nn.py 203.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

Y
Yu Yang 已提交
20 21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
23
from ..param_attr import ParamAttr
24 25 26
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
Y
yuyang18 已提交
27
import random
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
Y
ying 已提交
32 33 34
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
35
    'dynamic_lstmp',
G
guosheng 已提交
36
    'dynamic_gru',
Y
ying 已提交
37 38 39 40 41 42 43 44 45
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
46
    'conv3d',
Y
ying 已提交
47
    'sequence_pool',
48 49
    'sequence_softmax',
    'softmax',
Y
ying 已提交
50
    'pool2d',
Y
yuyang18 已提交
51
    'pool3d',
Y
ying 已提交
52 53 54
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
55
    'conv3d_transpose',
Y
ying 已提交
56 57 58 59 60 61
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
62
    'reduce_prod',
Y
ying 已提交
63 64 65 66
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
67 68
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
69 70
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
71
    'topk',
Y
ying 已提交
72 73
    'warpctc',
    'sequence_reshape',
74
    'transpose',
75
    'im2sequence',
76
    'nce',
W
weixing02 已提交
77
    'hsigmoid',
Q
Qiao Longfei 已提交
78
    'beam_search',
79
    'row_conv',
80
    'multiplex',
G
guosheng 已提交
81
    'layer_norm',
82 83
    'softmax_with_cross_entropy',
    'smooth_l1',
84
    'one_hot',
Y
Yu Yang 已提交
85
    'autoincreased_step_counter',
C
caoying03 已提交
86
    'reshape',
Y
yangyaming 已提交
87
    'lod_reset',
D
dragonwarrior 已提交
88
    'lrn',
G
guosheng 已提交
89
    'pad',
90
    'label_smooth',
91
    'roi_pool',
W
whs 已提交
92
    'dice_loss',
F
fengjiayi 已提交
93 94
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
95
    'resize_bilinear',
W
whs 已提交
96
    'gather',
97
    'scatter',
98
    'random_crop',
Y
yuyang18 已提交
99 100 101
    'mean_iou',
    'relu',
    'log',
102
    'crop',
103
    'rank_loss',
J
jerrywgz 已提交
104
    'prelu',
105
    'flatten',
Q
qingqing01 已提交
106
    'sequence_mask',
S
sneaxiy 已提交
107
    'stack',
D
dzhwinter 已提交
108
    'unstack',
Y
Yu Yang 已提交
109 110 111 112 113 114 115 116
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
117
       use_mkldnn=False,
Y
Yu Yang 已提交
118
       act=None,
J
Jacek Czaja 已提交
119
       is_test=False,
120
       name=None):
Y
Yu Yang 已提交
121
    """
122
    **Fully Connected Layer**
Y
Yu Yang 已提交
123

124 125 126 127 128 129 130 131
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
132
    to the output as well.
C
caoying03 已提交
133

C
caoying03 已提交
134
    This process can be formulated as follows:
135 136 137

    .. math::

138
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
139 140 141

    In the above equation:

C
caoying03 已提交
142 143 144 145
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
146
    * :math:`Act`: The activation function.
C
caoying03 已提交
147
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
148 149

    Args:
R
ranqiu 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
165 166
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
167
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
168
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
169 170
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
171
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
172

173
    Returns:
F
fengjiayi 已提交
174
        Variable: The transformation result.
175 176

    Raises:
C
caoying03 已提交
177
        ValueError: If rank of the input tensor is less than 2.
178 179 180 181

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
182
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
183
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
184
    """
C
caoying03 已提交
185

C
caoying03 已提交
186
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
187 188 189 190

    dtype = helper.input_dtype()

    mul_results = []
191 192
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
193 194 195
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
196

Y
Yu Yang 已提交
197
        w = helper.create_parameter(
198 199
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
200
        helper.append_op(
201 202 203
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
204
            outputs={"Out": tmp},
M
mozga-intel 已提交
205 206
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
207 208 209 210
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
211
    else:
212 213
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
214 215 216 217
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
218 219 220 221
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
222 223


224 225 226
def embedding(input,
              size,
              is_sparse=False,
227
              is_distributed=False,
228 229 230
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
231
    """
232 233
    **Embedding Layer**

234
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
235 236
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
237 238 239

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
240 241

    Args:
242 243 244 245 246
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
247
        is_distributed(bool): Whether to run lookup table from remote parameter server.
248 249
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
250
            with zeros whenever lookup encounters it in :attr:`input`. If
251
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
252 253
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
254
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
255

256 257 258
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
259

260 261
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
262

C
chengduoZH 已提交
263
          dict_size = len(dataset.ids)
264
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
265
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
266 267 268 269 270 271
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
272 273
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
274 275 276 277 278
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
279 280 281 282 283
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
284 285 286
    return tmp


Y
yi.wu 已提交
287
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
288 289
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
290 291
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
292 293 294 295 296 297 298
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
299 300
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
301
    """
Y
yi.wu 已提交
302
    ${comment}
Y
Yibing Liu 已提交
303 304

    Args:
Y
yi.wu 已提交
305 306
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
307 308 309 310 311 312 313
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

314
        param_attr(ParamAttr|None): The parameter attribute for the learnable
315
                               hidden-hidden weights.
Y
Yibing Liu 已提交
316 317 318

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
319 320
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
321
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
322 323 324
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
325

326
                              1. `use_peepholes = False`
Y
yi.wu 已提交
327 328
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
329
                              2. `use_peepholes = True`
Y
yi.wu 已提交
330
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
331
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
332
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
333 334 335 336 337 338 339 340
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
341 342

    Returns:
Y
Yibing Liu 已提交
343 344
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
345

Y
Yibing Liu 已提交
346
    Examples:
Y
Yibing Liu 已提交
347 348
        .. code-block:: python

Y
Yibing Liu 已提交
349 350
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
351
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
352 353
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
354
    """
355

Y
Yu Yang 已提交
356
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
357
    size = size // 4
Y
Yu Yang 已提交
358 359 360 361 362 363 364 365 366 367 368 369
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
370 371 372 373 374 375 376 377 378 379
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
380 381 382

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
383
        inputs=inputs,
Y
Yu Yang 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
400 401 402 403 404 405 406 407 408 409 410
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
411 412
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
413 414 415
    """
    **Dynamic LSTMP Layer**

416 417 418 419 420 421
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
422 423 424 425 426

    The formula is as follows:

    .. math::

427
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
428

429
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
430

431
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
432

433
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
434

435
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
436

437
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
438

439
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
440

Y
Yibing Liu 已提交
441 442 443 444 445 446
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
447
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
448
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
449
          bias vector).
Y
Yibing Liu 已提交
450 451 452
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
453
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
454
    * :math:`h`: The hidden state.
455
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
456 457
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
458
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
459
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
460
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
461 462
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
463 464 465 466

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
467

Y
Yibing Liu 已提交
468 469 470 471 472 473 474 475 476 477 478 479
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
480
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
481 482
                               hidden-hidden weight and projection weight.

483 484
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
485 486
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
487 488
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
489 490
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
491 492 493 494 495 496
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
497
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
498 499 500
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
501
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
502 503 504 505 506 507 508 509 510
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
511
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
512 513
                              default "tanh".
        proj_activation(str): The activation for projection output.
514
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
515 516
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
517 518
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
519 520

    Returns:
521 522 523 524
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
525 526

    Examples:
527

Y
Yibing Liu 已提交
528 529
        .. code-block:: python

530 531 532 533
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
534
            hidden_dim, proj_dim = 512, 256
535
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
536
                                     act=None, bias_attr=None)
537 538 539
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
540 541 542 543
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
544
    """
545

Y
Yibing Liu 已提交
546
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
547
    size = size // 4
Y
Yibing Liu 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
592 593 594 595 596 597 598 599 600
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
601
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
602

603
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
604
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
605

G
guosheng 已提交
606 607 608 609 610 611 612 613 614
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
615

G
guosheng 已提交
616
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
617

G
guosheng 已提交
618
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
619 620
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
621 622 623 624
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
625
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
626 627

    Args:
628 629
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
630
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
631
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
632 633
            is the hidden size.
        size(int): The dimension of the gru cell.
634
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
635 636
            hidden-hidden weight matrix. Note:

637
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
638
              :math:`D` is the hidden size.
639
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
640
              The first part are weights of the update gate and reset gate with
641
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
642
              candidate hidden state with shape :math:`(D \\times D)`.
643
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
644
            hidden-hidden bias.
645
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
646 647 648
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
649
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
650
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
651 652 653 654
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
655 656

    Returns:
G
guosheng 已提交
657
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
658
            and sequence length is the same with the input.
659

G
guosheng 已提交
660
    Examples:
661

G
guosheng 已提交
662 663
        .. code-block:: python

664 665 666 667
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
668
            hidden_dim = 512
669
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
670 671 672 673 674 675 676 677 678 679
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
680
    batch_size = input.shape[0]
G
guosheng 已提交
681 682 683
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
684 685 686
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
710 711 712
def gru_unit(input,
             hidden,
             size,
713 714
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
715
             activation='tanh',
716
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
717
    """
718
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
719

720 721
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
722

723
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
724

725
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
726

727
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
728 729

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
730 731 732
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
733 734
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

735 736
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
737 738 739
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
740 741 742 743 744

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
745 746
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
747 748 749 750
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
751

752 753 754 755 756 757
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
758

759
             # assuming we have x_t_data and prev_hidden of size=10
760
             x_t = fluid.layers.fc(input=x_t_data, size=30)
761 762
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
763 764 765 766 767 768 769 770 771 772 773 774

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
775
    size = size // 3
Y
Yu Yang 已提交
776 777

    # create weight
778 779
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
780

781 782 783 784
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
785
    # create bias
786
    if helper.bias_attr:
Y
Yu Yang 已提交
787 788 789
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
790
        inputs['Bias'] = bias
Y
Yu Yang 已提交
791 792 793

    helper.append_op(
        type='gru_unit',
794
        inputs=inputs,
Y
Yu Yang 已提交
795 796 797 798 799 800
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
801 802
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
803 804 805 806 807
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
808
@templatedoc()
809
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
810 811 812 813 814 815 816
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
817
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
818 819 820 821
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
822 823 824
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
825 826

    """
Y
Yu Yang 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
852
@templatedoc()
853
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
854 855 856 857 858
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
859

Y
yuyang18 已提交
860
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
861

Y
yuyang18 已提交
862 863 864
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
865
        Variable: ${viterbi_path_comment}
866

Y
yi.wu 已提交
867 868 869 870 871
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
872
    """
Y
Yu Yang 已提交
873 874 875 876 877 878 879 880 881 882 883 884 885
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
886
@templatedoc()
F
fengjiayi 已提交
887
def cos_sim(X, Y):
Y
Yu Yang 已提交
888
    """
Y
yi.wu 已提交
889 890 891
    ${comment}

    Args:
892 893
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
894

Y
yi.wu 已提交
895
    Returns:
896
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
897
    """
F
fengjiayi 已提交
898
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


912
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
913 914 915 916 917
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
918
    training. The dropout operator randomly sets (according to the given dropout
919 920 921 922
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
923 924
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
925 926 927 928 929 930 931
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
932 933

    Returns:
934
        Variable: A tensor variable is the shape with `x`.
935 936

    Examples:
937

938 939
        .. code-block:: python

940 941
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
942 943
    """

F
fengjiayi 已提交
944
    helper = LayerHelper('dropout', **locals())
945 946
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
947 948 949 950

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

951 952 953 954 955
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
956 957 958 959 960 961
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
962 963 964
    return out


F
fengjiayi 已提交
965
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
966
    """
Y
Yibing Liu 已提交
967 968
    **Cross Entropy Layer**

969 970 971
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
972 973

    1) One-hot cross-entropy:
F
fengjiayi 已提交
974
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
975

Y
Yibing Liu 已提交
976
        .. math::
Y
yangyaming 已提交
977

Y
Yibing Liu 已提交
978 979 980
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
981 982
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
983 984 985 986 987

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
988
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
989 990 991
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
992 993
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
994
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
995

Y
Yibing Liu 已提交
996
    Args:
Y
yangyaming 已提交
997
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
998 999 1000 1001
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1002
        label (Variable|list): the ground truth which is a 2-D tensor. When
1003 1004 1005 1006
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1007
        soft_label (bool): a flag indicating whether to
1008 1009
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
1010 1011 1012 1013 1014

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1015 1016 1017 1018 1019
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1020 1021 1022 1023 1024 1025

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1026
    """
F
fengjiayi 已提交
1027
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1028 1029 1030 1031 1032 1033
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
1034
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
1035 1036 1037
    return out


F
fengjiayi 已提交
1038
def square_error_cost(input, label):
Y
Yu Yang 已提交
1039
    """
1040 1041
    **Square error cost layer**

1042 1043
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1058 1059
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1060 1061

    Returns:
G
guosheng 已提交
1062
        Variable: The tensor variable storing the element-wise squared error \
1063
                  difference of input and label.
1064 1065 1066 1067 1068 1069 1070 1071

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1072
    """
F
fengjiayi 已提交
1073
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1083 1084
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1085 1086 1087
    return square_out


Y
yi.wu 已提交
1088
@templatedoc()
Y
Yu Yang 已提交
1089 1090 1091 1092
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1093
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1094
    """
Y
yi.wu 已提交
1095
    **Chunk Evaluator**
Y
yi.wu 已提交
1096

Y
yangyaming 已提交
1097
    This function computes and outputs the precision, recall and
1098
    F1-score of chunk detection.
Y
yi.wu 已提交
1099

Y
yi.wu 已提交
1100 1101 1102 1103 1104 1105 1106 1107
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1108

Y
yi.wu 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1134

Y
yi.wu 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1159
    Args:
1160 1161 1162 1163 1164
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1165

Y
yi.wu 已提交
1166
    Returns:
Y
update  
yi.wu 已提交
1167 1168 1169
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1170

Y
yi.wu 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1183
    """
F
fengjiayi 已提交
1184
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1185 1186 1187 1188 1189

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1190 1191 1192
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1193 1194 1195 1196 1197 1198 1199 1200

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1201 1202 1203 1204
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1205 1206 1207
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1208 1209
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1210
        })
1211 1212
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1213 1214


1215
@templatedoc()
Y
Yu Yang 已提交
1216 1217 1218 1219 1220 1221 1222
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1223
                  act=None):
Y
Yu Yang 已提交
1224 1225 1226 1227
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1238

1239 1240
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1259
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1260 1261 1262 1263 1264 1265
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1266
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1267 1268 1269
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1270
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1290

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1313
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1314
    """
1315
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1316
    has the same shape as the input.
Q
qiaolongfei 已提交
1317

1318 1319 1320 1321 1322 1323
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1324
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1325 1326 1327 1328 1329 1330 1331

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1332
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1367 1368 1369
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1370 1371
           stride=1,
           padding=0,
1372
           dilation=1,
Y
Yu Yang 已提交
1373 1374 1375
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1376
           use_cudnn=True,
1377
           use_mkldnn=False,
1378 1379
           act=None,
           name=None):
Y
Yu Yang 已提交
1380
    """
C
chengduoZH 已提交
1381
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1382 1383
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1384
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1385 1386 1387 1388 1389 1390 1391
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1392 1393 1394
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1395

1396
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1397

C
chengduoZH 已提交
1398 1399
    .. math::

C
refine  
chengduoZH 已提交
1400
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1401

T
tensor-tang 已提交
1402
    Where:
C
chengduoZH 已提交
1403

1404 1405 1406 1407 1408
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1409
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1410 1411 1412

    Example:

1413 1414
        - Input:

W
weixing02 已提交
1415
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1416

W
weixing02 已提交
1417
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1418

1419
        - Output:
T
tensor-tang 已提交
1420

W
weixing02 已提交
1421
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1422

C
chengduoZH 已提交
1423
        Where
1424 1425

        .. math::
C
chengduoZH 已提交
1426

W
weixing02 已提交
1427 1428
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1429 1430

    Args:
1431
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1432
        num_filters(int): The number of filter. It is as same as the output
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1455 1456
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1457 1458 1459
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1460 1461

    Returns:
G
guosheng 已提交
1462
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1463 1464
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1465
    Raises:
1466 1467
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1468

C
chengduoZH 已提交
1469 1470 1471
    Examples:
        .. code-block:: python

1472 1473
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1474 1475 1476
    """

    num_channels = input.shape[1]
1477 1478

    l_type = 'conv2d'
X
xzl 已提交
1479 1480
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1481
        l_type = 'depthwise_conv2d'
1482 1483 1484 1485

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1486 1487 1488 1489 1490
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1491
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1492

C
chengduoZH 已提交
1493 1494 1495
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1496
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1497

C
chengduoZH 已提交
1498 1499
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1500 1501

    input_shape = input.shape
M
minqiyang 已提交
1502
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1517
        type=l_type,
Y
Yu Yang 已提交
1518 1519 1520 1521 1522
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1523 1524 1525
        attrs={
            'strides': stride,
            'paddings': padding,
1526
            'dilations': dilation,
C
chengduoZH 已提交
1527
            'groups': groups,
1528 1529
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1530
        })
Y
Yu Yang 已提交
1531 1532 1533 1534 1535 1536

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1555 1556 1557 1558 1559 1560
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1570 1571
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1572 1573 1574
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1575
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1601
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1602 1603
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1604
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1605 1606
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1607
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1608 1609
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1610
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1637 1638
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1653
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1694
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1695 1696 1697 1698

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1699
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1700
    """
Y
yangyaming 已提交
1701 1702 1703
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1715
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1716 1717 1718 1719 1720
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1721
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1722 1723 1724 1725 1726 1727 1728

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1729 1730
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1731

L
Luo Tao 已提交
1732 1733
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1734
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1735 1736 1737 1738 1739 1740 1741 1742
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1743

Y
yangyaming 已提交
1744
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1745 1746 1747 1748 1749
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1750 1751
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1752
    """
F
fengjiayi 已提交
1753
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1765 1766 1767 1768 1769
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1770 1771 1772
    return pool_out


F
fengjiayi 已提交
1773
def sequence_first_step(input):
L
Luo Tao 已提交
1774
    """
L
Luo Tao 已提交
1775
    This function gets the first step of sequence.
L
Luo Tao 已提交
1776 1777 1778 1779

    .. code-block:: text

       x is a 1-level LoDTensor:
1780
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1781 1782 1783 1784 1785
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1786
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1787
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1788

L
Luo Tao 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1798

Y
yangyaming 已提交
1799
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1800 1801 1802
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1803 1804 1805
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1806
def sequence_last_step(input):
L
Luo Tao 已提交
1807
    """
L
Luo Tao 已提交
1808
    This function gets the last step of sequence.
L
Luo Tao 已提交
1809 1810 1811 1812

    .. code-block:: text

       x is a 1-level LoDTensor:
1813
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1814 1815 1816 1817 1818
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1819
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1820
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1821

L
Luo Tao 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1831

Y
yangyaming 已提交
1832
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1833 1834 1835
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1836 1837 1838
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1839
@templatedoc()
Y
Yu Yang 已提交
1840
def pool2d(input,
C
chengduoZH 已提交
1841 1842
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1843 1844
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1845
           global_pooling=False,
C
chengduoZH 已提交
1846
           use_cudnn=True,
1847
           ceil_mode=False,
1848
           use_mkldnn=False,
C
caoying03 已提交
1849
           name=None):
Y
Yu Yang 已提交
1850
    """
F
fengjiayi 已提交
1851
    ${comment}
1852 1853

    Args:
1854 1855 1856
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1857
                          feature, and W is the width of the feature.
1858
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1859
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1860
        pool_type: ${pooling_type_comment}
1861 1862
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1863 1864 1865 1866
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1867
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1868 1869
                        layer will be named automatically.

1870
    Returns:
F
fengjiayi 已提交
1871
        Variable: The pooling result.
F
fengjiayi 已提交
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1885 1886 1887 1888
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1889
                            global_pooling=False)
Y
Yu Yang 已提交
1890 1891 1892 1893 1894
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1895

C
chengduoZH 已提交
1896 1897 1898 1899 1900
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1901 1902 1903 1904
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1905 1906
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1907

C
Add doc  
chengduoZH 已提交
1908
    l_type = 'pool2d'
1909 1910

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1911 1912 1913 1914
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1944
    pooling configurations mentioned in input parameters.
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1958

1959
    Returns:
1960
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1961 1962 1963 1964 1965
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1966

C
chengduoZH 已提交
1967 1968 1969 1970 1971
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1972 1973 1974
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1975

C
chengduoZH 已提交
1976 1977
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1978

1979 1980
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1981 1982 1983 1984
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1985
        type=l_type,
Y
Yu Yang 已提交
1986 1987 1988 1989 1990 1991 1992
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1993
            "paddings": pool_padding,
1994
            "use_cudnn": use_cudnn,
1995 1996
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2009
               data_layout='NCHW',
Y
Yang Yang 已提交
2010
               in_place=False,
2011
               use_mkldnn=False,
2012 2013
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2014
               moving_variance_name=None,
2015 2016
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2017
    """
Q
qiaolongfei 已提交
2018 2019 2020 2021
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2022

Q
qiaolongfei 已提交
2023
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2024

Q
qiaolongfei 已提交
2025 2026
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2027 2028 2029
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2042 2043

    Args:
Q
qiaolongfei 已提交
2044
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2045 2046 2047 2048
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2049 2050 2051
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2052
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2053 2054 2055 2056 2057
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2058
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2059
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2060 2061

    Returns:
Q
qiaolongfei 已提交
2062
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2063 2064 2065 2066 2067 2068 2069

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2093
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2094

2095 2096
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2097 2098 2099
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2100
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2101
        shape=param_shape,
2102 2103 2104 2105 2106 2107 2108
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2109
            trainable=False,
W
wanghaoshuang 已提交
2110
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2111
        shape=param_shape,
2112 2113
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2114 2115 2116 2117 2118 2119

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2120 2121
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2122

2123
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2141 2142 2143 2144
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2145 2146
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2147
        })
Y
Yu Yang 已提交
2148 2149 2150 2151

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2152
@templatedoc()
G
guosheng 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2163
    ${comment}
G
guosheng 已提交
2164 2165 2166

    The formula is as follows:

Y
yuyang18 已提交
2167
    ..  math::
G
guosheng 已提交
2168 2169 2170 2171 2172 2173 2174

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2175 2176 2177 2178 2179 2180 2181 2182
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2183

G
guosheng 已提交
2184 2185
    Args:
        input(Variable): The input tensor variable.
2186
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2187
            normalization.
2188
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2189
            normalization.
2190
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2191
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2192
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2193 2194 2195 2196 2197 2198
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2199
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2200 2201

    Returns:
Y
yuyang18 已提交
2202
        ${y_comment}
G
guosheng 已提交
2203 2204 2205

    Examples:

Y
yuyang18 已提交
2206 2207 2208
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2224
    if shift:
G
guosheng 已提交
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2249 2250 2251 2252
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2253 2254 2255
                     padding=0,
                     stride=1,
                     dilation=1,
2256
                     groups=None,
C
caoying03 已提交
2257
                     param_attr=None,
2258
                     bias_attr=None,
C
chengduoZH 已提交
2259
                     use_cudnn=True,
2260
                     act=None,
C
caoying03 已提交
2261
                     name=None):
Y
Yu Yang 已提交
2262
    """
2263 2264 2265 2266 2267 2268 2269 2270
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2271 2272
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2273 2274 2275
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2276 2277 2278 2279 2280

    For each input :math:`X`, the equation is:

    .. math::

2281
        Out = \sigma (W \\ast X + b)
2282

2283
    Where:
2284 2285 2286

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2287 2288 2289 2290
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2291

2292 2293 2294 2295
    Example:

        - Input:

2296
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2297

2298
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2299 2300 2301

        - Output:

2302
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2303 2304

        Where
Y
Yu Yang 已提交
2305

2306 2307 2308 2309
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2310 2311

    Args:
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2345 2346

    Returns:
2347
        Variable: The tensor variable storing the convolution transpose result.
2348 2349

    Raises:
2350 2351
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2352 2353 2354 2355

    Examples:
       .. code-block:: python

2356 2357
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2358
    """
2359 2360 2361 2362 2363 2364 2365 2366 2367

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2368 2369 2370
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2371 2372 2373
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2374

C
chengduoZH 已提交
2375 2376
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2377

Y
Yu Yang 已提交
2378 2379 2380 2381 2382
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2383

Y
Yu Yang 已提交
2384 2385
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2386

C
chengduoZH 已提交
2387
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2388
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2389
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2390
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2391
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2392 2393 2394
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2395

2396
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2397
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2398 2399 2400
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2401
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2402
    helper.append_op(
2403
        type=op_type,
Y
Yu Yang 已提交
2404 2405
        inputs={'Input': [input],
                'Filter': [img_filter]},
2406
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2407
        attrs={
2408 2409 2410 2411 2412
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2413 2414
        })

2415 2416 2417
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2418 2419


2420
def conv3d_transpose(input,
Y
Yu Yang 已提交
2421 2422 2423
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2424 2425 2426
                     padding=0,
                     stride=1,
                     dilation=1,
2427
                     groups=None,
C
caoying03 已提交
2428
                     param_attr=None,
2429
                     bias_attr=None,
C
chengduoZH 已提交
2430
                     use_cudnn=True,
2431
                     act=None,
C
caoying03 已提交
2432
                     name=None):
Y
Yu Yang 已提交
2433
    """
2434
    **Convlution3D transpose layer**
2435

2436
    The convolution3D transpose layer calculates the output based on the input,
2437
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2438 2439 2440 2441 2442 2443
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2444 2445 2446
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2447 2448 2449 2450 2451

    For each input :math:`X`, the equation is:

    .. math::

2452
        Out = \sigma (W \\ast X + b)
2453 2454 2455

    In the above equation:

2456 2457
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2458 2459 2460 2461
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2462

2463 2464 2465 2466
    Example:

        - Input:

2467
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2468

2469
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2470 2471 2472

        - Output:

2473
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2474 2475

        Where
Y
Yu Yang 已提交
2476

2477 2478
        .. math::

2479 2480 2481
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2482 2483

    Args:
2484
        input(Variable): The input image with [N, C, D, H, W] format.
2485 2486 2487
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2488
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2489 2490
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2491
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2492 2493 2494
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2495 2496
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2497
        stride(int|tuple): The stride size. If stride is a tuple, it must
2498 2499
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2500
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2501 2502 2503
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2504 2505 2506 2507 2508
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2509 2510 2511
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2512 2513 2514 2515 2516
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2517 2518

    Returns:
2519
        Variable: The tensor variable storing the convolution transpose result.
2520 2521

    Raises:
2522 2523
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2524 2525 2526 2527

    Examples:
       .. code-block:: python

2528 2529
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2530
    """
2531 2532
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2533
    if not isinstance(input, Variable):
2534
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2535 2536
    input_channel = input.shape[1]

2537 2538 2539
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2540

C
chengduoZH 已提交
2541 2542 2543
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2544 2545 2546 2547 2548 2549
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2550 2551 2552
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2553

2554
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2555
                         padding[0] - 1) // dilation[0] + 1
2556
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2557
                         padding[1] - 1) // dilation[1] + 1
2558
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2559
                         padding[2] - 1) // dilation[2] + 1
2560
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2561
    else:
2562 2563
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2564

2565
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2566
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2567 2568 2569
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2570
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2571
    helper.append_op(
2572
        type=l_type,
Y
Yu Yang 已提交
2573 2574
        inputs={'Input': [input],
                'Filter': [img_filter]},
2575
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2576 2577 2578 2579
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2580
            'groups': groups,
C
chengduoZH 已提交
2581 2582
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2583

2584 2585
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2586
    return out
Y
yangyaming 已提交
2587 2588


Y
yangyaming 已提交
2589
def sequence_expand(x, y, ref_level=-1, name=None):
2590
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2591 2592 2593 2594
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2595 2596 2597 2598 2599

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2600
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2601
                x.data = [[a], [b], [c], [d]]
2602 2603 2604
                x.dims = [4, 1]

            y is a LoDTensor:
2605 2606
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2607

Y
yangyaming 已提交
2608
            ref_level: 0
2609

Y
yangyaming 已提交
2610
            then output is a 1-level LoDTensor:
2611
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2612
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2613 2614 2615 2616
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2617
                x.data = [[a], [b], [c]]
2618 2619 2620
                x.dims = [3, 1]

            y is a LoDTensor:
2621
                y.lod = [[2, 0, 3]]
2622

Y
yangyaming 已提交
2623
            ref_level: -1
2624

Y
yangyaming 已提交
2625 2626 2627
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2628 2629 2630
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2631 2632
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2633
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2634
                        will be named automatically.
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2645
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2646
    """
Y
yangyaming 已提交
2647
    helper = LayerHelper('sequence_expand', input=x, **locals())
2648 2649 2650
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2651 2652 2653 2654 2655
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2656
    return tmp
2657 2658


2659 2660 2661 2662 2663 2664 2665 2666 2667
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2668 2669
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2670 2671 2672

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2673 2674

    This layer does the search in beams for one time step. Specifically, it
2675 2676 2677 2678 2679 2680
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2681

2682 2683 2684 2685 2686 2687 2688 2689
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2690

2691
    Args:
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2717

2718
    Returns:
2719 2720
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2721 2722 2723 2724

    Examples:
        .. code-block:: python

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2753
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2771 2772 2773 2774 2775 2776 2777
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2778

2779 2780 2781 2782 2783 2784 2785 2786 2787
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2788

2789 2790 2791 2792 2793 2794
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2795

2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2821 2822 2823 2824
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2825
              param_attr=None,
C
caoying03 已提交
2826 2827
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2828 2829 2830 2831
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2832
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2833

2834
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2835

2836
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2837

2838
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2839 2840 2841

            h_t & = o_t tanh(c_t)

2842 2843 2844 2845 2846 2847
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2848 2849 2850

        .. math::

2851
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2852 2853 2854 2855 2856 2857 2858 2859

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2860
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2861 2862

    Args:
Y
yangyaming 已提交
2863 2864 2865 2866 2867 2868
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2869
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2870 2871
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2872 2873
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2874 2875
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2876 2877

    Returns:
Y
yangyaming 已提交
2878
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2879 2880

    Raises:
2881 2882 2883 2884
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2885 2886 2887 2888 2889 2890

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2891
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2892
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2893
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2910
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2911 2912 2913 2914
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2915 2916
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2917 2918 2919
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2920
    size = cell_t_prev.shape[1]
2921
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2922 2923
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2924
                param_attr=param_attr,
2925
                bias_attr=bias_attr)
Y
yangyaming 已提交
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2938
    return h, c
G
guosheng 已提交
2939 2940


C
caoying03 已提交
2941
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2942
    """
Y
yangyaming 已提交
2943
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2944 2945 2946

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2947
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2948 2949
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2950 2951
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2952
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2953
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2954
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2955 2956
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2957 2958 2959

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2960

G
guosheng 已提交
2961 2962 2963 2964 2965 2966
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
2967
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
2968 2969 2970 2971
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2972 2973 2974 2975

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
2976
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
2977 2978 2979
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2980 2981 2982
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2983 2984
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2985 2986 2987 2988 2989
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2990
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2991 2992 2993 2994
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2995 2996


C
caoying03 已提交
2997
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2998
    """
Y
Yibing Liu 已提交
2999
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3000 3001 3002

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3003 3004 3005
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3006
            must be in the range :math:`[-rank(input), rank(input))`. If
3007
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3008
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3009 3010
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3011
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3012
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3013
                       will be named automatically.
G
guosheng 已提交
3014 3015

    Returns:
Y
Yibing Liu 已提交
3016
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3017

G
guosheng 已提交
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3028 3029
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3030 3031 3032 3033 3034 3035 3036

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3037 3038 3039
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3040 3041
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3042 3043 3044 3045 3046
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3047
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3048 3049 3050 3051
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3052 3053


C
caoying03 已提交
3054
def reduce_max(input, dim=None, keep_dim=False, name=None):
3055
    """
Y
yangyaming 已提交
3056
    Computes the maximum of tensor elements over the given dimension.
3057 3058 3059

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3060
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3061 3062 3063
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3064
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3065 3066
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3067
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3068 3069
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3070 3071 3072

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3073

3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3085 3086 3087 3088 3089 3090 3091

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3092 3093 3094
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3095 3096
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3097 3098 3099 3100 3101
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3102
            'dim': dim if dim != None else [0],
3103 3104 3105 3106 3107 3108
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3109
def reduce_min(input, dim=None, keep_dim=False, name=None):
3110
    """
Y
yangyaming 已提交
3111
    Computes the minimum of tensor elements over the given dimension.
3112 3113 3114

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3115
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3116 3117 3118
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3119
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3120 3121
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3122
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3123 3124
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3125 3126 3127

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3128

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3140 3141 3142 3143 3144 3145 3146

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3147 3148 3149
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3150 3151
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3152 3153 3154 3155 3156
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3157
            'dim': dim if dim != None else [0],
3158 3159 3160 3161
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3162 3163


3164 3165 3166 3167 3168 3169
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3170
        dim (list|int|None): The dimensions along which the product is performed. If
3171 3172
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3173 3174
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3175 3176 3177
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3178
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3179
            layer will be named automatically.
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3194
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3195
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3196 3197 3198 3199 3200 3201 3202

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3203 3204 3205
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3206 3207
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3208 3209 3210 3211 3212
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3213
            'dim': dim if dim != None else [0],
3214 3215 3216 3217 3218 3219
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3220
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3221
    """
C
caoying03 已提交
3222
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3223 3224 3225

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3226 3227 3228 3229 3230
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3231
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3232
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3233
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3234 3235
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3236 3237

    Returns:
D
dzhwinter 已提交
3238
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3239 3240 3241 3242 3243 3244 3245 3246 3247

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3248 3249
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3279 3280 3281 3282 3283 3284 3285 3286 3287


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3288
    .. math::
3289 3290

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3291 3292 3293 3294 3295

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3296
        x(Variable|list): The input tensor to l2_normalize layer.
3297
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3298 3299
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3300
        epsilon(float): The epsilon value is used to avoid division by zero, \
3301
            the defalut value is 1e-10.
3302
        name(str|None): A name for this layer(optional). If set None, the layer \
3303
            will be named automatically.
C
caoying03 已提交
3304 3305

    Returns:
3306
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3307 3308

    Examples:
3309

C
caoying03 已提交
3310 3311
        .. code-block:: python

3312 3313 3314 3315
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3316 3317
    """

F
fengjiayi 已提交
3318 3319
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3320 3321
    helper = LayerHelper("l2_normalize", **locals())

3322 3323
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3324
    helper.append_op(
3325 3326 3327 3328
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3329
        attrs={
3330 3331
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3332 3333
        })
    return out
3334 3335


3336
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3337
    """
Y
ying 已提交
3338 3339 3340 3341
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3342

C
chengduoZH 已提交
3343
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3344
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3345

3346 3347 3348 3349 3350
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3351
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3352

C
chengduoZH 已提交
3353
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3354
      performs in the following way.
G
guosheng 已提交
3355

3356
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3357
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3358
        last two dimensions and a batched matrix multiply supporting broadcast
3359
        applies on the two tensors.
G
guosheng 已提交
3360

Y
ying 已提交
3361 3362
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3363
    removed after matrix multiplication.
G
guosheng 已提交
3364 3365 3366

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3367 3368 3369
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3370
        name(str|None): A name for this layer(optional). If set None, the layer
3371
            will be named automatically.
G
guosheng 已提交
3372 3373

    Returns:
3374
        Variable: The product Tensor variable.
G
guosheng 已提交
3375

G
guosheng 已提交
3376 3377 3378
    Examples:
        .. code-block:: python

3379
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3380 3381
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3382

3383 3384
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3385

3386 3387
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3388

3389 3390
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3391 3392 3393 3394

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3395 3396
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3397

Y
ying 已提交
3398
            # x: [M], y: [N]
3399
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3400
    """
Y
ying 已提交
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3413
            y_shape = y_shape + [1]
Y
ying 已提交
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3430
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3431
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3432
    helper.append_op(
3433 3434 3435 3436 3437 3438 3439
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3440 3441


3442
def topk(input, k, name=None):
Q
qingqing01 已提交
3443 3444 3445 3446
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3447
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3448 3449 3450 3451 3452 3453
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3475 3476 3477
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3478
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3479
                 of input.
3480
        name(str|None): A name for this layer(optional). If set None, the layer
3481
                       will be named automatically.
F
fengjiayi 已提交
3482
                       Default: None
Q
qingqing01 已提交
3483 3484

    Returns:
3485 3486 3487
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3488
        within the last dimension of input.
Q
qingqing01 已提交
3489

F
fengjiayi 已提交
3490 3491
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3492 3493 3494 3495 3496 3497 3498

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
F
fengjiayi 已提交
3499
    if k < 1 or k >= shape[-1]:
Q
qingqing01 已提交
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3517
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3518
    """
Y
ying 已提交
3519 3520 3521 3522 3523 3524 3525 3526 3527
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3528

Y
ying 已提交
3529
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3530

3531
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3532 3533
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3534
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3535

3536
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3537 3538
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3539

3540 3541 3542
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3543
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3544
                          the length of reference string.
3545
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3546
                                     calculating edit distance.
3547
        name (str): The name of this layer. It is optional.
3548

W
wanghaoshuang 已提交
3549
    Returns:
W
wanghaoshuang 已提交
3550
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3551 3552 3553 3554 3555

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3556
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3557
            cost = fluid.layers.edit_distance(input=x,label=y)
3558
    """
3559
    helper = LayerHelper("edit_distance", **locals())
3560

3561
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3562
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3563 3564 3565 3566 3567 3568 3569
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3570
            attrs={"tokens": ignored_tokens})
3571 3572 3573 3574 3575
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3576
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3577
            attrs={"tokens": ignored_tokens})
3578 3579
        label = erased_label

3580 3581
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3582
    sequence_num = helper.create_tmp_variable(dtype="int64")
3583 3584 3585 3586
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3587 3588
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3589 3590
        attrs={"normalized": normalized})

3591
    return edit_distance_out, sequence_num
3592 3593 3594 3595 3596


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3597

Y
ying 已提交
3598 3599 3600 3601
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3619
        input.lod = [[4, 4]]
3620 3621 3622 3623 3624 3625 3626

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3627
        output.lod = [[2, 1]]
3628 3629 3630

    Args:

Y
ying 已提交
3631 3632 3633 3634 3635 3636 3637 3638 3639
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3640
        name (str): The name of this layer. It is optional.
3641 3642

    Returns:
3643
        Variable: CTC greedy decode result. If all the sequences in result were
3644
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3645 3646 3647 3648 3649

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3650

3651
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3652
    """
3653
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3654
    _, topk_indices = topk(input, k=1)
3655 3656 3657 3658 3659 3660

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3661
        outputs={"Output": [ctc_out]},
3662 3663
        attrs={"merge_repeated": True,
               "blank": blank})
3664
    return ctc_out
3665 3666


F
fengjiayi 已提交
3667
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3668
    """
3669 3670
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3671
    to compute Connectionist Temporal Classification (CTC) loss.
3672 3673
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3674 3675 3676
    input tensor.

    Args:
3677
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3678 3679 3680 3681
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3682
       label (Variable): The ground truth of variable-length sequence,
3683 3684 3685
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3686 3687
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3688 3689 3690
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3691
         follewed by a mean_op.
W
wanghaoshuang 已提交
3692 3693

    Returns:
3694 3695
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3696 3697

    Examples:
3698

W
wanghaoshuang 已提交
3699
        .. code-block:: python
3700

3701 3702 3703
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3704 3705

    """
F
fengjiayi 已提交
3706
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3733 3734 3735
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3736 3737 3738 3739 3740
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3741

3742
            out.lod  = [[0, 1, 3]]
3743 3744 3745 3746

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3747 3748 3749 3750 3751 3752 3753
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3754 3755 3756

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3757 3758

    Returns:
3759

3760 3761 3762 3763 3764
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3765
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3766
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3767 3768 3769 3770 3771 3772 3773 3774 3775
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3776 3777


3778 3779 3780 3781
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3782 3783 3784 3785 3786 3787 3788
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3789 3790 3791 3792 3793 3794 3795
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3796 3797
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3798
            sample is 1.0.
3799 3800 3801
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3802

3803
    Returns:
Y
Yibing Liu 已提交
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3831
    """
Y
Yang Yu 已提交
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3851 3852 3853 3854 3855 3856 3857 3858 3859
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3876
    return cost / (num_neg_samples + 1)
3877 3878


G
guosheng 已提交
3879
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
3880 3881
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
3882
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
3883 3884 3885 3886 3887 3888 3889 3890 3891
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
3892

W
weixing02 已提交
3893
    Args:
M
minqiyang 已提交
3894
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
3895 3896 3897 3898 3899
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
3900 3901
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
3902
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
3903 3904
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
3905 3906 3907 3908 3909 3910 3911 3912

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
3913 3914 3915
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
3916 3917 3918 3919 3920 3921 3922 3923
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
3924
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
3925 3926 3927 3928 3929
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
3930 3931 3932 3933 3934 3935 3936 3937
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
3938 3939
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
3940
        inputs=inputs,
W
weixing02 已提交
3941 3942 3943 3944 3945 3946
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
3947
def transpose(x, perm, name=None):
Y
ying 已提交
3948 3949 3950 3951 3952 3953 3954
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3955 3956 3957
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3958 3959 3960 3961 3962 3963 3964 3965

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3966
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3967 3968
    """

Y
fix ci.  
ying 已提交
3969
    if len(perm) != len(x.shape):
Y
ying 已提交
3970 3971 3972
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3973 3974 3975 3976 3977 3978
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3979 3980

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3981
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3982 3983
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3984
        inputs={'X': [x]},
Y
ying 已提交
3985 3986 3987
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3988 3989


3990 3991 3992 3993 3994 3995 3996
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
3997
    """
3998 3999 4000 4001 4002 4003 4004
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4033 4034 4035 4036 4037 4038 4039 4040 4041
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4042 4043 4044
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4045 4046 4047 4048 4049
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4077 4078 4079
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4092
            output.dims = {8, 8}
4093

4094
            output.lod = [[4, 4]]
4095

D
dzhwinter 已提交
4096
     Examples:
4097 4098 4099

        .. code-block:: python

4100 4101
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4102 4103

    """
W
wanghaoshuang 已提交
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4114 4115 4116 4117 4118 4119 4120
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4121
    helper = LayerHelper('im2sequence', **locals())
4122 4123
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4124
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4125
    return out
4126 4127


Y
yuyang18 已提交
4128
@templatedoc()
4129
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4130 4131
    """
    ${comment}
4132 4133

    Args:
Y
yuyang18 已提交
4134
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4135 4136
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4137 4138 4139 4140 4141
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4142
        ${out_comment}.
4143 4144

    Examples:
Y
yuyang18 已提交
4145 4146 4147 4148
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4161
    return helper.append_activation(out)
4162 4163


Y
yuyang18 已提交
4164
@templatedoc()
4165 4166
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4167 4168 4169 4170 4171 4172 4173
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4174 4175

    Args:
Y
yuyang18 已提交
4176 4177
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4178 4179

    Returns:
Y
yuyang18 已提交
4180
        ${out_comment}.
4181 4182
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4183 4184 4185 4186 4187 4188

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4189 4190 4191 4192 4193 4194
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4195 4196 4197 4198 4199


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
4200

4201 4202 4203 4204
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4205

4206 4207 4208
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4209

4210 4211 4212
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4213

4214
    The equation is as follows:
4215

4216
    1) Hard label (one-hot label, so every sample has exactly one class)
4217

4218 4219 4220 4221
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4222

4223 4224 4225
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4226

4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4248 4249
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4266 4267
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4268
    For each instance, it computes the smooth L1 loss element by element first
4269
    and then sums all the losses. So the shape of ouput Variable is
4270
    [batch_size, 1].
4271

4272 4273
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4274
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4275
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4276
            L1 loss op with same shape as :attr:`x`.
4277
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4278 4279
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4280
            by this tensor element by element.
4281
        outside_weight (Variable|None): A tensor with rank at least 2. This
4282 4283
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4284
            element by element.
4285
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4286 4287
           scalar with default value 1.0.

4288
    Returns:
4289
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4290 4291 4292 4293 4294

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4295 4296
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4297
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4298
            out = fluid.layers.smooth_l1(x=fc, y=label)
4299
    """
4300

4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4316 4317 4318 4319


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4320
    This layer creates the one-hot representations for input indices.
4321 4322

    Args:
Y
Yibing Liu 已提交
4323 4324
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4325 4326

    Returns:
Y
Yibing Liu 已提交
4327
        Variable: The one-hot representations of input.
4328 4329

    Examples:
C
caoying03 已提交
4330
        .. code-block:: python
4331

Y
Yibing Liu 已提交
4332 4333
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4334 4335 4336 4337 4338 4339 4340 4341 4342
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4343 4344


Y
Yu Yang 已提交
4345
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4346
    """
Y
yi.wu 已提交
4347 4348 4349
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4350 4351 4352 4353 4354 4355

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4356 4357
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4358 4359 4360 4361 4362 4363

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4364 4365
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4366 4367
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4368 4369 4370 4371 4372
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4373
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4374
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4375 4376
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4377 4378
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4379 4380 4381
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4382 4383


4384
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4385
    """
C
caoying03 已提交
4386 4387
    Gives a new shape to the input Tensor without changing its data.

4388 4389 4390 4391 4392
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4393

4394
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4395

4396 4397 4398 4399
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4400
    2. 0 means the actual dimension value is going to be copied from the
4401 4402 4403 4404
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4405 4406

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4407
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4408
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4409

4410
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4411 4412
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4413 4414
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4415
    dimensions.
C
caoying03 已提交
4416

4417
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4418 4419 4420 4421
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4422 4423

    Args:
4424
        x(variable): The input tensor.
C
caoying03 已提交
4425 4426
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4427 4428 4429 4430 4431
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4432
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4433 4434 4435 4436
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4437
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4438

4439 4440
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4441

X
Xin Pan 已提交
4442 4443 4444
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4445 4446
    Examples:
        .. code-block:: python
G
guosheng 已提交
4447

4448
            data = fluid.layers.data(
4449
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4450
            reshaped = fluid.layers.reshape(
4451
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4452 4453 4454 4455
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")
X
Xin Pan 已提交
4456 4457 4458 4459 4460
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4461

4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
4477
    helper = LayerHelper("reshape", **locals())
D
dzhwinter 已提交
4478
    out = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4479 4480
    helper.append_op(
        type="reshape",
X
Xin Pan 已提交
4481
        inputs=inputs,
D
dzhwinter 已提交
4482 4483
        attrs={"shape": shape},
        outputs={"Out": out})
C
caoying03 已提交
4484

D
dzhwinter 已提交
4485
    return helper.append_activation(out)
4486 4487


Y
yangyaming 已提交
4488
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4489
    """
Y
Yibing Liu 已提交
4490
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4491 4492 4493 4494
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4495
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4496 4497 4498 4499 4500 4501

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4502
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4503 4504 4505
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4506
            target_lod: [4, 2]
Y
yangyaming 已提交
4507 4508

            then we get a 1-level LoDTensor:
4509
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4510 4511 4512 4513 4514 4515
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4516
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4517 4518 4519 4520
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4521
                y.data = [[2, 4]]
Y
yangyaming 已提交
4522 4523 4524
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4525
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4526 4527 4528 4529 4530 4531
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4532
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4533 4534 4535 4536
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4537
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4538 4539 4540 4541
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4542
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4543 4544 4545 4546 4547
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4548
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4549
                           from :attr:`y`.
Y
yangyaming 已提交
4550
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4551
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4552 4553

    Returns:
Y
Yibing Liu 已提交
4554
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4555 4556

    Raises:
Y
Yibing Liu 已提交
4557
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4593
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4622 4623
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4651 4652 4653 4654


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4655
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4656
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4657

G
guosheng 已提交
4658 4659 4660 4661
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4684
                         The length of :attr:paddings must be
G
guosheng 已提交
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4695

G
guosheng 已提交
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4710 4711 4712 4713 4714 4715 4716 4717 4718


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4719 4720
    called label-smoothing regularization (LSR).

4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4744
                              be :math:`(1, class\_num)`.
4745 4746
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4747
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4775 4776


Y
yi.wu 已提交
4777
@templatedoc()
4778 4779
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
4780
    ${comment}
4781 4782

    Args:
Y
yi.wu 已提交
4783 4784
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
4785 4786 4787
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
4788 4789

    Returns:
Y
update  
yi.wu 已提交
4790
        Variable: ${out_comment}.
4791 4792

    Examples:
4793 4794
        .. code-block:: python

4795
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4841 4842
        .. code-block:: python

W
whs 已提交
4843 4844 4845 4846
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
4847
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
4848 4849 4850 4851 4852 4853
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4854 4855


4856 4857 4858 4859 4860
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4861
    """
Q
qiaolongfei 已提交
4862
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
4863

4864
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
4865 4866 4867
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
4868

4869
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4870

4871
    Args:
4872
        input (Variable): The input tensor of image resize layer,
4873 4874
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4875
        out_shape(list|tuple|Variable|None): Output shape of image resize
4876 4877
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4878
        scale(float|None): The multiplier for the input height or width.
4879 4880 4881
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4882 4883
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4884 4885
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4886 4887

    Returns:
Q
update  
qiaolongfei 已提交
4888 4889
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4890

4891 4892 4893
    Examples:
        .. code-block:: python

4894
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4895
    """
4896 4897 4898 4899
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4900 4901
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4902 4903
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4904 4905 4906 4907

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4908 4909 4910
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4911
    if out_shape is not None:
B
baiyf 已提交
4912 4913 4914
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4915 4916 4917 4918 4919 4920
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4921 4922 4923 4924
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4925 4926
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4927
        type=resample_methods[resample],
4928
        inputs=inputs,
4929 4930 4931 4932
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4933 4934


Y
yuyang18 已提交
4935
@templatedoc(op_type="bilinear_interp")
4936 4937
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4938 4939 4940 4941 4942 4943
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4944

Y
yuyang18 已提交
4945 4946 4947 4948 4949 4950 4951 4952
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
4953 4954 4955 4956 4957 4958 4959
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
4960 4961 4962
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
4963 4964 4965 4966 4967 4968 4969
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
4970
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
4971

4972
    Returns:
Q
update  
qiaolongfei 已提交
4973
        Variable: The output is a 4-D tensor of the shape
4974
        (num_batches, channls, out_h, out_w).
4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
4985 4986 4987
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
4988 4989 4990
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4991 4992
def gather(input, index):
    """
Q
qiaolongfei 已提交
4993 4994
    **Gather Layer**

4995
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
4996 4997 4998 4999
    of X indexed by `index` and concatenate them together.

    .. math::

5000
        Out = X[Index]
W
whs 已提交
5001 5002 5003 5004 5005 5006 5007


    .. code-block:: text


                Given:

5008 5009
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5010 5011 5012 5013 5014 5015 5016 5017 5018 5019
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5020
        input (Variable): The source input with rank>=1.
W
whs 已提交
5021 5022 5023 5024 5025 5026
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5027

W
whs 已提交
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5097

5098 5099 5100
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5101
    """
F
stash  
fengjiayi 已提交
5102
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5103
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5104
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5105 5106
    if seed is None:
        seed = random.randint(-65536, 65535)
F
fengjiayi 已提交
5107
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5108
    if isinstance(seed, int):
F
fengjiayi 已提交
5109 5110 5111 5112 5113
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5114 5115 5116 5117
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5118
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5119 5120
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5121 5122
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5123
    return out
W
whs 已提交
5124 5125


5126
def log(x, name=None):
W
wanghaoshuang 已提交
5127 5128 5129 5130 5131
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5132
        Out = \\ln(x)
W
wanghaoshuang 已提交
5133 5134

    Args:
5135
        x (Variable): Input tensor.
5136 5137
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5138 5139 5140 5141 5142 5143 5144 5145

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5146
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5147 5148
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5149
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5150
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5151
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5152 5153 5154
    return out


5155
def relu(x, name=None):
W
wanghaoshuang 已提交
5156 5157
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5158
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5159 5160 5161 5162
    the tensor elementwise.

    .. math::

5163
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5164 5165

    Args:
5166
        x (Variable): The input tensor.
5167 5168
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5169 5170 5171 5172 5173 5174 5175 5176

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5177
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5178 5179
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5180
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5181
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5182
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5183
    return out
5184 5185


W
whs 已提交
5186 5187 5188
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5189 5190 5191 5192
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5193
    .. math::
5194 5195

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5196

5197
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5198 5199 5200 5201 5202
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5203
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5204
                           Its shape should be the same as input.
5205
        num_classes (int): The possible number of labels.
W
whs 已提交
5206 5207 5208 5209

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5210
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5211 5212 5213 5214

    Examples:

        .. code-block:: python
5215

W
whs 已提交
5216 5217 5218 5219 5220 5221 5222 5223 5224
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5225 5226
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5227
        outputs={
W
whs 已提交
5228 5229 5230
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5231 5232 5233
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
        isinstance(shape, Variable)):
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5342

5343 5344
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5345

5346 5347 5348 5349
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5350

5351 5352 5353 5354 5355
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5356 5357 5358

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5403 5404


J
jerrywgz 已提交
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
	  name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
5471

5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
5482 5483
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
5499
        ValueError: If axis is not in range [0, rank(x)].
5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
    helper.append_op(
        type='flatten',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
5523 5524


S
sneaxiy 已提交
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
    
    .. math::
     
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
        x (Variable): Input tensor of sequence_mask layer, 
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
        name (str|None): A name for this layer(optional). If set None, the 
                         layer will be named automatically.  
    
    Returns:
        Variable: The output sequence mask.
    
    """

Q
qingqing01 已提交
5553
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
5554 5555 5556 5557 5558
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
5559 5560 5561
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
5562 5563 5564 5565 5566 5567
        outputs={'Y': out},
        attrs={
            'max_len': maxlen if maxlen is not None else -1,
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
5568 5569


X
Xin Pan 已提交
5570
def stack(x, axis=0):
S
sneaxiy 已提交
5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
   
    Input :code:`x` can be a single variable, a :code:`list` of variables, 
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or 
    :code:`tuple`, the shapes of all these variables must be the same.  
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`, 
    the shape of the output variable would be 
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`. 
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
    If :code:`axis` is None, it would be replaced with 0. 

    Args:
        x (Variable|list(Variable)|tuple(Variable)): Input variables. 
        axis (int|None): The axis along which all inputs are stacked.
    
    Returns:
        Variable: The stacked variable.
    
    """

X
Xin Pan 已提交
5594 5595 5596 5597 5598 5599 5600 5601
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
5602 5603
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
X
Xin Pan 已提交
5604
    return out
D
dzhwinter 已提交
5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
   
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised. 

    Args:
        x (Variable): Input variable. 
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
    
    Returns:
        list(Variable): The unstacked variables.
    
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs