given dimension.
3545 3546 3547

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3548
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3549 3550 3551
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3552
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3553 3554
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3555
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3556 3557
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3558 3559 3560

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3561

3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3573 3574 3575 3576 3577 3578 3579

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3580 3581
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3582
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3583 3584
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3585 3586 3587 3588 3589
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3590
            'dim': dim if dim != None else [0],
3591 3592 3593 3594 3595 3596
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3597
def reduce_min(input, dim=None, keep_dim=False, name=None):
3598
    """
Y
yangyaming 已提交
3599
    Computes the minimum of tensor elements over the given dimension.
3600 3601 3602

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3603
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3604 3605 3606
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3607
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3608 3609
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3610
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3611 3612
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3613 3614 3615

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3616

3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3628 3629 3630 3631 3632 3633 3634

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3635 3636
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3637
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3638 3639
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3640 3641 3642 3643 3644
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3645
            'dim': dim if dim != None else [0],
3646 3647 3648 3649
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3650 3651


3652 3653 3654 3655 3656 3657
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3658
        dim (list|int|None): The dimensions along which the product is performed. If
3659 3660
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3661 3662
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3663 3664 3665
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3666
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3667
            layer will be named automatically.
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3682
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3683
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3684 3685 3686 3687 3688 3689 3690

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3691 3692
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3693
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3694 3695
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3696 3697 3698 3699 3700
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3701
            'dim': dim if dim != None else [0],
3702 3703 3704 3705 3706 3707
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3708
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3709
    """
C
caoying03 已提交
3710
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3711 3712 3713

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3714 3715 3716 3717 3718
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3719
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3720
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3721
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3722 3723
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3724 3725

    Returns:
D
dzhwinter 已提交
3726
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3727 3728 3729 3730 3731 3732 3733 3734 3735

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3736 3737
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3753
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3767 3768 3769 3770 3771 3772 3773 3774 3775


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3776
    .. math::
3777 3778

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3779 3780 3781 3782 3783

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3784
        x(Variable|list): The input tensor to l2_normalize layer.
3785
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3786 3787
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3788
        epsilon(float): The epsilon value is used to avoid division by zero, \
3789
            the defalut value is 1e-10.
3790
        name(str|None): A name for this layer(optional). If set None, the layer \
3791
            will be named automatically.
C
caoying03 已提交
3792 3793

    Returns:
3794
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3795 3796

    Examples:
3797

C
caoying03 已提交
3798 3799
        .. code-block:: python

3800 3801 3802 3803
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3804 3805
    """

F
fengjiayi 已提交
3806 3807
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3808 3809
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3810 3811
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3812
    helper.append_op(
3813 3814 3815 3816
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3817
        attrs={
3818 3819
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3820 3821
        })
    return out
3822 3823


S
sneaxiy 已提交
3824
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3825
    """
Y
ying 已提交
3826 3827 3828 3829
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3830

C
chengduoZH 已提交
3831
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3832
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3833

3834 3835 3836 3837 3838
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3839
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3840

C
chengduoZH 已提交
3841
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3842
      performs in the following way.
G
guosheng 已提交
3843

3844
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3845
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3846
        last two dimensions and a batched matrix multiply supporting broadcast
3847
        applies on the two tensors.
G
guosheng 已提交
3848

Y
ying 已提交
3849 3850
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3851
    removed after matrix multiplication.
G
guosheng 已提交
3852 3853 3854

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3855 3856 3857
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3858
        alpha (float): The scale of output. Default 1.0.
3859
        name(str|None): A name for this layer(optional). If set None, the layer
3860
            will be named automatically.
G
guosheng 已提交
3861 3862

    Returns:
3863
        Variable: The product Tensor variable.
G
guosheng 已提交
3864

G
guosheng 已提交
3865 3866 3867
    Examples:
        .. code-block:: python

3868
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3869 3870
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3871

3872 3873
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3874

3875 3876
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3877

3878 3879
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3880 3881 3882 3883

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3884 3885
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3886

Y
ying 已提交
3887
            # x: [M], y: [N]
3888
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3889
    """
Y
ying 已提交
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3902
            y_shape = y_shape + [1]
Y
ying 已提交
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3919
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3920
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3921
    helper.append_op(
3922 3923 3924 3925
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3926 3927 3928
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3929
            'alpha': float(alpha),
S
sneaxiy 已提交
3930
        })
3931
    return out
3932 3933


3934
def topk(input, k, name=None):
Q
qingqing01 已提交
3935 3936 3937 3938
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3939
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3940 3941 3942 3943 3944 3945
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3967 3968 3969
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3970
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3971
                 of input.
3972
        name(str|None): A name for this layer(optional). If set None, the layer
3973
                       will be named automatically.
F
fengjiayi 已提交
3974
                       Default: None
Q
qingqing01 已提交
3975 3976

    Returns:
3977 3978 3979
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3980
        within the last dimension of input.
Q
qingqing01 已提交
3981

F
fengjiayi 已提交
3982 3983
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3984 3985 3986 3987 3988 3989 3990

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
3991 3992
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4004
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4005
    """
Y
ying 已提交
4006 4007 4008 4009 4010 4011 4012 4013 4014
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4015

Y
ying 已提交
4016
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4017

4018
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4019 4020
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4021
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4022

4023
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4024 4025
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4026

4027 4028 4029
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4030
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4031
                          the length of reference string.
4032
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4033
                                     calculating edit distance.
4034
        name (str): The name of this layer. It is optional.
4035

W
wanghaoshuang 已提交
4036
    Returns:
W
wanghaoshuang 已提交
4037
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4038 4039 4040 4041 4042

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
4043
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
4044
            cost = fluid.layers.edit_distance(input=x,label=y)
4045
    """
4046
    helper = LayerHelper("edit_distance", **locals())
4047

4048
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4049
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4050 4051
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4052 4053 4054 4055 4056

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4057
            attrs={"tokens": ignored_tokens})
4058 4059 4060 4061 4062
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4063
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4064
            attrs={"tokens": ignored_tokens})
4065 4066
        label = erased_label

4067
    # edit distance op
X
Xin Pan 已提交
4068 4069
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4070 4071 4072 4073
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4074 4075
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4076 4077
        attrs={"normalized": normalized})

4078
    return edit_distance_out, sequence_num
4079 4080 4081 4082 4083


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4084

Y
ying 已提交
4085 4086 4087 4088
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4106
        input.lod = [[4, 4]]
4107 4108 4109 4110 4111 4112 4113

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4114
        output.lod = [[2, 1]]
4115 4116 4117

    Args:

Y
ying 已提交
4118 4119 4120 4121 4122 4123 4124 4125 4126
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4127
        name (str): The name of this layer. It is optional.
4128 4129

    Returns:
4130
        Variable: CTC greedy decode result. If all the sequences in result were
4131
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4132 4133 4134 4135 4136

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4137

4138
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4139
    """
4140
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4141
    _, topk_indices = topk(input, k=1)
4142 4143

    # ctc align op
X
Xin Pan 已提交
4144
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4145 4146 4147
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4148
        outputs={"Output": [ctc_out]},
4149 4150
        attrs={"merge_repeated": True,
               "blank": blank})
4151
    return ctc_out
4152 4153


F
fengjiayi 已提交
4154
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4155
    """
4156 4157
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4158
    to compute Connectionist Temporal Classification (CTC) loss.
4159 4160
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4161 4162 4163
    input tensor.

    Args:
4164
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4165 4166 4167 4168
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4169
       label (Variable): The ground truth of variable-length sequence,
4170 4171 4172
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4173 4174
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4175 4176 4177
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4178
         follewed by a mean_op.
W
wanghaoshuang 已提交
4179 4180

    Returns:
4181 4182
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4183 4184

    Examples:
4185

W
wanghaoshuang 已提交
4186
        .. code-block:: python
4187

4188 4189 4190
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4191 4192

    """
F
fengjiayi 已提交
4193
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4194 4195
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4196 4197 4198 4199 4200 4201 4202 4203 4204
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4220 4221 4222
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4223 4224 4225 4226 4227
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4228

4229
            out.lod  = [[0, 1, 3]]
4230 4231 4232 4233

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4234 4235 4236 4237 4238 4239 4240
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4241 4242 4243

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4244 4245

    Returns:
4246

4247 4248 4249 4250 4251
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4252
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4253
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4254 4255
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4256
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4257 4258 4259 4260 4261 4262
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4263 4264


4265 4266 4267 4268
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4269 4270 4271 4272 4273 4274
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4275 4276
        num_neg_samples=None,
        name=None):
4277 4278 4279 4280 4281 4282 4283
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4284 4285
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4286
            sample is 1.0.
C
chengduo 已提交
4287 4288 4289 4290 4291 4292 4293 4294 4295
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4296
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4297 4298
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4299

4300
    Returns:
Y
Yibing Liu 已提交
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4328
    """
Y
Yang Yu 已提交
4329 4330 4331
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4332 4333

    dim = input.shape[1]
Y
Yang Yu 已提交
4334 4335 4336 4337 4338 4339
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4353 4354 4355
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4356

Y
Yang Yu 已提交
4357 4358 4359 4360 4361 4362 4363 4364 4365
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4366 4367 4368

    helper.append_op(
        type='nce',
C
chengduo 已提交
4369
        inputs=inputs,
Y
Yang Yu 已提交
4370 4371 4372 4373 4374 4375
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4376
    return cost / (num_neg_samples + 1)
4377 4378


C
chengduo 已提交
4379 4380 4381 4382 4383 4384
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4385 4386
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4387
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4388 4389 4390 4391 4392 4393 4394 4395 4396
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4397

W
weixing02 已提交
4398
    Args:
M
minqiyang 已提交
4399
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4400 4401 4402 4403 4404
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4416 4417 4418 4419 4420 4421 4422 4423

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4424 4425 4426
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4427 4428 4429 4430
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4431 4432
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4433 4434
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4435
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4436 4437 4438 4439 4440
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4441 4442 4443 4444 4445 4446 4447 4448
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4449 4450
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4451
        inputs=inputs,
W
weixing02 已提交
4452 4453 4454 4455 4456 4457
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4458
def transpose(x, perm, name=None):
Y
ying 已提交
4459 4460 4461 4462 4463 4464 4465
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4466 4467 4468
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4469 4470 4471 4472 4473 4474 4475

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4476 4477 4478 4479
            # use append_batch_size=False to avoid prepending extra 
            # batch size in shape
            x = fluid.layers.data(name='x', shape=[5, 10, 15], 
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4480
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4481 4482
    """

Y
fix ci.  
ying 已提交
4483
    if len(perm) != len(x.shape):
Y
ying 已提交
4484 4485 4486
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4487 4488 4489 4490 4491 4492
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4493 4494

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4495 4496
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4497
    helper.append_op(
4498
        type='transpose2',
Y
fix ci.  
ying 已提交
4499
        inputs={'X': [x]},
4500 4501
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4502 4503
        attrs={'axis': perm})
    return out
4504 4505


4506 4507 4508 4509 4510 4511 4512
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4513
    """
4514 4515 4516 4517 4518 4519 4520
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4549 4550 4551 4552 4553 4554 4555 4556 4557
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4558 4559 4560
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4561 4562 4563 4564 4565
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4593 4594 4595
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4608
            output.dims = {8, 8}
4609

4610
            output.lod = [[4, 4]]
4611

D
dzhwinter 已提交
4612
     Examples:
4613 4614 4615

        .. code-block:: python

4616 4617
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4618 4619

    """
W
wanghaoshuang 已提交
4620 4621 4622 4623 4624 4625 4626 4627 4628 4629

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4630 4631 4632 4633 4634 4635 4636
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4637
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4638
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4639
    helper.append_op(
4640
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4641
    return out
4642 4643


Y
yuyang18 已提交
4644
@templatedoc()
4645
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4646 4647
    """
    ${comment}
4648 4649

    Args:
Y
yuyang18 已提交
4650
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4651 4652
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4653 4654 4655 4656 4657
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4658
        ${out_comment}.
4659 4660

    Examples:
Y
yuyang18 已提交
4661 4662 4663 4664
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4665 4666 4667 4668 4669 4670
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4671
    out = helper.create_variable_for_type_inference(dtype)
4672 4673 4674 4675 4676
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4677
    return helper.append_activation(out)
4678 4679


Y
yuyang18 已提交
4680
@templatedoc()
4681 4682
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4683 4684 4685 4686 4687 4688 4689
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4690 4691

    Args:
Y
yuyang18 已提交
4692 4693
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4694 4695

    Returns:
Y
yuyang18 已提交
4696
        ${out_comment}.
4697 4698
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4699 4700 4701 4702 4703

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4704
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4705 4706 4707 4708 4709 4710
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4711 4712


4713 4714 4715 4716
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4717 4718
    """
    **Softmax With Cross Entropy Operator.**
4719

4720 4721 4722 4723
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4724

4725 4726 4727
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4728

4729 4730 4731
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4732

4733
    The equation is as follows:
4734

4735
    1) Hard label (one-hot label, so every sample has exactly one class)
4736

4737 4738 4739 4740
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4741

4742 4743 4744
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4745

4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4758 4759
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4760 4761
                            if soft_label is set to False. Default: -100

4762 4763 4764 4765 4766 4767 4768 4769 4770
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4771 4772
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4773 4774
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4775 4776
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4777 4778 4779 4780 4781 4782
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4783 4784
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4785 4786 4787 4788 4789
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4790 4791
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4792
    For each instance, it computes the smooth L1 loss element by element first
4793
    and then sums all the losses. So the shape of ouput Variable is
4794
    [batch_size, 1].
4795

4796 4797
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4798
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4799
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4800
            L1 loss op with same shape as :attr:`x`.
4801
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4802 4803
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4804
            by this tensor element by element.
4805
        outside_weight (Variable|None): A tensor with rank at least 2. This
4806 4807
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4808
            element by element.
4809
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4810 4811
           scalar with default value 1.0.

4812
    Returns:
4813
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4814 4815 4816 4817 4818

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4819 4820
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4821
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4822
            out = fluid.layers.smooth_l1(x=fc, y=label)
4823
    """
4824

4825
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4826 4827
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4840 4841 4842 4843


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4844
    This layer creates the one-hot representations for input indices.
4845 4846

    Args:
Y
Yibing Liu 已提交
4847 4848
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4849 4850

    Returns:
Y
Yibing Liu 已提交
4851
        Variable: The one-hot representations of input.
4852 4853

    Examples:
C
caoying03 已提交
4854
        .. code-block:: python
4855

Y
Yibing Liu 已提交
4856 4857
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4858 4859
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4860
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4861 4862 4863 4864 4865 4866
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4867 4868


Y
Yu Yang 已提交
4869
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4870
    """
Y
yi.wu 已提交
4871 4872 4873
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4874 4875 4876 4877 4878 4879

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4880 4881
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4882 4883 4884 4885 4886 4887

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4888 4889
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4890 4891
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4892 4893 4894 4895 4896
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4897
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4898
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4899 4900
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4901 4902
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4903 4904 4905
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4906 4907


4908
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
4909
    """
C
caoying03 已提交
4910 4911
    Gives a new shape to the input Tensor without changing its data.

4912 4913 4914 4915 4916
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4917

4918
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4919

4920 4921 4922 4923
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4924
    2. 0 means the actual dimension value is going to be copied from the
4925 4926 4927 4928
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4929 4930

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4931
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4932
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4933

4934
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4935 4936
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4937 4938
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4939
    dimensions.
C
caoying03 已提交
4940

4941
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4942 4943 4944 4945
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4946 4947

    Args:
4948
        x(variable): The input tensor.
C
caoying03 已提交
4949 4950
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4951 4952 4953 4954 4955
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
4956 4957
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
4958 4959 4960 4961 4962 4963 4964
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
4965
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4966

4967
    Returns:
G
guosheng 已提交
4968 4969 4970 4971
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
4972

X
Xin Pan 已提交
4973 4974 4975
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4976 4977
    Examples:
        .. code-block:: python
G
guosheng 已提交
4978

4979
            data = fluid.layers.data(
4980
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4981
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
4982
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
4983 4984 4985
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4986
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4987 4988 4989 4990 4991
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4992

4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5008
    helper = LayerHelper("reshape2", **locals())
5009 5010
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5011
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5012
    helper.append_op(
5013
        type="reshape2",
X
Xin Pan 已提交
5014
        inputs=inputs,
D
dzhwinter 已提交
5015
        attrs={"shape": shape},
5016 5017
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5018

D
dzhwinter 已提交
5019
    return helper.append_activation(out)
5020

5021

5022
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5023
    """
M
minqiyang 已提交
5024 5025 5026
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5027
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5028

Y
Yibing Liu 已提交
5029 5030
    Examples:
    Case 1:
M
minqiyang 已提交
5031
      Given
Y
Yibing Liu 已提交
5032 5033 5034 5035 5036 5037 5038 5039
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5040
        and
Y
Yibing Liu 已提交
5041 5042 5043
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5044

Y
Yibing Liu 已提交
5045
    Args:
5046
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5047
        axes (list): List of integers, indicating the dimensions to be squeezed.
5048
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5049 5050 5051 5052 5053 5054 5055 5056

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5057
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5058 5059
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5060 5061
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5062
    helper.append_op(
5063
        type="squeeze2",
5064
        inputs={"X": input},
Y
Yibing Liu 已提交
5065
        attrs={"axes": axes},
5066 5067
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5068

5069 5070 5071
    return out


5072
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5073
    """
M
minqiyang 已提交
5074 5075 5076
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5077

M
minqiyang 已提交
5078 5079
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5080
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5081

Y
Yibing Liu 已提交
5082
    Args:
5083
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5084
        axes (list): List of integers, indicating the dimensions to be inserted.
5085
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5086 5087 5088 5089 5090 5091 5092 5093

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5094
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5095 5096
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5097 5098
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5099
    helper.append_op(
5100
        type="unsqueeze2",
5101
        inputs={"X": input},
Y
Yibing Liu 已提交
5102
        attrs={"axes": axes},
5103 5104
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5105

5106 5107
    return out

5108

Y
yangyaming 已提交
5109
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5110
    """
Y
Yibing Liu 已提交
5111
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5112 5113 5114 5115
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5116
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5117 5118 5119 5120 5121 5122

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5123
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5124 5125 5126
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5127
            target_lod: [4, 2]
Y
yangyaming 已提交
5128 5129

            then we get a 1-level LoDTensor:
5130
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5131 5132 5133 5134 5135 5136
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5137
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5138 5139 5140 5141
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5142
                y.data = [[2, 4]]
Y
yangyaming 已提交
5143 5144 5145
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5146
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5147 5148 5149 5150 5151 5152
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5153
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5154 5155 5156 5157
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5158
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5159 5160 5161 5162
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5163
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5164 5165 5166 5167 5168
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5169
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5170
                           from :attr:`y`.
Y
yangyaming 已提交
5171
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5172
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5173 5174

    Returns:
Y
Yibing Liu 已提交
5175
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5176 5177

    Raises:
Y
Yibing Liu 已提交
5178
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5179 5180 5181 5182 5183 5184 5185 5186 5187

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5188
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5214
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5243 5244
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5257 5258 5259
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5273 5274 5275 5276


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5277
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5278
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5279

G
guosheng 已提交
5280 5281 5282 5283
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5306
                         The length of :attr:paddings must be
G
guosheng 已提交
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5317

G
guosheng 已提交
5318 5319 5320 5321 5322 5323
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5324
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5325 5326 5327 5328 5329 5330 5331
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5332 5333


C
chengduo 已提交
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5404
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5405 5406 5407 5408 5409 5410 5411 5412 5413
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5414 5415 5416 5417 5418 5419 5420
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5421 5422
    called label-smoothing regularization (LSR).

5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5446
                              be :math:`(1, class\_num)`.
5447 5448
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5449
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5469
    smooth_label = helper.create_variable_for_type_inference(dtype)
5470 5471 5472 5473 5474 5475 5476
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5477 5478


Y
yi.wu 已提交
5479
@templatedoc()
5480 5481
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5482
    ${comment}
5483 5484

    Args:
Y
yi.wu 已提交
5485 5486
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5487 5488 5489
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5490 5491

    Returns:
Y
update  
yi.wu 已提交
5492
        Variable: ${out_comment}.
5493 5494

    Examples:
5495 5496
        .. code-block:: python

5497
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5498 5499 5500
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5501 5502
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5515 5516


J
jerrywgz 已提交
5517 5518 5519 5520 5521 5522
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5523 5524
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5541 5542 5543
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5544 5545 5546 5547 5548 5549
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5550
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5591 5592
        .. code-block:: python

W
whs 已提交
5593 5594 5595 5596
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5597
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5598 5599 5600 5601 5602 5603
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5604 5605


5606 5607 5608 5609 5610
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5611
    """
Q
qiaolongfei 已提交
5612
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5613

5614
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5615 5616 5617
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5618

5619
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5620

5621
    Args:
5622
        input (Variable): The input tensor of image resize layer,
5623 5624
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5625
        out_shape(list|tuple|Variable|None): Output shape of image resize
5626 5627
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5628
        scale(float|None): The multiplier for the input height or width.
5629 5630 5631
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5632 5633
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5634 5635
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5636 5637

    Returns:
Q
update  
qiaolongfei 已提交
5638 5639
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5640

5641 5642 5643
    Examples:
        .. code-block:: python

5644
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5645
    """
5646 5647 5648 5649
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5650 5651
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5652 5653
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5654 5655 5656 5657

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5658 5659 5660
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5661
    if out_shape is not None:
B
baiyf 已提交
5662 5663 5664
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5665 5666 5667 5668 5669 5670
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5671 5672 5673 5674
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

X
Xin Pan 已提交
5675
    out = helper.create_variable_for_type_inference(dtype)
5676
    helper.append_op(
5677
        type=resample_methods[resample],
5678
        inputs=inputs,
5679 5680 5681 5682
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5683 5684


Y
yuyang18 已提交
5685
@templatedoc(op_type="bilinear_interp")
5686 5687
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5688 5689 5690 5691 5692 5693
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5694

Y
yuyang18 已提交
5695 5696 5697 5698 5699 5700 5701 5702
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5703 5704 5705 5706 5707 5708 5709
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5710 5711 5712
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5713 5714 5715 5716 5717 5718 5719
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5720
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5721

5722
    Returns:
Q
update  
qiaolongfei 已提交
5723
        Variable: The output is a 4-D tensor of the shape
5724
        (num_batches, channls, out_h, out_w).
5725 5726 5727 5728 5729 5730 5731 5732 5733 5734
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5735 5736 5737
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5738 5739 5740
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5741 5742
def gather(input, index):
    """
Q
qiaolongfei 已提交
5743 5744
    **Gather Layer**

5745
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5746 5747 5748 5749
    of X indexed by `index` and concatenate them together.

    .. math::

5750
        Out = X[Index]
W
whs 已提交
5751 5752 5753 5754 5755 5756 5757


    .. code-block:: text


                Given:

5758 5759
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5770
        input (Variable): The source input with rank>=1.
W
whs 已提交
5771 5772 5773 5774 5775 5776
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5777

W
whs 已提交
5778 5779 5780 5781 5782 5783
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5784
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5785 5786 5787 5788 5789 5790 5791 5792
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5824
    out = helper.create_variable_for_type_inference(dtype)
5825 5826 5827 5828 5829 5830 5831 5832 5833
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5884
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
5885 5886 5887 5888 5889 5890 5891 5892 5893
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5907

5908 5909 5910
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5911
    """
F
stash  
fengjiayi 已提交
5912
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5913
    dtype = x.dtype
X
Xin Pan 已提交
5914
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
5915
    if seed is None:
5916
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5917
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5918
    if isinstance(seed, int):
F
fengjiayi 已提交
5919 5920 5921 5922 5923
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5924 5925 5926 5927
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5928
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5929 5930
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5931 5932
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5933
    return out
W
whs 已提交
5934 5935


5936
def log(x, name=None):
W
wanghaoshuang 已提交
5937 5938 5939 5940 5941
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5942
        Out = \\ln(x)
W
wanghaoshuang 已提交
5943 5944

    Args:
5945
        x (Variable): Input tensor.
5946 5947
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5948 5949 5950 5951 5952 5953 5954 5955

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5956
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5957 5958
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5959
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5960
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5961
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5962 5963 5964
    return out


5965
def relu(x, name=None):
W
wanghaoshuang 已提交
5966 5967
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5968
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5969 5970 5971 5972
    the tensor elementwise.

    .. math::

5973
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5974 5975

    Args:
5976
        x (Variable): The input tensor.
5977 5978
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5979 5980 5981 5982 5983 5984 5985 5986

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5987
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5988 5989
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5990
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5991
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5992
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5993
    return out
5994 5995


W
whs 已提交
5996 5997 5998
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5999 6000 6001 6002
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6003
    .. math::
6004 6005

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6006

6007
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6008 6009 6010 6011 6012
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6013
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6014
                           Its shape should be the same as input.
6015
        num_classes (int): The possible number of labels.
W
whs 已提交
6016 6017 6018 6019

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6020
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6021 6022 6023 6024

    Examples:

        .. code-block:: python
6025

W
whs 已提交
6026 6027 6028 6029
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6030 6031 6032
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6033 6034
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6035 6036
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6037
        outputs={
W
whs 已提交
6038 6039 6040
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6041 6042 6043
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6118
                    isinstance(shape, Variable)):
6119 6120 6121 6122 6123
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6124
    out = helper.create_variable_for_type_inference(x.dtype)
6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6142 6143


W
whs 已提交
6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
      
              out_shape = [2, 3, 5, 5]
      
          Step 1:
      
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
      
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
        isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6262 6263 6264 6265 6266 6267 6268 6269
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6270

6271 6272
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6273

6274 6275 6276 6277
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6278

6279 6280 6281 6282 6283
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6284 6285 6286

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6322
    out = helper.create_variable_for_type_inference("float32")
6323 6324 6325 6326 6327 6328 6329 6330

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6331 6332


M
minqiyang 已提交
6333 6334
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6335
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6336
    which compares left score and right score passed in.
M
minqiyang 已提交
6337
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6338 6339 6340 6341 6342 6343

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6344
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6345 6346
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6347
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6348 6349 6350
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6351
       Variable: The ranking loss.
M
minqiyang 已提交
6352
    Raises:
M
minqiyang 已提交
6353
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6354 6355 6356 6357 6358 6359 6360
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6361
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6362 6363 6364 6365 6366 6367
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6368 6369
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6395

W
whs 已提交
6396 6397
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6398

W
whs 已提交
6399
      Case 0:
M
minqiyang 已提交
6400

W
whs 已提交
6401 6402 6403
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6404

W
whs 已提交
6405 6406 6407
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6408

W
whs 已提交
6409
      Case 1:
M
minqiyang 已提交
6410

W
whs 已提交
6411 6412
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6413

W
whs 已提交
6414 6415 6416
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6417

W
whs 已提交
6418
      Case 2:
M
minqiyang 已提交
6419

W
whs 已提交
6420 6421
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6422

W
whs 已提交
6423 6424 6425
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6426 6427


W
whs 已提交
6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6454
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6483
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6506
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6529
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6553
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6578
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6602
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6603 6604 6605 6606 6607 6608 6609 6610
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6625
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6626
                        will be named automatically.
J
jerrywgz 已提交
6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6654
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6655 6656 6657 6658 6659 6660 6661 6662 6663
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6678
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6701
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6723
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6724 6725 6726 6727 6728 6729 6730 6731
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6745

6746 6747 6748 6749 6750 6751 6752 6753 6754 6755
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6756 6757
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6773
        ValueError: If axis is not in range [0, rank(x)].
6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6790 6791
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6792
    helper.append_op(
6793
        type='flatten2',
6794
        inputs={"X": x},
6795 6796
        outputs={'Out': out,
                 'XShape': x_shape},
6797 6798
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6799 6800


C
chenweihang 已提交
6801
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6802
    """
C
chenweihang 已提交
6803
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6804
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6805 6806
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6807

C
chenweihang 已提交
6808 6809 6810 6811
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6812
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6813 6814 6815 6816 6817 6818
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6819
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6820 6821 6822
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6823 6824 6825
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
6837 6838
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6839 6840 6841 6842 6843 6844
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6845
    return out
6846

6847

S
sneaxiy 已提交
6848 6849 6850 6851 6852 6853 6854 6855 6856
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6857

S
sneaxiy 已提交
6858
    .. math::
6859

S
sneaxiy 已提交
6860 6861 6862
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6863
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6864 6865 6866 6867
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6868 6869 6870
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6871 6872
    Returns:
        Variable: The output sequence mask.
6873

S
sneaxiy 已提交
6874 6875
    """

Q
qingqing01 已提交
6876
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6877
    if name is None:
X
Xin Pan 已提交
6878
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
6879
    else:
X
Xin Pan 已提交
6880
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
6881

Q
qingqing01 已提交
6882 6883 6884
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6885 6886
        outputs={'Y': out},
        attrs={
6887
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6888 6889 6890
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6891 6892


X
Xin Pan 已提交
6893
def stack(x, axis=0):
S
sneaxiy 已提交
6894 6895 6896 6897
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6898 6899 6900 6901 6902 6903 6904

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6905
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6906
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6907 6908

    Args:
6909
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6910
        axis (int|None): The axis along which all inputs are stacked.
6911

S
sneaxiy 已提交
6912 6913
    Returns:
        Variable: The stacked variable.
6914

S
sneaxiy 已提交
6915 6916
    """

X
Xin Pan 已提交
6917 6918 6919 6920 6921 6922
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
6923
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
6924
    helper.append_op(
S
sneaxiy 已提交
6925 6926
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6927

X
Xin Pan 已提交
6928
    return out
D
dzhwinter 已提交
6929 6930 6931 6932 6933 6934 6935


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6936

D
dzhwinter 已提交
6937 6938 6939
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6940
    raised.
D
dzhwinter 已提交
6941 6942

    Args:
M
minqiyang 已提交
6943
        x (Variable): Input variable.
D
dzhwinter 已提交
6944 6945
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6946

D
dzhwinter 已提交
6947 6948
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6949

D
dzhwinter 已提交
6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
6961
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
6962 6963 6964 6965 6966 6967 6968 6969

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6982

W
whs 已提交
6983 6984 6985 6986
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6987

W
whs 已提交
6988
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6989

W
whs 已提交
6990
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6991

W
whs 已提交
6992 6993 6994 6995
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6996

W
whs 已提交
6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7013
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7014 7015 7016 7017 7018 7019
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7020 7021


G
fix  
gongweibao 已提交
7022 7023 7024
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7025
@templatedoc()
G
fix  
gongweibao 已提交
7026 7027 7028 7029 7030 7031 7032 7033 7034
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7035
    ${comment}
G
fix  
gongweibao 已提交
7036 7037

    Args:
G
gongweibao 已提交
7038 7039 7040
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7041
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7042 7043 7044
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7045 7046
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7047
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7048 7049 7050 7051

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7052
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7069 7070


G
gongweibao 已提交
7071
@templatedoc()
X
Xin Pan 已提交
7072
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7073
    """
G
gongweibao 已提交
7074
    ${comment}
G
fix  
gongweibao 已提交
7075 7076

    Args:
G
gongweibao 已提交
7077 7078 7079 7080
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7081 7082 7083
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7084
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7085 7086 7087 7088

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7089
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7090 7091 7092 7093 7094 7095 7096 7097 7098 7099
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7100
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7101 7102 7103 7104 7105
        })

    return out


G
gongweibao 已提交
7106
@templatedoc()
G
fix  
gongweibao 已提交
7107
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7108
    """
G
gongweibao 已提交
7109
    ${comment}
G
fix  
gongweibao 已提交
7110 7111

    Args:
G
gongweibao 已提交
7112 7113 7114 7115
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7116
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7117 7118

    Returns:
G
gongweibao 已提交
7119
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7120 7121 7122 7123

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7124
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7136
@templatedoc()
G
fix  
gongweibao 已提交
7137 7138 7139 7140 7141 7142 7143 7144 7145
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7146
    ${comment}
G
fix  
gongweibao 已提交
7147 7148

    Args:
G
gongweibao 已提交
7149 7150
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7151
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7152 7153 7154 7155
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7156
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7157 7158

    Returns:
G
gongweibao 已提交
7159
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7160 7161 7162
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7163
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7182
@templatedoc()
X
Xin Pan 已提交
7183
def sum(x):
G
fix  
gongweibao 已提交
7184
    """
G
gongweibao 已提交
7185
    ${comment}
G
fix  
gongweibao 已提交
7186 7187

    Args:
G
gongweibao 已提交
7188
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7189 7190

    Returns:
G
gongweibao 已提交
7191
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7192 7193 7194
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7195 7196
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7197 7198 7199 7200
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7201
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7202 7203 7204 7205

    return out


G
gongweibao 已提交
7206
@templatedoc()
G
fix  
gongweibao 已提交
7207 7208
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7209
    ${comment}
G
fix  
gongweibao 已提交
7210 7211

    Args:
G
gongweibao 已提交
7212 7213 7214 7215
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7216 7217

    Returns:
G
gongweibao 已提交
7218
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7219 7220 7221 7222

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7223 7224
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7236
@templatedoc()
G
fix  
gongweibao 已提交
7237 7238
def shape(input):
    """
G
gongweibao 已提交
7239
    ${comment}
G
fix  
gongweibao 已提交
7240 7241

    Args:
G
gongweibao 已提交
7242
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7243 7244

    Returns:
G
gongweibao 已提交
7245
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7246 7247 7248 7249

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7250 7251
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7252
    helper.append_op(
G
fix  
gongweibao 已提交
7253
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7254 7255

    return out
G
merge  
gongweibao 已提交
7256 7257


S
sneaxiy 已提交
7258 7259 7260 7261 7262 7263 7264 7265
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7266 7267
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7268
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7269 7270 7271
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7272

S
sneaxiy 已提交
7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7284
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7285 7286 7287 7288 7289 7290 7291 7292
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7293
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7294
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7295 7296 7297 7298 7299 7300

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7301
    if name is None:
X
Xin Pan 已提交
7302
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7303 7304 7305
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7306 7307 7308 7309 7310 7311 7312 7313 7314 7315

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7316
    return helper.append_activation(out)
S
sneaxiy 已提交
7317 7318


X
Xin Pan 已提交
7319
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7320 7321 7322
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7323
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7324 7325 7326
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7327
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7328 7329 7330
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7331
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7332 7333 7334
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7335
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7336 7337 7338
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7339
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7340 7341 7342
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7343
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7355 7356
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7357
        ])
M
minqiyang 已提交
7358 7359


7360
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7361 7362
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7363 7364
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7365 7366 7367

    if out is None:
        if name is None:
X
Xin Pan 已提交
7368
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7384
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7403
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7422
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7441
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
X
Xin Pan 已提交
7476
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
X
Xin Pan 已提交
7508
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7538
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7568
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7569 7570 7571 7572 7573 7574 7575 7576 7577
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7578 7579
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7602
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7632
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7633 7634 7635 7636 7637 7638 7639 7640 7641 7642
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7643 7644


S
sneaxiy 已提交
7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658
@templatedoc()
def sequence_reverse(x, name=None):
    """ 
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
7659
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7660 7661 7662 7663 7664 7665 7666 7667 7668 7669
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
7670 7671


7672 7673 7674 7675 7676 7677
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
7678

7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7698
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
7711 7712


M
minqiyang 已提交
7713 7714 7715 7716 7717 7718 7719
def hash(input, hash_size, num_hash=1, name=None):
    """
    hash the input
     Args:
        input (Variable): The input variable which is a one-hot word.
        hash_size (int): The space size for hash algorithm.
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
7720
        name (str, default None): The name of this layer.
M
minqiyang 已提交
7721 7722 7723 7724
     Returns:
        Variable: The hash result variable which is a LoDTensor.
     Examples:
        .. code-block:: python
M
minqiyang 已提交
7725
            word_dict = paddle.dataset.imdb.word_dict()
M
minqiyang 已提交
7726 7727 7728 7729
            x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
            out = fluid.layers.hash(input=x, len(word_dict))
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
7730 7731
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
7732 7733 7734 7735 7736 7737 7738
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834


def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out