math.py 175.1 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20 21 22 23 24 25
from paddle.common_ops_import import VarDesc
from paddle.common_ops_import import dygraph_only
from paddle.common_ops_import import OpProtoHolder
from paddle.common_ops_import import templatedoc
from paddle.common_ops_import import dygraph_utils

26 27 28 29
from .manipulation import cast
from .creation import _complex_to_real_dtype
from .layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn

30
import paddle
31
from ..static import Variable
32
from ..framework import core, in_dygraph_mode, _non_static_mode, LayerHelper, _in_legacy_dygraph
33
from ..fluid.framework import _in_legacy_dygraph
Z
zhiboniu 已提交
34
from ..framework import _varbase_creator, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
35
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
36
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
37 38 39

# TODO: define math functions
# yapf: disable
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
from .ops import abs    # noqa: F401
from .ops import acos    # noqa: F401
from .ops import asin    # noqa: F401
from .ops import ceil    # noqa: F401
from .ops import ceil_    # noqa: F401
from .ops import cos    # noqa: F401
from .ops import tan    # noqa: F401
from .ops import sinh    # noqa: F401
from .ops import cosh    # noqa: F401
from .ops import exp    # noqa: F401
from .ops import exp_    # noqa: F401
from .ops import expm1    # noqa: F401
from .ops import floor    # noqa: F401
from .ops import floor_    # noqa: F401
from .ops import reciprocal    # noqa: F401
from .ops import reciprocal_    # noqa: F401
from .ops import round    # noqa: F401
from .ops import round_    # noqa: F401
from .ops import rsqrt    # noqa: F401
from .ops import rsqrt_    # noqa: F401
from .ops import square    # noqa: F401
from .ops import atan    # noqa: F401
from .ops import erf    # noqa: F401
from .ops import sqrt    # noqa: F401
from .ops import sqrt_    # noqa: F401
from .ops import sin    # noqa: F401
from .ops import asinh    # noqa: F401
from .ops import acosh    # noqa: F401
from .ops import atanh    # noqa: F401


Z
zhiboniu 已提交
71
from ..fluid.layers import elementwise_sub
W
wanghuancoder 已提交
72
from paddle import _C_ops
73

74 75
__all__ = []

76 77 78 79 80 81 82 83 84 85 86 87 88
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

89

90 91
def log(x, name=None):
    r"""
C
Chen Long 已提交
92
    Calculates the natural log of the given input Tensor, element-wise.
93 94 95

    .. math::

96
        Out = \ln(x)
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

            import paddle

            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_log(x)
    if _in_legacy_dygraph():
        return _C_ops.log(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log")
    inputs = {'X': [x]}
    helper = LayerHelper('log', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
    return out


def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
148 149 150 151 152 153
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
        scale (float|Tensor): The scale factor of the input, it should be a float number or a Tensor with shape [1] and data type as float32.
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
154 155

    Returns:
C
Chen Long 已提交
156
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

    Examples:
        .. code-block:: python
            
            # scale as a float32 number
            import paddle

            data = paddle.randn(shape=[2,3], dtype='float32')
            res = paddle.scale(data, scale=2.0, bias=1.0)

        .. code-block:: python

            # scale with parameter scale as a Tensor
            import paddle

            data = paddle.randn(shape=[2, 3], dtype='float32')
            factor = paddle.to_tensor([2], dtype='float32')
            res = paddle.scale(data, scale=factor, bias=1.0)

    """

    if in_dygraph_mode():
179
        return _C_ops.final_state_scale(x, scale, float(bias), bias_after_scale)
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    if _non_static_mode():
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
        out = _C_ops.scale(x, 'scale',
                           float(_scale), 'bias',
                           float(bias), 'bias_after_scale', bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out)

    check_variable_and_dtype(x, "x", [
        'float16', 'uint16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], "scale")
    inputs = {'X': [x]}
    attrs = {
        'bias': float(bias),
        'bias_after_scale': bias_after_scale,
    }
    if isinstance(scale, Variable):
        inputs['ScaleTensor'] = [scale]
    else:
        attrs['scale'] = float(scale)
    helper = LayerHelper('scale', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return helper.append_activation(out)


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
    """
    stanh activation.

    .. math::

214
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463]

    """

    if _non_static_mode():
        return _C_ops.stanh(x, 'scale_a', scale_a, 'scale_b', scale_b)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'stanh')

    helper = LayerHelper('stanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out

def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
282
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
283

284 285 286 287 288 289 290 291
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

            import paddle
292
            
293 294 295 296
            img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            inputs = [img1, img2]
            index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
297
            res = paddle.multiplex(inputs, index)
298
            print(res) # Tensor([[5., 6.], [3., 4.]], dtype=float32)
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

    """
    if _non_static_mode():
        return _C_ops.multiplex(index, inputs)
    helper = LayerHelper('multiplex', **locals())

    check_type(inputs, 'inputs', (list), 'multiplex')
    if len(inputs) < 2:
        raise ValueError(
            "inputs should be a list object with at least 2 elements.")
    for id, x in enumerate(inputs):
        check_variable_and_dtype(x, 'input[' + str(id) + ']',
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'multiplex')
    check_variable_and_dtype(index, "index", ['int32', 'int64'], 'multiplex')

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out

323 324 325 326 327 328
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
329 330 331 332 333 334 335
    if in_dygraph_mode():
        return _C_ops.final_state_scale_(x, scale, float(bias), bias_after_scale)
    if _in_legacy_dygraph():
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
        return _C_ops.scale_(x, 'scale',
                                float(_scale), 'bias',
                                float(bias), 'bias_after_scale', bias_after_scale)
336 337


338
def pow(x, y, name=None):
339
    """
C
Chen Long 已提交
340
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
341

342 343
    .. math::
        out = x^{y} 
344

345 346
    **Note**:
    ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
347 348


349 350
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
351
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
352 353
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
354
    Returns:
355
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
356 357 358

    Examples:

359
        ..  code-block:: python
360 361 362

            import paddle

363 364 365 366 367 368 369 370 371 372 373 374
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

375
            # example 2: y is a Tensor
376
            y = paddle.to_tensor([2], dtype='float32')
377
            res = paddle.pow(x, y)
378 379 380
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
381 382

    """
383
    # in dynamic graph mode
384
    if in_dygraph_mode():
385
        if isinstance(y, (int, float)):
386
            return _C_ops.final_state_pow(x, y)
387
        elif isinstance(y, (paddle.Tensor, Variable)):
388
            return _C_ops.final_state_elementwise_pow(x, y)
389 390
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
391
    if _in_legacy_dygraph():
392
        if isinstance(y, (int, float)):
393
            return _C_ops.pow(x, 'factor', y)
394
        elif isinstance(y, (paddle.Tensor, Variable)):
395 396
            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
397
        else:
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    if isinstance(y, (int, float)):
        helper = LayerHelper('pow', **locals())
        inputs = {'X': x}
        attrs = {'factor': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
        return out
    elif isinstance(y, (paddle.Tensor, Variable)):
        # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
        helper = LayerHelper('elementwise_pow', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
    else:
        raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
415 416


417 418 419 420 421
OP_NAMEMAPPING = {
    'elementwise_max': 'final_state_maximum',
    'elementwise_min': 'final_state_minimum',
    'elementwise_pow': 'final_state_elementwise_pow',
    'elementwise_floordiv': 'final_state_floor_divide',
422
    'elementwise_mod': 'final_state_modulo',
423 424 425 426
    'elementwise_add': 'final_state_add',
    'elementwise_sub': 'final_state_subtract',
    'elementwise_mul': 'final_state_multiply',
    'elementwise_div': 'final_state_divide',
427
}
428

429 430 431 432 433 434 435
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
436 437 438
    def is_inplace(op_name):
        return  op_name[-1] == "_"

439
    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
440 441
        op = getattr(_C_ops, op_name)
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
W
wanghuancoder 已提交
442 443 444 445 446 447 448 449
    else:
        if in_dygraph_mode():
            op = getattr(_C_ops, OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name)
            out = op(x, y)

        if _in_legacy_dygraph():
            op = getattr(_C_ops, op_name)
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
450 451 452 453 454 455 456 457 458 459

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)

def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

460 461
    out = helper.kwargs.get('out', None)

462 463 464
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
465
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
466 467
        original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
468
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
469 470 471 472 473
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
474 475 476 477 478 479

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
480 481 482 483 484 485 486 487 488 489 490

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
491
def add(x, y, name=None):
492
    """
493 494 495 496 497 498 499 500
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

501 502
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
503 504

    There are two cases for this operator:
505 506 507 508

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

509
    For case 2:
510 511 512 513

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
    2. If $axis$ is -1 (default), $axis$=rank($X$)−rank($Y$).
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
514 515 516 517

        For example:

        ..  code-block:: python
518

519 520 521 522 523 524
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
525

526
    Args:
527 528 529
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
530 531

    Returns:
532
        N-D Tensor. A location into which the result is stored. It’s dimension equals with x.
533 534 535 536

    Examples:

        ..  code-block:: python
537

538
            import paddle
539

540 541 542 543
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.to_tensor([1, 5, 2], 'float64')
            z = paddle.add(x, y)
            print(z)  # [3., 8., 6. ]
544
    """
545

J
Jiabin Yang 已提交
546 547 548 549 550 551 552
    if in_dygraph_mode():
        return _C_ops.final_state_add( x, y)
    else:
        if _in_legacy_dygraph():
            return _C_ops.elementwise_add(x, y)
        else:
            return _elementwise_op(LayerHelper('elementwise_add', **locals()))
553 554


555 556 557 558 559 560 561 562 563 564 565 566 567
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """
    op_type = 'elementwise_add_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

568 569 570 571 572 573
    if in_dygraph_mode():
        return _C_ops.final_state_add_(x, y)
    else:
        out = _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
        return out
574 575


576 577
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
578
    Substract two tensors element-wise. The equation is:
579 580 581 582

    .. math::
        out = x - y

583 584
    Note:
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
585 586 587 588 589 590 591 592 593 594 595 596

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
597

598 599 600 601 602 603
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
604 605 606
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[-4, -4],
            #         [ 4,  4]])
607 608 609 610 611

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
612 613 614
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[ 0,  2, -1],
            #          [ 0,  2, -1]]])
615

616 617
            x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
618 619
            res = paddle.subtract(x, y)
            print(res)
620 621
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
622

623
            x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
624 625 626
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
627 628
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 4.  ,  inf., -inf.])
629 630 631 632
    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
J
Jiabin Yang 已提交
633 634 635 636 637 638 639 640
    if in_dygraph_mode():
        return _C_ops.final_state_subtract(x, y)
    else:
        if _in_legacy_dygraph():
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type)
        else:
            return _elementwise_op(LayerHelper(op_type, **locals()))
641 642


643 644 645 646 647 648 649 650 651 652 653 654 655
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """
    axis = -1
    act = None

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

656 657 658 659 660 661
    if in_dygraph_mode():
        return _C_ops.final_state_subtract_(x, y)
    else:
        out = _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub_')
        return out
662 663


664
def divide(x, y, name=None):
665
    """
666
    Divide two tensors element-wise. The equation is:
667

668 669
    .. math::
        out = x / y
670

671 672
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
673

674 675 676 677
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
678

679
    Returns:
680
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
681

682
    Examples:
683

684
        ..  code-block:: python
685

686
            import paddle
687

688 689
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
690
            z = paddle.divide(x, y)
691
            print(z)  # [2., 0.6, 2.]
692

693 694 695 696
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
J
Jiabin Yang 已提交
697 698 699 700 701 702 703 704
    if in_dygraph_mode():
        return _C_ops.final_state_divide( x, y)
    else:
        if _in_legacy_dygraph():
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type)
        else:
            return _elementwise_op(LayerHelper(op_type, **locals()))
705 706


707 708 709
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
710

711 712
    .. math::
        out = x // y
713

714 715
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
716

717 718 719 720
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
721

722 723
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
724

725
    Examples:
726

727
        ..  code-block:: python
728

729
            import paddle
730

731 732
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
733
            z = paddle.floor_divide(x, y)
734
            print(z)  # [2, 0, 2, 2]
735

736 737 738
    """
    op_type = 'elementwise_floordiv'
    axis = -1
Z
zhiboniu 已提交
739
    if paddle.in_dynamic_mode():
740 741
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
742

743
    return _elementwise_op(LayerHelper(op_type, **locals()))
744 745


746
def remainder(x, y, name=None):
747
    r"""
748 749 750
    Mod two tensors element-wise. The equation is:

    .. math::
751

752 753 754
        out = x \% y

    **Note**:
755
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
756 757

    Args:
W
WangXi 已提交
758 759
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
760 761 762
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
763
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
764 765 766 767 768 769 770

    Examples:

        ..  code-block:: python

            import paddle

771 772
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
773
            z = paddle.remainder(x, y)
W
WangXi 已提交
774
            print(z)  # [0, 3, 2, 1]
775 776 777

    """
    op_type = 'elementwise_mod'
778
    axis = -1
Z
zhiboniu 已提交
779
    if paddle.in_dynamic_mode():
780
        return _elementwise_op_in_dygraph(
781
            x, y, axis=axis, op_name=op_type)
782 783 784 785

    return _elementwise_op(LayerHelper(op_type, **locals()))


786 787
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
788 789


790
def multiply(x, y, name=None):
791
    """
792
    multiply two tensors element-wise. The equation is:
793

794 795
    .. math::
        out = x * y
796

797 798
    **Note**:
    ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
799

800
    Args:
W
will-jl944 已提交
801 802
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
803
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
804

805
    Returns:
806
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
807

808 809 810 811 812 813
    Examples:

        ..  code-block:: python

            import paddle

814 815
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
816
            res = paddle.multiply(x, y)
817
            print(res) # [[5, 12], [21, 32]]
818

819
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
820 821 822
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
823 824 825 826

    """
    op_type = 'elementwise_mul'
    act = None
827
    axis = -1
828

J
Jiabin Yang 已提交
829 830 831 832 833 834 835 836 837 838 839
    if in_dygraph_mode():
        return _C_ops.final_state_multiply(x, y)
    else:
        if _in_legacy_dygraph():
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type)
        else:
            if x.dtype != y.dtype:
                raise TypeError(
                    'Input tensors must be same type, but received type of x: %s, type of y: %s '
                    % (x.dtype, y.dtype))
840

J
Jiabin Yang 已提交
841
            return _elementwise_op(LayerHelper(op_type, **locals()))
842

843
def maximum(x, y, name=None):
844
    """
W
Wei Shengyu 已提交
845
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
846

847 848
    .. math::
        out = max(x, y)
849

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
    **Note**:
    ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [ 2., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [  5.,   3., inf.]
893 894
    """
    op_type = 'elementwise_max'
895
    axis = -1
896
    act = None
Z
zhiboniu 已提交
897
    if paddle.in_dynamic_mode():
898 899 900 901
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

902
def minimum(x, y, name=None):
903
    """
C
Chen Long 已提交
904
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
905

906 907
    .. math::
        out = min(x, y)
908

909 910 911 912 913 914 915 916 917
    **Note**:
    ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
918
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.minimum(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.minimum(x, y)
            print(res)
            #       [   1., -inf.,    5.]
952 953
    """
    op_type = 'elementwise_min'
954
    axis = -1
955
    act = None
Z
zhiboniu 已提交
956
    if paddle.in_dynamic_mode():
957 958 959
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
960

L
LJQ❤️ 已提交
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

    **Note**:
    ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.fmax(x, y)
            print(res)
            #    [ 2., 3., 5.]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.fmax(x, y)
            print(res)
            #    [  5.,   3., inf.]
    """
    op_type = 'elementwise_fmax'
    axis = -1
    act = None
1017 1018 1019
    if in_dygraph_mode():
        return _C_ops.final_state_fmax(x, y, axis)
    if _in_legacy_dygraph():
L
LJQ❤️ 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

    **Note**:
    ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.fmin(x, y)
            print(res)
            #       [ 1., 3., 5.]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.fmin(x, y)
            print(res)
            #       [   1., -inf.,    5.]
    """
    op_type = 'elementwise_fmin'
    axis = -1
    act = None
1080 1081 1082
    if in_dygraph_mode():
        return _C_ops.final_state_fmin(x, y, axis)
    if _in_legacy_dygraph():
L
LJQ❤️ 已提交
1083 1084 1085 1086
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

1087
for func in [
1088
        multiply
1089
]:
1090
    proto_dict = {'multiply': 'elementwise_mul'}
1091 1092
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
1093 1094 1095 1096 1097 1098 1099
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
1100 1101
        op_proto,
        additional_args_lines=additional_args_lines,
1102
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
1103
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
1104
        }) + """\n""" + str(func.__doc__)
1105

Y
Yang Zhang 已提交
1106

1107
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1108 1109 1110 1111
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1112
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1113 1114
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1115
            Tensor with a single element, otherwise must be in the
1116 1117 1118 1119 1120 1121 1122
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1123
            value is False.
1124
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1125 1126

    Returns:
1127
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1128 1129
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`, 
        otherwise it's data type is the same as `x`.
1130 1131 1132 1133 1134

    Examples:
        .. code-block:: python

            import paddle
1135

1136
            # x is a Tensor with following elements:
1137 1138 1139
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
1140 1141
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1142
            out1 = paddle.sum(x)  # [3.5]
1143 1144 1145
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
1146

1147
            # y is a Tensor with shape [2, 2, 2] and elements as below:
1148 1149 1150
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
1151 1152
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
1153 1154
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
            
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
            out7 = paddle.sum(x)  # [4]
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
1165
    """
1166 1167 1168 1169
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
1170
        axis = []
1171

1172 1173 1174 1175
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1176 1177

    if in_dygraph_mode():
1178
        return _C_ops.final_state_sum(x, axis, dtype, keepdim)
F
From00 已提交
1179

1180 1181 1182 1183 1184 1185 1186 1187
    if len(axis) == 0:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

F
From00 已提交
1188
    if _in_legacy_dygraph():
1189
        axis = axis if axis != None and axis != [] else [0]
1190
        if dtype_flag:
W
wanghuancoder 已提交
1191
            return _C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
1192
                                       'reduce_all', reduce_all_flag, 'in_dtype',
1193
                                       x.dtype, 'out_dtype', dtype)
1194
        else:
W
wanghuancoder 已提交
1195
            return _C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
1196
                                       'reduce_all', reduce_all_flag)
W
wanghuancoder 已提交
1197 1198 1199 1200 1201 1202 1203

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

1204 1205 1206
    if dtype_flag:
        attrs.update({
            'in_dtype': x.dtype,
1207
            'out_dtype': dtype
1208
        })
W
wanghuancoder 已提交
1209

1210
    check_variable_and_dtype(
1211
        x, 'x', ['bool', 'float16', 'float32', 'float64',
1212
                'int16', 'int32', 'int64', 'complex64', 'complex128',
1213 1214
                u'bool', u'float16', u'float32', u'float64',
                u'int32', u'int64', u'complex64', u'complex128'], 'sum')
1215

1216 1217
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

1218 1219 1220
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
1221
            dtype=dtype)
1222
    else:
1223
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1224 1225
    helper.append_op(
        type='reduce_sum',
1226
        inputs={'X': x},
1227 1228 1229
        outputs={'Out': out},
        attrs=attrs)
    return out
1230

1231

W
wangguanqun 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1249
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            # x is a Tensor with following elements:
            #    [[nan, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, -nan, 0.7]]
            # Each example is followed by the corresponding output tensor.
            x = np.array([[float('nan'), 0.3, 0.5, 0.9],
                            [0.1, 0.2, float('-nan'), 0.7]]).astype(np.float32)
            x = paddle.to_tensor(x)
            out1 = paddle.nansum(x)  # [2.7]
            out2 = paddle.nansum(x, axis=0)  # [0.1, 0.5, 0.5, 1.6]
            out3 = paddle.nansum(x, axis=-1)  # [1.7, 1.0]
            out4 = paddle.nansum(x, axis=1, keepdim=True)  # [[1.7], [1.0]]

            # y is a Tensor with shape [2, 2, 2] and elements as below:
            #      [[[1, nan], [3, 4]],
            #      [[5, 6], [-nan, 8]]]
            # Each example is followed by the corresponding output tensor.
            y = np.array([[[1, float('nan')], [3, 4]], 
                            [[5, 6], [float('-nan'), 8]]])
            y = paddle.to_tensor(y)
            out5 = paddle.nansum(y, axis=[1, 2]) # [8, 19]
            out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18]
    """
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'nansum')
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                                  [0.1, 0.2, float('-nan'), 0.7]])
            out1 = paddle.nanmean(x)
            # [0.44999996]
            out2 = paddle.nanmean(x, axis=0)
            # [0.1, 0.25, 0.5, 0.79999995]
            out3 = paddle.nanmean(x, axis=0, keepdim=True)
            # [[0.1, 0.25, 0.5, 0.79999995]]
            out4 = paddle.nanmean(x, axis=1)
            # [0.56666666 0.33333334]
            out5 = paddle.nanmean(x, axis=1, keepdim=True)
            # [[0.56666666]
            #  [0.33333334]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
                                   [[5, 6], [float('-nan'), 8]]])
            out6 = paddle.nanmean(y, axis=[1, 2])
            # [2.66666675, 6.33333349]
            out7 = paddle.nanmean(y, axis=[0, 1])
            # [3., 6.]
    """
    if isinstance(axis, int):
        axis = [axis]
    check_variable_and_dtype(x, 'x/input',
                             ['uint16', 'float16', 'float32', 'float64'],
                             'nanmean' )
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

    cnt = paddle.sum(~paddle.isnan(x), axis = axis,keepdim=keepdim)
    return paddle.divide(paddle.nansum(x, axis=axis, keepdim=keepdim, name=name), cnt.astype(x.dtype))


1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            out1 = paddle.count_nonzero(x)
            # [3]
            out2 = paddle.count_nonzero(x, axis=0)
            # [0, 1, 2]
            out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            # [[0, 1, 2]]
            out4 = paddle.count_nonzero(x, axis=1)
            # [2, 1, 0]
            out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            #[[2],
            # [1],
            # [0]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
                                  [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            out6 = paddle.count_nonzero(y, axis=[1, 2])
            # [3, 6]
            out7 = paddle.count_nonzero(y, axis=[0, 1])
            # [1, 3, 5]
    """


    if axis is not None:
        if isinstance(axis, int):
            axis = [axis]
        dims = len(x.shape)
        for i in range(len(axis)):
            if not isinstance(axis[i], int) or not (axis[i] < dims and axis[i] >= -dims):
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1423
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1424
def add_n(inputs, name=None):
1425
    """
1426
    Sum one or more Tensor of the input.
S
Steffy-zxf 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
    
    For example:

    .. code-block:: text
    
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
       
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1461 1462

    Args:
1463
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1464
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1465
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1466 1467

    Returns:
S
Steffy-zxf 已提交
1468
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1469 1470 1471

    Examples:
        .. code-block:: python
1472

1473 1474
            import paddle

S
Steffy-zxf 已提交
1475 1476 1477 1478 1479
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
            # [[8., 10., 12.], 
            #  [14., 16., 18.]]
1480
    """
1481 1482 1483
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
1484 1485 1486
        for x in inputs:
            if not x.is_dense():
                return _C_ops.sum(inputs, 'use_mkldnn', False)
1487 1488
        return _C_ops.final_state_add_n(inputs)
    if _in_legacy_dygraph():
S
Steffy-zxf 已提交
1489 1490
        if isinstance(inputs, Variable):
            inputs = [inputs]
W
wanghuancoder 已提交
1491
        return _C_ops.sum(inputs, 'use_mkldnn', False)
1492

S
Steffy-zxf 已提交
1493 1494
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1495 1496 1497 1498
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
W
WangXi 已提交
1499
                   ['float16', 'float32', 'float64', 'int32', 'int64'], 'add_n')
1500 1501
    else:
        check_variable_and_dtype(inputs, "inputs", \
W
WangXi 已提交
1502
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'add_n')
1503 1504


1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
    
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: The output Tensor of trunc.
    
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
J
Jiabin Yang 已提交
1544 1545
    if in_dygraph_mode():
        return  _C_ops.final_state_trunc(input)
1546
    else:
J
Jiabin Yang 已提交
1547 1548 1549 1550 1551
        if _in_legacy_dygraph():
            return _C_ops.trunc(input)
        else:
            inputs = {"X": input}
            attrs = {}
1552

J
Jiabin Yang 已提交
1553 1554 1555
            helper = LayerHelper("trunc", **locals())
            check_variable_and_dtype(input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc')
            out = helper.create_variable_for_type_inference(dtype=input.dtype)
1556

J
Jiabin Yang 已提交
1557 1558 1559
            helper.append_op(
                type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out})
            return out
1560 1561 1562



W
WuHaobo 已提交
1563
def mm(input, mat2, name=None):
1564
    """
S
swtkiwi 已提交
1565

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1577
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1578
        mat2 (Tensor): The input tensor which is a Tensor.
1579
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1580 1581

    Returns:
N
Noel 已提交
1582
        Tensor: The product Tensor.
1583

W
wawltor 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

1616 1617 1618 1619
    Examples:
        .. code-block:: python

            import paddle
1620 1621 1622 1623 1624 1625 1626 1627
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1628

1629
    """
1630 1631 1632
    if in_dygraph_mode():
        return _C_ops.final_state_matmul(input, mat2, False, False)
    elif paddle.in_dynamic_mode():
1633
        return _C_ops.matmul_v2(input, mat2)
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
1671
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
1672
    helper.append_op(
1673
        type='matmul_v2', inputs={'X': input,
1674 1675
                               'Y': mat2}, outputs={'Out': out})
    return out
1676

1677

Y
yaoxuefeng 已提交
1678
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1679 1680 1681
    """
    **addmm**

1682
    Perform matrix multiplication for input $x$ and $y$.
1683 1684 1685 1686 1687 1688 1689 1690 1691
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1692 1693 1694
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1695 1696
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
1697
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1698 1699

    Returns:
1700
        Tensor: The output Tensor of addmm.
1701 1702 1703

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
1704
            
1705 1706
            import paddle

Y
yaoxuefeng 已提交
1707 1708 1709
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1710

Y
yaoxuefeng 已提交
1711
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1712

N
Noel 已提交
1713
            print(out)
1714 1715 1716
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1717 1718 1719
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
1720 1721
    if not len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(x_shape, y_shape))
Y
yaoxuefeng 已提交
1722 1723
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
                raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
                raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
                raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
            raise ValueError("The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(input_shape, x_shape[0], y_shape[1]))
    else:
        raise ValueError("The dimention of input should be 2 or 1 but receive input's shape: {}".format(input_shape))
Y
yaoxuefeng 已提交
1738 1739 1740



J
Jiabin Yang 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749
    if in_dygraph_mode():
        return _C_ops.final_state_addmm( input, x, y, alpha, beta)
    else:
        if _in_legacy_dygraph():
            out = _C_ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
            return out
        else:
            inputs = {'Input': input, "X": x, "Y": y}
            attrs = {'Alpha': alpha, 'Beta': beta}
1750

J
Jiabin Yang 已提交
1751 1752 1753 1754 1755
            helper = LayerHelper("addmm", **locals())
            check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
            check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
            check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1756

J
Jiabin Yang 已提交
1757 1758 1759
            helper.append_op(
                type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
            return out
1760

S
seemingwang 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
    part, if the p-norm for part i is larger than max-norm, then each element 
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
        ..  code-block:: python
            
            import paddle
            input = [[[2.0,2,-2],[3,0.3,3]],[[2,-8,2],[3.1,3.7,3]]]
            x = paddle.to_tensor(input,dtype='float32')
            y = paddle.renorm(x, 1.0, 2, 2.05)
            print(y)        
    #        [[[ 0.40594056,  0.29285714, -0.41000000],
    #          [ 0.60891086,  0.04392857,  0.61500001]],
    #         [[ 0.40594056, -1.17142856,  0.41000000],
    #          [ 0.62920785,  0.54178572,  0.61500001]]])
    
    """
    input_shape = x.shape
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
    if not axis < len(input_shape):
        raise ValueError("the axis:{} should be less then the shape's size {}:{}".format(axis,len(input_shape),input_shape))
    if not axis >=0:
        if not axis >= -1 * len(input_shape):
            raise ValueError("the axis:{} should not be less than -1 * length of input_shape:{}".format(axis,-1 * len(input_shape)))
        axis = axis + len(input_shape)
S
seemingwang 已提交
1803 1804 1805 1806
    if in_dygraph_mode():
        out = _C_ops.final_state_renorm(x, p, axis, max_norm)
        return out
    elif _in_legacy_dygraph():
H
hong 已提交
1807
        out = _C_ops.renorm(x, 'p',p, 'axis',axis, 'max_norm', max_norm)
S
seemingwang 已提交
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
        return out

    inputs = {'X': x}
    attrs = {'p': p, 'axis': axis, 'max_norm':max_norm}

    helper = LayerHelper("renorm", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out

1820

Z
zhiboniu 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831

def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
    
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
1832
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            out = paddle.inner(x, y)
            print(out)
            #        ([[14, 32, 50],
            #         [32, 77, 122]])


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
        dstshape = list(xshape[:-1])+list(yshape[:-1])
        if len(dstshape)==0:
            dstshape = [1]
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

1861 1862 1863
        if in_dygraph_mode():
            return _C_ops.final_state_matmul(nx, ny.T, False, False).reshape(dstshape)
        elif paddle.in_dynamic_mode():
Z
zhiboniu 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
            return _C_ops.matmul_v2(nx, ny.T).reshape(dstshape)

        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(val, name,
                                        ['float16', 'float32', 'float64'], 'inner')
            x_shape = list(xshape)
            y_shape = list(yshape)

            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-1]:
                if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                    raise ValueError(
                        "After performing an optional transpose, Input X's last dim should be "
                        "equal to Y's last dim for multiplication "
                        "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                        % (x_shape, y_shape))

        __check_input(nx, ny)

        helper = LayerHelper('inner', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
        helper.append_op(
            type='matmul_v2', inputs={'X': nx,
                                'Y': ny.T}, outputs={'Out': out})
        return out.reshape(dstshape)


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. 
        y (Tensor): An N-D Tensor or a Scalar Tensor. 
1903
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 4).astype('float32')
            y = paddle.arange(1, 6).astype('float32')
            out = paddle.outer(x, y)
            print(out)
            #        ([[1, 2, 3, 4, 5],
            #         [2, 4, 6, 8, 10],
            #         [3, 6, 9, 12, 15]])


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

1925 1926 1927
    if in_dygraph_mode():
        return _C_ops.final_state_matmul(nx, ny, False, False)
    elif paddle.in_dynamic_mode():
Z
zhiboniu 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
        return _C_ops.matmul_v2(nx, ny)

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'inner')

    __check_input(nx, ny)

    helper = LayerHelper('outer', **locals())
    out = helper.create_variable_for_type_inference(dtype=nx.dtype)
    helper.append_op(
        type='matmul_v2', inputs={'X': nx,
                               'Y': ny}, outputs={'Out': out})
    return out


1946
def logsumexp(x, axis=None, keepdim=False, name=None):
1947
    r"""
1948
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
1949

1950
    .. math::
1951
       logsumexp(x) = \log\sum exp(x)
1952

1953
    Args:
S
Shang Zhizhou 已提交
1954 1955
        x (Tensor): The input Tensor with data type float32 or float64, which 
            have no more than 4 dimensions.
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1972

1973
    Returns:
1974 1975
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
1976

1977
    Examples:
1978

1979
    .. code-block:: python
1980

1981 1982
        import paddle

1983
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
1984 1985
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1986 1987

    """
1988 1989 1990 1991 1992 1993 1994
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1995

1996 1997 1998 1999 2000
    if in_dygraph_mode():
        if reduce_all:
            axis = range(len(x.shape))
        return _C_ops.final_state_logsumexp(x, axis, keepdim, reduce_all)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
2001
        return _C_ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
2002

2003 2004 2005
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
2006

2007
    helper = LayerHelper('logsumexp', **locals())
2008
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
2009 2010 2011 2012
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
2013

S
swtkiwi 已提交
2014

2015 2016
def inverse(x, name=None):
    """
2017 2018 2019 2020 2021
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2022
        x (Tensor): The input tensor. The last two
2023 2024 2025
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2026
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2027 2028

    Returns:
2029
        Tensor: A Tensor holds the inverse of x. The shape and data type
2030
                        is the same as x.
2031 2032 2033 2034 2035

    Examples:
        .. code-block:: python

            import paddle
2036 2037

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
2038 2039
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
2040 2041

    """
2042 2043 2044
    if in_dygraph_mode():
        return _C_ops.final_state_inverse(x)
    elif paddle.in_dynamic_mode():
W
wanghuancoder 已提交
2045
        return _C_ops.inverse(x)
2046

2047 2048
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
2049
                                 ['float32', 'float64'], 'inverse')
2050
        if len(x.shape) < 2:
2051 2052 2053
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
2054 2055
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
2056
    helper = LayerHelper('inverse', **locals())
2057
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2058
    helper.append_op(
2059
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
2060 2061
    return out

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
def _get_reduce_axis(axis):
    """
    Internal function for max, min, amax and amin. 
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
    reduce_all = True if axis == None or axis == [] else False
    if axis == None:
        axis = []
    return reduce_all, axis

T
Tao Luo 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
def _get_reduce_all_value(axis):
    """
    Internal function for max, min, amax and amin. 
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    return reduce_all, axis
2097

2098
def max(x, axis=None, keepdim=False, name=None):
2099
    """
S
swtkiwi 已提交
2100

2101
    Computes the maximum of tensor elements over the given axis.
2102

T
Tao Luo 已提交
2103 2104 2105 2106 2107 2108
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
        amax evenly distributes gradient between these equal values, 
        while max propagates gradient to all of them.


2109
    Args:
2110 2111
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2112
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2113
            `x` and return a Tensor with a single element,
2114 2115
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2116
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2117
            output Tensor. The result tensor will have one fewer dimension
2118
            than the `x` unless :attr:`keepdim` is true, default
2119
            value is False.
2120
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2121 2122

    Returns:
2123
        Tensor, results of maximum on the specified axis of input tensor,
2124
        it's data type is the same as `x`.
2125 2126 2127

    Examples:
        .. code-block:: python
2128

2129
            import paddle
2130

N
Noel 已提交
2131
            # data_x is a Tensor with shape [2, 4]
2132
            # the axis is a int element
2133
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2134 2135
                                  [0.1, 0.2, 0.6, 0.7]], 
                                 dtype='float64', stop_gradient=False)
2136
            result1 = paddle.max(x)
2137 2138 2139 2140 2141
            result1.backward()
            print(result1, x.grad) 
            #[0.9], [[0., 0., 0., 1.], [0., 0., 0., 0.]]

            x.clear_grad()
2142
            result2 = paddle.max(x, axis=0)
2143 2144 2145 2146 2147
            result2.backward()
            print(result2, x.grad) 
            #[0.2, 0.3, 0.6, 0.9], [[1., 1., 0., 1.], [0., 0., 1., 0.]]

            x.clear_grad()
2148
            result3 = paddle.max(x, axis=-1)
2149 2150 2151 2152 2153
            result3.backward()
            print(result3, x.grad) 
            #[0.9, 0.7], [[0., 0., 0., 1.], [0., 0., 0., 1.]]

            x.clear_grad()
2154
            result4 = paddle.max(x, axis=1, keepdim=True)
2155 2156 2157
            result4.backward()
            print(result4, x.grad) 
            #[[0.9], [0.7]], [[0., 0., 0., 1.], [0., 0., 0., 1.]]
2158

N
Noel 已提交
2159
            # data_y is a Tensor with shape [2, 2, 2]
2160
            # the axis is list 
2161
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2162 2163
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2164
            result5 = paddle.max(y, axis=[1, 2])
2165 2166 2167 2168 2169
            result5.backward()
            print(result5, y.grad) 
            #[4., 8.], [[[0., 0.], [0., 1.]], [[0., 0.], [0., 1.]]]

            y.clear_grad()
2170
            result6 = paddle.max(y, axis=[0, 1])
2171 2172 2173
            result6.backward()
            print(result6, y.grad) 
            #[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
2174 2175
    """

2176
    reduce_all, axis = _get_reduce_axis(axis)
2177 2178 2179
    if in_dygraph_mode():
        return _C_ops.final_state_max(x, axis, keepdim)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
2180
        return _C_ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
2181
                                   'reduce_all', reduce_all)
2182

2183
    helper = LayerHelper('max', **locals())
2184
    check_variable_and_dtype(
2185
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
2186

2187
    out = helper.create_variable_for_type_inference(
2188
            dtype=x.dtype)
2189 2190
    helper.append_op(
        type='reduce_max',
2191
        inputs={'X': x},
2192 2193
        outputs={'Out': out},
        attrs={
2194 2195
            'dim': axis,
            'keep_dim': keepdim,
2196 2197 2198 2199
            'reduce_all': reduce_all
        })
    return out

2200
def min(x, axis=None, keepdim=False, name=None):
2201
    """
S
swtkiwi 已提交
2202

2203
    Computes the minimum of tensor elements over the given axis
2204

T
Tao Luo 已提交
2205 2206 2207 2208 2209
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
        amin evenly distributes gradient between these equal values, 
        while min propagates gradient to all of them.

2210
    Args:
2211 2212
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2213
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2214
            `x` and return a Tensor with a single element,
2215 2216
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2217
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2218
            output Tensor. The result tensor will have one fewer dimension
2219
            than the `x` unless :attr:`keepdim` is true, default
2220
            value is False.
2221
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2222

2223
    Returns:
2224
        Tensor, results of minimum on the specified axis of input tensor,
2225
        it's data type is the same as input's Tensor.
2226

2227 2228 2229
    Examples:
        .. code-block:: python

2230
            import paddle
2231

2232
            # data_x is a Tensor with shape [2, 4]
2233
            # the axis is a int element
2234
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2235 2236
                                  [0.1, 0.2, 0.6, 0.7]], 
                                 dtype='float64', stop_gradient=False)
2237
            result1 = paddle.min(x)
2238 2239 2240 2241 2242
            result1.backward()
            print(result1, x.grad) 
            #[0.1], [[0., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2243
            result2 = paddle.min(x, axis=0)
2244 2245 2246 2247 2248
            result2.backward()
            print(result2, x.grad) 
            #[0.1, 0.2, 0.5, 0.7], [[0., 0., 1., 0.], [1., 1., 0., 1.]]

            x.clear_grad()
2249
            result3 = paddle.min(x, axis=-1)
2250 2251 2252 2253 2254
            result3.backward()
            print(result3, x.grad) 
            #[0.2, 0.1], [[1., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2255
            result4 = paddle.min(x, axis=1, keepdim=True)
2256 2257 2258
            result4.backward()
            print(result4, x.grad) 
            #[[0.2], [0.1]], [[1., 0., 0., 0.], [1., 0., 0., 0.]]
2259

2260
            # data_y is a Tensor with shape [2, 2, 2]
2261
            # the axis is list 
2262
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2263 2264
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2265
            result5 = paddle.min(y, axis=[1, 2])
2266 2267 2268 2269 2270
            result5.backward()
            print(result5, y.grad) 
            #[1., 5.], [[[1., 0.], [0., 0.]], [[1., 0.], [0., 0.]]]

            y.clear_grad()
2271
            result6 = paddle.min(y, axis=[0, 1])
2272 2273 2274
            result6.backward()
            print(result6, y.grad) 
            #[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
2275
    """
2276

2277
    reduce_all, axis = _get_reduce_axis(axis)
2278 2279 2280 2281
    if in_dygraph_mode():
        return _C_ops.final_state_min(x, axis, keepdim)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
2282
        return _C_ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
2283
                                   'reduce_all', reduce_all)
2284 2285 2286 2287 2288 2289

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
2290
            dtype=x.dtype)
2291 2292
    helper.append_op(
        type='reduce_min',
2293
        inputs={'X': x},
2294 2295
        outputs={'Out': out},
        attrs={
2296 2297
            'dim': axis,
            'keep_dim': keepdim,
2298 2299 2300 2301
            'reduce_all': reduce_all
        })
    return out

T
Tao Luo 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
        amax evenly distributes gradient between these equal values, 
        while max propagates gradient to all of them.

    Args:
2312
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2313
            the dimension is no more than 4.
2314
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2315 2316 2317 2318
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2319
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2320 2321 2322
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2323
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
                                  [0.9, 0.9, 0.6, 0.7]], 
                                 dtype='float64', stop_gradient=False)
T
Tao Luo 已提交
2339 2340 2341 2342 2343
            # There are 5 maximum elements: 
            # 1) amax evenly distributes gradient between these equal values, 
            #    thus the corresponding gradients are 1/5=0.2;
            # 2) while max propagates gradient to all of them, 
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2344 2345 2346 2347 2348
            result1 = paddle.amax(x)
            result1.backward()
            print(result1, x.grad) 
            #[0.9], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2349 2350 2351 2352 2353 2354 2355 2356
            x.clear_grad()
            result1_max = paddle.max(x)
            result1_max.backward()
            print(result1_max, x.grad) 
            #[0.9], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
            x.clear_grad()
            result2 = paddle.amax(x, axis=0)
            result2.backward()
            print(result2, x.grad) 
            #[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amax(x, axis=-1)
            result3.backward()
            print(result3, x.grad) 
            #[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amax(x, axis=1, keepdim=True)
            result4.backward()
            print(result4, x.grad) 
            #[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
            # the axis is list 
            y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
                                  [[0.9, 0.9], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amax(y, axis=[1, 2])
            result5.backward()
            print(result5, y.grad) 
            #[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amax(y, axis=[0, 1])
            result6.backward()
            print(result6, y.grad) 
            #[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """

2392
    reduce_all, axis = _get_reduce_axis(axis)
2393 2394 2395
    if in_dygraph_mode():
        return _C_ops.final_state_amax(x,  axis,  keepdim)
    if _in_legacy_dygraph():
T
Tao Luo 已提交
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
        return _C_ops.reduce_amax(x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all)

    helper = LayerHelper('amax', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax')

    out = helper.create_variable_for_type_inference(
            dtype=x.dtype)
    helper.append_op(
        type='reduce_amax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all
        })
    return out

def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
        amin evenly distributes gradient between these equal values, 
        while min propagates gradient to all of them.

    Args:
2426
        x (Tensor): A tensor, the data type is float32, float64, int32, int64, 
2427
            the dimension is no more than 4.
2428
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
2429 2430 2431 2432
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2433
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2434 2435 2436
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2437
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
                                  [0.1, 0.1, 0.6, 0.7]], 
                                 dtype='float64', stop_gradient=False)
T
Tao Luo 已提交
2453 2454 2455 2456 2457
            # There are 5 minimum elements: 
            # 1) amin evenly distributes gradient between these equal values, 
            #    thus the corresponding gradients are 1/5=0.2;
            # 2) while min propagates gradient to all of them, 
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2458 2459 2460 2461 2462
            result1 = paddle.amin(x)
            result1.backward()
            print(result1, x.grad) 
            #[0.1], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2463 2464 2465 2466 2467 2468 2469 2470
            x.clear_grad()
            result1_min = paddle.min(x)
            result1_min.backward()
            print(result1_min, x.grad) 
            #[0.1], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
            x.clear_grad()
            result2 = paddle.amin(x, axis=0)
            result2.backward()
            print(result2, x.grad) 
            #[0.1, 0.1, 0.1, 0.1], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amin(x, axis=-1)
            result3.backward()
            print(result3, x.grad) 
            #[0.1, 0.1], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amin(x, axis=1, keepdim=True)
            result4.backward()
            print(result4, x.grad) 
            #[[0.1], [0.1]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
            # the axis is list 
            y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
                                  [[0.1, 0.1], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amin(y, axis=[1, 2])
            result5.backward()
            print(result5, y.grad) 
            #[0.1., 0.1], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amin(y, axis=[0, 1])
            result6.backward()
            print(result6, y.grad) 
            #[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """

2506
    reduce_all, axis = _get_reduce_axis( axis )
2507 2508 2509
    if in_dygraph_mode():
        return _C_ops.final_state_amin(x, axis, keepdim)
    elif _in_legacy_dygraph():
T
Tao Luo 已提交
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
        return _C_ops.reduce_amin(x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all)
    helper = LayerHelper('amin', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin')

    out = helper.create_variable_for_type_inference(
            dtype=x.dtype)
    helper.append_op(
        type='reduce_amin',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all
        })
    return out

W
WuHaobo 已提交
2528
def log1p(x, name=None):
2529
    r"""
2530
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
2531

2532
    .. math::
2533
        Out = \ln(x+1)
S
Steffy-zxf 已提交
2534

2535
    Args:
S
Steffy-zxf 已提交
2536
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
2537 2538
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        
2539
    Returns:
S
Steffy-zxf 已提交
2540
        Tensor, the natural log of the input Tensor computed element-wise.
2541

2542 2543
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
2544

2545
            import paddle
S
Steffy-zxf 已提交
2546 2547 2548 2549

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
2550 2551
    """

2552 2553 2554
    if in_dygraph_mode():
        return _C_ops.final_state_log1p(x)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
2555
        return _C_ops.log1p(x)
2556 2557 2558 2559 2560

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
2561
    out = helper.create_variable_for_type_inference(dtype)
2562 2563
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
2564

J
joejiong 已提交
2565
def log2(x, name=None):
2566
    r"""
J
joejiong 已提交
2567 2568 2569 2570
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

2571
        Out = \log_2x
J
joejiong 已提交
2572 2573 2574

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2575
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
2603 2604 2605
    if in_dygraph_mode():
        return _C_ops.final_state_log2(x)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
2606
        return _C_ops.log2(x)
J
joejiong 已提交
2607 2608 2609 2610 2611 2612 2613 2614

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
2615

J
joejiong 已提交
2616 2617

def log10(x, name=None):
2618
    r"""
J
joejiong 已提交
2619 2620 2621 2622
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

2623
        Out = \log_10_x
J
joejiong 已提交
2624 2625 2626

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2627
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
2655 2656 2657
    if in_dygraph_mode():
        return _C_ops.final_state_log10(x)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
2658
        return _C_ops.log10(x)
J
joejiong 已提交
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


Y
Yang Zhang 已提交
2669
def clip(x, min=None, max=None, name=None):
2670
    """
Y
Yang Zhang 已提交
2671
    This operator clip all elements in input into the range [ min, max ] and return
2672 2673 2674 2675
    a resulting tensor as the following equation:

    .. math::

2676
        Out = MIN(MAX(x, min), max)
2677 2678

    Args:
2679
        x (Tensor): An N-D Tensor with data type float32, float64, int32 or int64.
2680
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``Tensor``
2681
            with shape [1] and type ``int32``, ``float32``, ``float64``.
2682
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``Tensor``
2683
            with shape [1] and type ``int32``, ``float32``, ``float64``.
2684
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2685 2686

    Returns:
Y
Yang Zhang 已提交
2687
        Tensor: A Tensor with the same data type and data shape as input.
2688 2689 2690 2691 2692

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
2693

2694
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
2695 2696
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
2697
            print(out1)
Y
Yang Zhang 已提交
2698 2699
            # [[3.5, 3.5]
            # [4.5, 5.0]]
2700
            print(out2)
Y
Yang Zhang 已提交
2701 2702
            # [[2.5, 3.5]
            # [[4.5, 6.4]
2703 2704
    """

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
2715

C
chentianyu03 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
    if in_dygraph_mode():
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
        min = min_ if min is None else min
        max = max_ if max is None else max
        return _C_ops.final_state_clip(x, min, max)

    if _in_legacy_dygraph():
2726 2727 2728 2729
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
2730 2731
        min = min_ if min is None else min
        max = max_ if max is None else max
W
wanghuancoder 已提交
2732
        return _C_ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
2733

2734
    if min is not None:
Y
Yang Zhang 已提交
2735
        check_type(min, 'min', (float, int, Variable), 'clip')
2736 2737
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
2738
                        'clip', '(When the type of min in clip is Variable.)')
2739
    if max is not None:
Y
Yang Zhang 已提交
2740
        check_type(max, 'max', (float, int, Variable), 'clip')
2741 2742
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
2743
                        'clip', '(When the type of max in clip is Variable.)')
2744

2745
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'clip')
Y
Yang Zhang 已提交
2746 2747

    inputs = {'X': x}
2748
    attrs = {'min': min_, 'max': max_}
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
2762
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
2763
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
2764
        dtype=helper.input_dtype('x'))
2765 2766 2767 2768
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
2769

W
WuHaobo 已提交
2770

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
        min = min.numpy().item(0)
    if isinstance(max, Variable):
        max = max.numpy().item(0)
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
2785 2786 2787 2788 2789 2790

    if in_dygraph_mode():
        return _C_ops.final_state_clip_(x, min, max)

    if _in_legacy_dygraph():
        return _C_ops.clip_(x, "min", min, "max", max)
2791 2792 2793



2794
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
2795
    """
S
swtkiwi 已提交
2796

2797
    Computes the sum along diagonals of the input tensor x.
2798 2799

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
2800

2801
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
2802
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
2803
    of the input tensor x.
L
Li Fuchen 已提交
2804

2805
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
2806 2807 2808 2809

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
2810
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
2811

L
Li Fuchen 已提交
2812
    Args:
2813 2814 2815 2816 2817
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
2818 2819

    Returns:
2820
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
2821 2822 2823 2824 2825

    Examples:
        .. code-block:: python

            import paddle
2826

2827 2828 2829
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
2830 2831 2832
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
2833 2834
    """
    def __check_input(input, offset, dim1, dim2):
2835
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
2836 2837 2838
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

2839
        input_shape = list(x.shape)
L
Li Fuchen 已提交
2840
        assert len(input_shape) >= 2,                     \
2841 2842
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
2843 2844
                len(input_shape)

2845 2846
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
2847

X
XiangGao 已提交
2848
        assert ((0 <= axis1_) and (axis1_ < len(input_shape))),     \
2849 2850
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
2851

X
XiangGao 已提交
2852
        assert ((0 <= axis2_) and (axis2_ < len(input_shape))),   \
2853 2854
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
2855 2856


2857 2858 2859
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
2860

W
wanghuancoder 已提交
2861
    __check_input(input, offset, axis1, axis2)
H
hong 已提交
2862 2863 2864 2865
    if in_dygraph_mode():
        return _C_ops.final_state_trace( x, offset, axis1, axis2 )

    if _in_legacy_dygraph():
X
XiangGao 已提交
2866 2867 2868 2869
        return _C_ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)

    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
2870 2871
    helper = LayerHelper('trace', **locals())

2872
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
2873 2874 2875

    helper.append_op(
        type='trace',
2876
        inputs={'Input': [x]},
L
Li Fuchen 已提交
2877
        attrs={'offset': offset,
2878 2879
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
2880 2881 2882
        outputs={'Out': [out]})
    return out

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
    This OP computes the diagonals of the input tensor x.

    If ``x`` is 2D, returns the diagonal.
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2. 
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
    
    Args:
2898 2899 2900 2901 2902
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
            
    """
J
Jiabin Yang 已提交
2948 2949 2950 2951 2952
    if in_dygraph_mode():
        return _C_ops.final_state_diagonal(x, offset, axis1, axis2)
    else:
        if _in_legacy_dygraph():
            return _C_ops.diagonal(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)
W
wanghuancoder 已提交
2953

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
    def __check_input(input, offset, dim1, dim2):
        check_dtype(x.dtype, 'Input',
                    ['bool', 'int32', 'int64', 'float16', 'float32', 'float64'],
                    'diagonal')

        input_shape = list(x.shape)
        assert len(input_shape) >= 2,                     \
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
                len(input_shape)

        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2

        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)

        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)

        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)

    __check_input(input, offset, axis1, axis2)
    helper = LayerHelper('diagonal', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diagonal',
        inputs={'Input': [x]},
        attrs={'offset': offset,
               'axis1': axis1,
               'axis2': axis2},
               outputs={'Out': [out]})
    return out


F
Feiyu Chan 已提交
2994
@templatedoc(op_type="kron")
W
WuHaobo 已提交
2995
def kron(x, y, name=None):
S
swtkiwi 已提交
2996 2997
    """

2998
    ${comment}
F
Feiyu Chan 已提交
2999 3000

    Args:
3001 3002
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3003
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3004 3005

    Returns:
3006
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3007 3008 3009

    Examples:
        .. code-block:: python
3010

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3022
    """
3023
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3024
        return _C_ops.kron(x, y)
3025 3026
    if in_dygraph_mode():
        return _C_ops.final_state_kron(x, y)
F
Feiyu Chan 已提交
3027 3028 3029 3030
    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
3031
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
3032 3033
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
3034 3035 3036 3037


def cumsum(x, axis=None, dtype=None, name=None):
    """
3038 3039 3040
    The cumulative sum of the elements along a given axis. 
    
    **Note**:
3041
    The first element of the result is the same as the first element of the input. 
3042 3043

    Args:
3044
        x (Tensor): The input tensor needed to be cumsumed.
3045 3046 3047 3048 3049
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3050
        Tensor, the result of cumsum operator. 
3051 3052 3053 3054 3055

    Examples:
        .. code-block:: python
            
            import paddle
3056 3057 3058
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
3075
            # paddle.float64
3076 3077 3078 3079 3080 3081
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3082
        x = cast(x, dtype)
3083

H
hong 已提交
3084
    if in_dygraph_mode():
3085
        if axis is None: axis = -1
H
hong 已提交
3086 3087
        return _C_ops.final_state_cumsum(x, axis, flatten, False, False)
    if _in_legacy_dygraph():
3088
        if axis is None:
W
wanghuancoder 已提交
3089
            return _C_ops.cumsum(x, 'flatten', flatten)
3090
        else:
W
wanghuancoder 已提交
3091
            return _C_ops.cumsum(x, 'axis', axis, 'flatten', flatten)
3092 3093 3094 3095 3096 3097 3098 3099 3100

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
3101

3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174

def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis. 

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
    
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the result of logcumsumexp operator. 

    Examples:
        .. code-block:: python
            
            import paddle
            
            data = paddle.arange(12, dtype='float64')
            data = paddle.reshape(data, (3, 4))

            y = paddle.logcumsumexp(data)
            # [ 0.         1.3132617  2.4076061  3.4401898  4.4519143  5.4561934
            #   6.4577627  7.4583397  8.458551   9.45863   10.458658  11.458669 ]

            y = paddle.logcumsumexp(data, axis=0)
            # [[ 0.        1.        2.        3.      ]
            #  [ 4.01815   5.01815   6.01815   7.01815 ]
            #  [ 8.018479  9.018479 10.018479 11.018479]]
            
            y = paddle.logcumsumexp(data, axis=-1)
            # [[ 0.         1.3132617  2.4076061  3.4401898]
            #  [ 4.         5.3132615  6.407606   7.44019  ]
            #  [ 8.         9.313262  10.407606  11.440189 ]]

            y = paddle.logcumsumexp(data, dtype='float64')
            print(y.dtype)
            # paddle.float64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

    if in_dygraph_mode():
        if axis is None: axis = -1
        return _C_ops.final_state_logcumsumexp(x, axis, flatten, False, False)
    if _in_legacy_dygraph():
        if axis is None:
            return _C_ops.logcumsumexp(x, 'flatten', flatten)
        else:
            return _C_ops.logcumsumexp(x, 'axis', axis, 'flatten', flatten)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "logcumsumexp")

    helper = LayerHelper('logcumsumexp', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logcumsumexp', inputs={'X': x}, outputs={'Out': out}, attrs={'axis': axis, 'flatten': flatten})
    return out


H
hlygit66666 已提交
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

    **Note**:
    The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): the input tensor need to be cumproded.
        dim (int): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank), where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64, complex128. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
H
hlygit66666 已提交
3186
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3223
        x = cast(x, dtype)
H
hlygit66666 已提交
3224

3225 3226 3227
    if in_dygraph_mode():
        return _C_ops.final_state_cumprod(x, dim)
    if _in_legacy_dygraph():
H
hlygit66666 已提交
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
        return _C_ops.cumprod(x, 'dim', dim)

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'cumprod')
    check_type(dim, 'dim', int, 'cumprod')

    helper = LayerHelper('cumprod', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='cumprod', inputs={'X': x}, outputs={'Out': out}, attrs={'dim': dim})
    return out

J
Jack Zhou 已提交
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3254

3255
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3256
            out = paddle.isfinite(x)
N
Noel 已提交
3257
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
3258
    """
H
hong 已提交
3259 3260 3261
    if in_dygraph_mode():
        return _C_ops.final_state_isfinite( x )
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3262
        return _C_ops.isfinite_v2(x)
J
Jack Zhou 已提交
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3285

3286
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3287
            out = paddle.isinf(x)
N
Noel 已提交
3288
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
3289
    """
H
hong 已提交
3290 3291 3292
    if in_dygraph_mode():
        return _C_ops.final_state_isinf( x )
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3293
        return _C_ops.isinf_v2(x)
J
Jack Zhou 已提交
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3316
            
3317
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3318
            out = paddle.isnan(x)
N
Noel 已提交
3319
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
3320
    """
H
hong 已提交
3321 3322 3323 3324
    if in_dygraph_mode():
        return _C_ops.final_state_isnan( x )

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3325
        return _C_ops.isnan_v2(x)
J
Jack Zhou 已提交
3326 3327 3328 3329 3330 3331 3332
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
3333 3334 3335 3336 3337
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
3338 3339
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
G
guofei 已提交
3340 3341 3342
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
3343 3344
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
3345
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
G
guofei 已提交
3346 3347 3348
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
3349
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
3350 3351 3352

    Returns:
        Tensor, result of product on the specified dim of input tensor.
J
Jack Zhou 已提交
3353
    
G
guofei 已提交
3354 3355 3356 3357 3358 3359
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
3360 3361
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
3378 3379
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3390
            x = cast(x, dtype)
G
guofei 已提交
3391

3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
    dim = axis
    if dim is not None and not isinstance(dim, list):
        if isinstance(dim, tuple):
            dim = list(dim)
        elif isinstance(dim, int):
            dim = [dim]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".
                format(type(dim)))
3402 3403 3404 3405 3406

    reduce_all = True if dim is None or len(dim) == 0 or len(dim) == len(x.shape) else False
    if dim is None or len(dim) == 0:
        dim = [0]

3407
    if in_dygraph_mode():
3408 3409 3410 3411
        return _C_ops.final_state_reduce_prod(x, dim, keepdim, reduce_all)
    if _in_legacy_dygraph():
        return _C_ops.reduce_prod(
            x, 'dim', dim, 'keep_dim', keepdim, 'reduce_all', reduce_all)
3412 3413 3414

    helper = LayerHelper('reduce_prod', **locals())
    check_variable_and_dtype(
3415
        x, 'x/input', ['float32', 'float64', 'int32', 'int64'], 'reduce_prod')
3416 3417 3418
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_prod',
3419
        inputs={'X': x},
3420 3421
        outputs={'Out': out},
        attrs={
3422 3423 3424
            'dim': dim,
            'keep_dim': keepdim,
            'reduce_all': reduce_all
3425 3426
        })
    return out
W
WangXi 已提交
3427 3428 3429 3430


def sign(x, name=None):
    """
3431
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
3432 3433

    Args:
3434 3435
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
3436 3437 3438 3439 3440 3441 3442 3443 3444

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

3445
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
3446 3447 3448
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
H
hong 已提交
3449 3450 3451 3452
    if in_dygraph_mode():
        return _C_ops.final_state_sign(x)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3453
        return _C_ops.sign(x)
W
WangXi 已提交
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
3465
    r"""
W
WangXi 已提交
3466 3467 3468
    Tanh Activation Operator.

    .. math::
3469
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

3484
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
3485
            out = paddle.tanh(x)
N
Noel 已提交
3486
            print(out)
W
WangXi 已提交
3487 3488
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
H
hong 已提交
3489 3490 3491 3492
    if in_dygraph_mode():
        return _C_ops.final_state_tanh( x )

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3493
        return _C_ops.tanh(x)
W
WangXi 已提交
3494 3495

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
3496
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
3497 3498 3499 3500
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
3501

3502
@inplace_apis_in_dygraph_only
3503 3504 3505 3506 3507
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
3508 3509
    if in_dygraph_mode():
        return _C_ops.final_state_tanh_( x )
W
wanghuancoder 已提交
3510
    return _C_ops.tanh_(x)
3511 3512


S
Steffy-zxf 已提交
3513 3514 3515 3516 3517 3518 3519
def increment(x, value=1.0, name=None):
    """
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
3520
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
H
hong 已提交
3536 3537 3538 3539
    if in_dygraph_mode():
        return _C_ops.final_state_increment( x, value)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3540
        return _C_ops.increment(x, 'step', value)
S
Steffy-zxf 已提交
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)})
    return x
3551 3552 3553 3554


def all(x, axis=None, keepdim=False, name=None):
    """
3555
    Computes the ``logical and`` of tensor elements over the given dimension.
3556 3557 3558 3559 3560

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3561
            Tensor with a single element, otherwise must be in the
3562 3563 3564 3565 3566 3567
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3568
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3569 3570 3571 3572 3573 3574 3575 3576

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3577

N
Noel 已提交
3578
            # x is a bool Tensor with following elements:
3579 3580
            #    [[True, False]
            #     [True, True]]
C
Chen Long 已提交
3581
            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
3582
            print(x)
S
syyxsxx 已提交
3583
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3584

3585 3586 3587
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
C
Chen Long 已提交
3588

3589 3590 3591
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
C
Chen Long 已提交
3592 3593

            # keepdim=False, out3 should be [False, True], out.shape should be (2,)
3594 3595
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
C
Chen Long 已提交
3596 3597 3598

            # keepdim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keepdim=True) # [[False], [True]]
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

3613 3614 3615 3616 3617 3618
    if in_dygraph_mode():
        if reduce_all_flag:
            axis = range(len(x.shape))
        return _C_ops.final_state_all(x, axis, keepdim)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3619
        axis = axis if axis != None and axis != [] else [0]
W
wanghuancoder 已提交
3620
        return _C_ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
W
wanghuancoder 已提交
3621 3622
                                       'reduce_all', reduce_all_flag)

3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    check_variable_and_dtype(x, 'x', ['bool'], 'all')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_all',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
3645
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
3646 3647 3648 3649 3650

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3651
            Tensor with a single element, otherwise must be in the
3652 3653 3654 3655 3656 3657
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3658
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3659 3660 3661 3662 3663 3664 3665 3666

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3667 3668 3669

            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            x = paddle.assign(x)
3670
            print(x)
S
syyxsxx 已提交
3671
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3672 3673 3674 3675
            # x is a bool Tensor with following elements:
            #    [[True, False]
            #     [True, True]]

3676 3677 3678
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
C
Chen Long 已提交
3679

3680 3681
            # out2 should be [True, True]
            out2 = paddle.any(x, axis=0)  # [True, True]
3682
            print(out2)
C
Chen Long 已提交
3683 3684

            # keepdim=False, out3 should be [True, True], out.shape should be (2,)
3685
            out3 = paddle.any(x, axis=-1)  # [True, True]
3686
            print(out3)
C
Chen Long 已提交
3687 3688 3689 3690

            # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keepdim=True)  # [[True], [True]]
            print(out4) 
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

3704 3705 3706 3707 3708 3709
    if in_dygraph_mode():
        if reduce_all_flag:
            axis = range(len(x.shape))
        return _C_ops.final_state_any(x, axis, keepdim)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3710
        axis = axis if axis != None and axis != [] else [0]
W
wanghuancoder 已提交
3711
        return _C_ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
W
wanghuancoder 已提交
3712 3713
                                       'reduce_all', reduce_all_flag)

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

    check_variable_and_dtype(x, 'x', ['bool'], 'any')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_any',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out
L
Leo Chen 已提交
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759

def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
        

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
            
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
3760 3761 3762 3763 3764 3765

def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
C
Chen Long 已提交
3766
        x (Tensor): The input Tensor which hold the complex numbers. 
3767
            Optional data types are: complex64, complex128, float32, float64, int32 or int64.
3768
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3769 3770

    Returns:
C
Chen Long 已提交
3771
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
3772 3773 3774 3775 3776

    Examples:
        .. code-block:: python

          import paddle
C
Chen Long 已提交
3777
          
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
H
hong 已提交
3789 3790 3791
    if in_dygraph_mode():
        return _C_ops.final_state_conj(x)

Z
zhiboniu 已提交
3792
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
3793
        return _C_ops.conj(x)
3794 3795 3796 3797 3798 3799 3800 3801 3802

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'conj')

    helper = LayerHelper('conj', **locals())
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

    helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
    return out
3803

Z
zyfncg 已提交
3804 3805 3806 3807 3808 3809 3810 3811 3812
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
3813
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

J
Jiabin Yang 已提交
3830 3831 3832 3833 3834
    if in_dygraph_mode():
        return _C_ops.final_state_digamma(x)
    else:
        if _in_legacy_dygraph():
            return _C_ops.digamma(x)
Z
zyfncg 已提交
3835 3836 3837 3838 3839 3840 3841

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'digamma')
    helper = LayerHelper('digamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
    return out

3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.lgamma(x)
            print(out)
            # [1.31452441, 1.76149750, 2.25271273, 1.09579802]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_lgamma(x)
    elif _in_legacy_dygraph():
        return _C_ops.lgamma(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lgamma')
    helper = LayerHelper('lgamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
    return out


3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

Z
zhiboniu 已提交
3901
    return scale(x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name)
R
ronnywang 已提交
3902

3903
def atan2(x, y, name=None):
R
ronnywang 已提交
3904
    r"""
3905
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
3906 3907 3908 3909

    Equation:
        .. math::

3910 3911 3912 3913 3914 3915 3916 3917
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
3918 3919

    Args:
3920 3921
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
3922 3923 3924 3925 3926 3927 3928 3929
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

3930
            import paddle
R
ronnywang 已提交
3931

3932 3933 3934
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
3935

3936 3937 3938
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
3939

3940 3941 3942
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
3943 3944 3945

    """

J
Jiabin Yang 已提交
3946 3947
    if in_dygraph_mode():
        return _C_ops.final_state_atan2( x, y)
R
ronnywang 已提交
3948
    else:
J
Jiabin Yang 已提交
3949 3950 3951 3952 3953
        if _in_legacy_dygraph():
            return _C_ops.atan2(x, y)
        else:
            check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2')
            check_variable_and_dtype(y, 'y', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2')
R
ronnywang 已提交
3954

J
Jiabin Yang 已提交
3955 3956 3957 3958 3959 3960
            helper = LayerHelper('atan2', **locals())
            inputs = {'X1' : x, 'X2' : y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                    type='atan2', inputs=inputs, outputs={'Out': out})
            return out
A
andyjpaddle 已提交
3961

W
wangzhen38 已提交
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
 
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]  

    """

    if eps == None:
        eps = 0.0
4005
    if _in_legacy_dygraph():
W
wangzhen38 已提交
4006
        return _C_ops.logit(x, 'eps', eps)
4007 4008
    if in_dygraph_mode():
        return _C_ops.final_state_logit(x, eps)
W
wangzhen38 已提交
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'logit')
    helper = LayerHelper("logit", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logit',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'eps': eps})
    return out

4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
4029 4030 4031
        x (Tensor): An N-D Tensor with starting points, the data type is float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is float32, float64.
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
            
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
4045
            out = paddle.lerp(x, y, 0.5)
4046
            # out: [5.5, 6., 6.5, 7.]
4047 4048

    """
H
hong 已提交
4049
    if in_dygraph_mode():
4050
        check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
H
hong 已提交
4051 4052 4053 4054 4055
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)

        return _C_ops.final_state_lerp( x, y, weight)
    if _in_legacy_dygraph():
4056 4057 4058 4059
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)
        return _C_ops.lerp(x, y, weight)

4060 4061 4062
    if isinstance(weight, float):
        weight = paddle.full(shape=[1], fill_value=weight, dtype=x.dtype)

4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'], 'lerp')

    helper = LayerHelper('lerp', **locals())
    inputs = {'X': x, 'Y': y, 'Weight': weight}
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
    return out

@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))
4087 4088
    if in_dygraph_mode():
        return _C_ops.final_state_lerp_( x, y, weight)
4089 4090
    return _C_ops.lerp_(x, y, weight)

W
wuhuanzhou 已提交
4091 4092
def erfinv(x, name=None):
    r"""
4093
    The inverse error function of x.
W
wuhuanzhou 已提交
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116

    Equation:
        .. math::

            erfinv(erf(x)) = x.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
            
            x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            out = paddle.erfinv(x)
            # out: [0, 0.4769, -inf]

    """
H
hong 已提交
4117 4118 4119
    if in_dygraph_mode():
        return _C_ops.final_state_erfinv( x )

W
wuhuanzhou 已提交
4120 4121
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'erfinv')

Z
zhiboniu 已提交
4122
    if paddle.in_dynamic_mode():
W
wuhuanzhou 已提交
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
        return _C_ops.erfinv(x)

    helper = LayerHelper('erfinv', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
    return out

@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
4137 4138
    if in_dygraph_mode():
        return _C_ops.final_state_erfinv_( x )
W
wuhuanzhou 已提交
4139 4140
    return _C_ops.erfinv_(x)

4141
def rad2deg(x, name=None):
4142
    r"""
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
    Convert each of the elements of input x from angles in radians to degrees.
    
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

            x2 = paddle.to_tensor(np.pi/2)
            result2 = paddle.rad2deg(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [90.])
                     
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [57.29578018])
    """
    rad2deg_scale = 180 / np.pi
4183 4184 4185 4186 4187
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
        return _C_ops.final_state_scale(x, rad2deg_scale, 0.0, True)
    elif paddle.in_dynamic_mode():
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
        return _C_ops.scale(x, 'scale', rad2deg_scale)
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg')
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            out_cast = helper.create_variable_for_type_inference(dtype=paddle.float32)
            helper.append_op(
                    type='cast', inputs={'X':x}, outputs={'Out': out_cast}, attrs={'in_dtype': x.dtype,'out_dtype': paddle.float32})
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
        helper.append_op(
            type='scale', inputs={'X':out_cast}, outputs={'Out': out}, attrs={'scale': rad2deg_scale})
        return out

def deg2rad(x, name=None):
4205
    r"""
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
    Convert each of the elements of input x from degrees to angles in radians.
    
    Equation:
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274])
    """
    deg2rad_scale = np.pi / 180.0
4240 4241 4242 4243 4244
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
        return _C_ops.final_state_scale(x, deg2rad_scale, 0.0, True)
    elif paddle.in_dynamic_mode():
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
        return _C_ops.scale(x, 'scale', deg2rad_scale)
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad')
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            out_cast = helper.create_variable_for_type_inference(dtype=paddle.float32)
            helper.append_op(
                    type='cast', inputs={'X':x}, outputs={'Out': out_cast}, attrs={'in_dtype': x.dtype,'out_dtype': paddle.float32})
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
        helper.append_op(
            type='scale', inputs={'X':out_cast}, outputs={'Out': out}, attrs={'scale': deg2rad_scale})
        return out
A
andyjpaddle 已提交
4260

T
Tao Luo 已提交
4261 4262 4263 4264 4265 4266 4267 4268
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
    
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
4269 4270
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4271
    Args:
T
Tao Luo 已提交
4272 4273
        x (Tensor): An N-D Tensor, the data type is int32,int64. 
        y (Tensor): An N-D Tensor, the data type is int32,int64. 
T
Tao Luo 已提交
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])

T
Tao Luo 已提交
4290
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20])

            paddle.gcd(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
            
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
        return paddle.any(y != 0)

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
        y_not_equal_0 = (y != 0)
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
        x, y = (paddle.where(y_not_equal_0, y, x),
                  paddle.where(y_not_equal_0, paddle.mod(x, y_safe),paddle.zeros(y.shape, y.dtype)))
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

Z
zhiboniu 已提交
4328
    if paddle.in_dynamic_mode():
T
Tao Luo 已提交
4329 4330 4331 4332 4333
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
4334 4335
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
    
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
4347 4348
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4349
    Args:
T
Tao Luo 已提交
4350 4351
        x (Tensor): An N-D Tensor, the data type is int32,int64. 
        y (Tensor): An N-D Tensor, the data type is int32,int64. 
T
Tao Luo 已提交
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])

T
Tao Luo 已提交
4368
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])

            paddle.lcm(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
            
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
    out = paddle.where(d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe)
    return out

A
andyjpaddle 已提交
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
    The first-order differences is computed by using the following formula: 

    .. math::

        out[i] = x[i+1] - x[i]
    
    Higher-order differences are computed by using paddle.diff() recursively. 
    Only n=1 is currently supported.

    Args:
4409 4410
        x (Tensor): The input tensor to compute the forward difference on
        n (int, optional): The number of times to recursively compute the difference. 
A
andyjpaddle 已提交
4411
                          Only support n=1. Default:1
4412 4413
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
A
andyjpaddle 已提交
4414 4415
                                   It's dimensions must be equivalent to that of x, 
                                   and its shapes must match x's shape except on axis.
4416
        append (Tensor, optional): The tensor to append to input along axis before computing the difference, 
A
andyjpaddle 已提交
4417 4418
                                   It's dimensions must be equivalent to that of x, 
                                   and its shapes must match x's shape except on axis.
4419
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
A
andyjpaddle 已提交
4420 4421 4422 4423 4424 4425 4426 4427
    
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
4428

A
andyjpaddle 已提交
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
            # out: 
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
    infer_flags = list(1 for i in range(len(axes)))
Z
zhiboniu 已提交
4461
    if paddle.in_dynamic_mode():
A
andyjpaddle 已提交
4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
4474 4475
            new_input = _varbase_creator()
            _C_ops.concat(input_list, new_input, 'axis', axis)
A
andyjpaddle 已提交
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4488 4489 4490 4491 4492 4493
        if in_dygraph_mode():
            input_front = _C_ops.final_state_slice(new_input, axes, starts_1, ends_1, infer_flags,
                                            [])
        else:
            input_front = _C_ops.slice(new_input, None, None, None, None, 'axes', axes, \
                'infer_flags', infer_flags, *attrs_1)
A
andyjpaddle 已提交
4494 4495 4496 4497
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4498
        if in_dygraph_mode():
4499
            input_back = _C_ops.final_state_slice(new_input, axes, starts_2, ends_2, infer_flags,
4500 4501 4502 4503
                                            [])
        else:
            input_back = _C_ops.slice(new_input, None, None, None, None, 'axes', axes, \
                'infer_flags', infer_flags, *attrs_2)
A
andyjpaddle 已提交
4504 4505

        if x.dtype == paddle.bool:
4506 4507 4508 4509
            if in_dygraph_mode():
                return _C_ops.final_state_logical_xor(input_back, input_front)
            else:
                return _C_ops.logical_xor(input_back, input_front)
A
andyjpaddle 已提交
4510
        else:
4511
            return elementwise_sub(input_back, input_front, axis=axis)
4512

A
andyjpaddle 已提交
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64', 'bool', 'int32', 'int64'], 'diff')
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='concat', inputs={'X': input_list}, outputs={'Out': [new_input]}, attrs={'axis': axis}
            )
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='slice', inputs={'Input': new_input}, attrs=attrs_1, outputs={'Out': input_front}
        )
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='slice', inputs={'Input': new_input}, attrs=attrs_2, outputs={'Out': input_back}
        )

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='logical_xor', inputs={"X": input_back, "Y": input_front}, outputs={"Out": out}
            )
        else:
Z
zhiboniu 已提交
4563
            out = elementwise_sub(input_back, input_front, axis=axis)
A
andyjpaddle 已提交
4564 4565

        return out
F
Feiyu Chan 已提交
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581

def angle(x, name=None):
    r"""
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while 
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4582
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
            print(z.numpy())
            # [[-2.-2.j -2.-1.j -2.+0.j -2.+1.j]
            #  [-1.-2.j -1.-1.j -1.+0.j -1.+1.j]
            #  [ 0.-2.j  0.-1.j  0.+0.j  0.+1.j]
            #  [ 1.-2.j  1.-1.j  1.+0.j  1.+1.j]]

            theta = paddle.angle(z)
            print(theta.numpy())
            # [[-2.3561945 -2.6779451  3.1415927  2.6779451]
            #  [-2.0344439 -2.3561945  3.1415927  2.3561945]
            #  [-1.5707964 -1.5707964  0.         1.5707964]
            #  [-1.1071488 -0.7853982  0.         0.7853982]]
    """

W
WangZhen 已提交
4606 4607 4608
    if in_dygraph_mode():
        return _C_ops.final_state_angle(x)
    elif paddle.in_dynamic_mode():
F
Feiyu Chan 已提交
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
        return _C_ops.angle(x)

    check_variable_and_dtype(x, 'x',
        ['float32', 'float64', 'complex64', 'complex128'], 'angle')
    op_type = "angle"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(x.dtype))
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
4621

4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
def heaviside(x, y, name=None):
    """
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
                \\begin{array}{lcl}
                0,& &\\text{if} \ x < 0, \\\\
                y,& &\\text{if} \ x = 0, \\\\
                1,& &\\text{if} \ x > 0.
                \end{array}
            \\right.

    Notes:
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float32, float64, int32 or int64.
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-0.5, 0, 0.5])
            y = paddle.to_tensor([0.1])
            paddle.heaviside(x, y)
            #    [0.        , 0.10000000, 1.        ]
            x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            y = paddle.to_tensor([0.1, 0.2, 0.3])
            paddle.heaviside(x, y)
            #    [[0.        , 0.20000000, 1.        ],
            #     [0.        , 1.        , 0.30000001]]
     """
    op_type = 'elementwise_heaviside'
    axis = -1
    act = None
    if _non_static_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

4669 4670 4671 4672 4673 4674
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
4675
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4676 4677 4678 4679 4680

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
4681
        .. code-block:: python
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721

            import paddle
            import numpy as np

            input = paddle.rand([3, 3], 'float32')
            print(input.numpy())
            # [[ 1.2203873  -1.0035421  -0.35193074]
            #  [-0.00928353  0.58917075 -0.8407828 ]
            #  [-1.5131804   0.5850153  -0.17597814]]

            output = paddle.frac(input)
            print(output.numpy())
            # [[ 0.22038734 -0.00354207 -0.35193074]
            #  [-0.00928353  0.58917075 -0.8407828 ]
            #  [-0.5131804   0.5850153  -0.17597814]]
    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
    if x.dtype not in [paddle.int32, paddle.int64, paddle.float32, paddle.float64]:
        raise TypeError(
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(x.dtype))
    if in_dygraph_mode():
        y = _C_ops.final_state_trunc(x)
        return _C_ops.final_state_subtract(x, y)
    else:
        if _in_legacy_dygraph():
            y = _C_ops.trunc(x)
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type)
        else:
            inputs = {"X": x}
            attrs = {}

            helper = LayerHelper("trunc", **locals())
            check_variable_and_dtype(x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc')
            y = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y})
            return _elementwise_op(LayerHelper(op_type, **locals()))
4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763


def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
        .. code-block:: Python

            import paddle

            x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            print(paddle.sgn(x))
            #[[0.6+0.8j       0.28-0.96j      0.+0.j      0.4472136+0.8944272j]
            # [0.6+0.8j       1.+0.j          0.+0.j      -1.+0.j]]

    """
    if x.dtype not in [paddle.float16, paddle.float32, paddle.float64, paddle.complex64, paddle.complex128]:
        raise TypeError(
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}"
                .format(x.dtype))
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)