math.py 62.4 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
18

19
from paddle.common_ops_import import *
20
from ..fluid import layers
L
Li Fuchen 已提交
21 22 23
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
24
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
25
import sys
26 27 28

# TODO: define math functions
# yapf: disable
29 30 31 32 33
from ..fluid.layers import abs    #DEFINE_ALIAS
from ..fluid.layers import acos    #DEFINE_ALIAS
from ..fluid.layers import asin    #DEFINE_ALIAS
from ..fluid.layers import ceil    #DEFINE_ALIAS
from ..fluid.layers import cos    #DEFINE_ALIAS
34 35
from ..fluid.layers import sinh    #DEFINE_ALIAS
from ..fluid.layers import cosh    #DEFINE_ALIAS
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
from ..fluid.layers import elementwise_add    #DEFINE_ALIAS
from ..fluid.layers import elementwise_div    #DEFINE_ALIAS
from ..fluid.layers import elementwise_floordiv    #DEFINE_ALIAS
from ..fluid.layers import elementwise_mod    #DEFINE_ALIAS
from ..fluid.layers import elementwise_mul    #DEFINE_ALIAS
from ..fluid.layers import elementwise_pow    #DEFINE_ALIAS
from ..fluid.layers import elementwise_sub    #DEFINE_ALIAS
from ..fluid.layers import exp    #DEFINE_ALIAS
from ..fluid.layers import floor    #DEFINE_ALIAS
from ..fluid.layers import log    #DEFINE_ALIAS
from ..fluid.layers import reciprocal    #DEFINE_ALIAS
from ..fluid.layers import reduce_max    #DEFINE_ALIAS
from ..fluid.layers import reduce_min    #DEFINE_ALIAS
from ..fluid.layers import reduce_prod    #DEFINE_ALIAS
from ..fluid.layers import reduce_sum    #DEFINE_ALIAS
from ..fluid.layers import round    #DEFINE_ALIAS
from ..fluid.layers import rsqrt    #DEFINE_ALIAS
from ..fluid.layers import scale    #DEFINE_ALIAS
from ..fluid.layers import sign    #DEFINE_ALIAS
from ..fluid.layers import square    #DEFINE_ALIAS
from ..fluid.layers import stanh    #DEFINE_ALIAS
from ..fluid.layers import atan    #DEFINE_ALIAS
from ..fluid.layers import erf    #DEFINE_ALIAS
59 60 61
from ..fluid.layers import sqrt    #DEFINE_ALIAS
from ..fluid.layers import sin    #DEFINE_ALIAS
from ..fluid.layers import tanh    #DEFINE_ALIAS
62

63 64 65
from ..fluid.layers import increment    #DEFINE_ALIAS
from ..fluid.layers import multiplex    #DEFINE_ALIAS
from ..fluid.layers import sums    #DEFINE_ALIAS
G
guofei 已提交
66
from ..fluid import layers
67

68
__all__ = [
69 70 71 72 73 74
        'abs',
        'acos',
        'asin',
        'atan',
        'ceil',
        'cos',
75
        'cosh',
76 77 78 79 80 81 82 83 84
        'cumsum',
        'elementwise_add',
        'elementwise_div',
        'elementwise_floordiv',
        'elementwise_mod',
        'elementwise_pow',
        'elementwise_sub',
        'exp',
        'floor',
85
        'increment',
86 87
        'log',
        'mul',
88
        'multiplex',
G
guofei 已提交
89
        'prod',
90 91 92 93 94 95 96 97 98 99 100
        'pow',
        'reciprocal',
        'reduce_max',
        'reduce_min',
        'reduce_prod',
        'reduce_sum',
        'round',
        'rsqrt',
        'scale',
        'sign',
        'sin',
101
        'sinh',
102 103 104 105
        'sqrt',
        'square',
        'stanh',
        'sum',
106
        'sums',
107 108 109
        'tanh',
        'elementwise_sum',
        'max',
110
        'maximum',
111
        'min',
112
        'minimum',
113
        'mm',
114 115 116 117 118
        'divide',
        'floor_divide',
        'remainder',
        'mod',
        'floor_mod',
119
        'multiply',
120 121 122
        'add',
        'atan',
        'logsumexp',
123
        'inverse',
124 125 126 127
        'log1p',
        'erf',
        'addcmul',
        'addmm',
Y
Yang Zhang 已提交
128
        'clip',
L
Li Fuchen 已提交
129
        'trace',
130
        'kron'
131 132 133
]
# yapf: enable.

134
@templatedoc()
W
WuHaobo 已提交
135
def pow(input, exponent, name=None):
136
    """
137 138
	:alias_main: paddle.pow
	:alias: paddle.pow,paddle.tensor.pow,paddle.tensor.math.pow
S
swtkiwi 已提交
139

140 141 142 143 144 145 146
    This is Pow Activation Operator.

    :math:`out = input^{exponent}`

    Args:
        input(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32`` or ``float64``.
        exponent(float32|Variable): A scalar with type ``float32`` or a ``Tensor`` with shape [1] and type ``float32``.
147
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
148 149 150 151 152 153 154 155 156 157
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``input``.

    Examples:

        .. code-block:: python

            import paddle
158
            import paddle.fluid as fluid
159

160
            x = fluid.data(name="x", shape=[32,32], dtype="float32")
161 162

            # example 1: argument exponent is float
W
WuHaobo 已提交
163
            y_1 = paddle.pow(x, 2.0)
164 165 166
            # y_1 is x^{2.0}

            # example 2: argument exponent is Variable
167
            exponent_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
W
WuHaobo 已提交
168
            y_2 = paddle.pow(x, exponent_tensor)
169 170
            # y_2 is x^{3.0}
    """
W
WuHaobo 已提交
171 172 173
    if in_dygraph_mode():
        return core.ops.pow(input, "exponent", exponent)

174 175 176 177 178 179 180 181 182
    helper = LayerHelper('pow', **locals())
    inputs = {'X': input}
    attrs = {}
    if isinstance(exponent, Variable):
        exponent.stop_gradient = True
        inputs['FactorTensor'] = exponent
    else:
        attrs['factor'] = exponent

W
WuHaobo 已提交
183 184 185 186 187
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    check_dtype(
        out.dtype, out.name,
        convert_dtype(input.dtype), 'pow',
        '(The out data type in pow must be the same with input data type.)')
188 189 190 191 192 193

    helper.append_op(
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out


194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
W
WuHaobo 已提交
226 227 228 229 230
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
231 232 233 234 235 236 237 238 239 240 241

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
242
def add(x, y, name=None):
243 244 245 246 247 248 249 250
    """
Examples:

    ..  code-block:: python

        import paddle
        import numpy as np

Y
Yang Zhang 已提交
251 252 253 254 255
        paddle.disable_static()
        np_x = np.array([2, 3, 4]).astype('float64')
        np_y = np.array([1, 5, 2]).astype('float64')
        x = paddle.to_variable(np_x)
        y = paddle.to_variable(np_y)
W
WuHaobo 已提交
256
        z = paddle.add(x, y)
Y
Yang Zhang 已提交
257 258
        np_z = z.numpy()
        print(np_z)  # [3., 8., 6. ]
259 260 261 262 263 264

    """
    op_type = 'elementwise_add'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
Y
Yang Zhang 已提交
265
            x, y, axis=axis, op_name=op_type)
266 267 268 269

    return _elementwise_op(LayerHelper(op_type, **locals()))


270
def divide(x, y, name=None):
271
    """
272
    Divide two tensors element-wise. The equation is:
273

274 275
    .. math::
        out = x / y
276

277 278
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
279

280 281 282 283
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
284

285 286
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
287

288
    Examples:
289

290
        ..  code-block:: python
291

292 293
            import paddle
            import numpy as np
294

295
            paddle.disable_static()
296

297 298 299 300 301 302
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = paddle.divide(x, y)
            print(z.numpy())  # [2., 0.6, 2.]
303

304 305 306 307 308 309 310
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
311

312
    return _elementwise_op(LayerHelper(op_type, **locals()))
313 314


315 316 317
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
318

319 320
    .. math::
        out = x // y
321

322 323
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
324

325 326 327 328
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
329

330 331
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
332

333
    Examples:
334

335
        ..  code-block:: python
336

337 338
            import paddle
            import numpy as np
339

340
            paddle.disable_static()
341

342 343 344 345 346 347
            np_x = np.array([2, 3, 8, 7])
            np_y = np.array([1, 5, 3, 3])
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = paddle.floor_divide(x, y)
            print(z.numpy())  # [2, 0, 2, 2]
348

349 350 351 352 353 354
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
355

356
    return _elementwise_op(LayerHelper(op_type, **locals()))
357 358


359
def remainder(x, y, name=None):
360
    """
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
    Mod two tensors element-wise. The equation is:

    .. math::
        out = x \% y

    **Note**:
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.

    Examples:

        ..  code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            np_x = np.array([2, 3, 8, 7])
            np_y = np.array([1, 5, 3, 3])
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = paddle.remainder(x, y)
            print(z.numpy())  # [0, 3, 2, 1]

    """
    op_type = 'elementwise_mod'
395 396 397
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
398
            x, y, axis=axis, op_name=op_type)
399 400 401 402

    return _elementwise_op(LayerHelper(op_type, **locals()))


403 404 405 406
mod = remainder  #DEFINE_ALIAS
floor_mod = remainder  #DEFINE_ALIAS


407 408 409 410 411 412 413 414 415 416 417 418
def multiply(x, y, axis=-1, name=None):
    """
	:alias_main: paddle.multiply
	:alias: paddle.multiply,paddle.tensor.multiply,paddle.tensor.math.multiply

Examples:

    .. code-block:: python

        import paddle
        import numpy as np

419
        paddle.disable_static()
420 421
        x_data = np.array([[1, 2], [3, 4]], dtype=np.float32)
        y_data = np.array([[5, 6], [7, 8]], dtype=np.float32)
422 423
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
424 425 426 427 428
        res = paddle.multiply(x, y)
        print(res.numpy()) # [[5, 12], [21, 32]]

        x_data = np.array([[[1, 2, 3], [1, 2, 3]]], dtype=np.float32)
        y_data = np.array([1, 2], dtype=np.float32)
429 430
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
431 432 433 434 435 436 437 438 439 440 441 442
        res = paddle.multiply(x, y, axis=1)
        print(res.numpy()) # [[[1, 2, 3], [2, 4, 6]]]

    """
    op_type = 'elementwise_mul'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

    return _elementwise_op(LayerHelper(op_type, **locals()))

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
def maximum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()
  
        x_data = np.array([[1, 2], [3, 4]], dtype=np.float32)
        y_data = np.array([[5, 6], [7, 8]], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[[5. 6.]
        # [7. 8.]]

        x_data = np.array([[[1, 2, 3], [1, 2, 3]]], dtype=np.float32)
        y_data = np.array([1, 2], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.maximum(x, y, axis=1)
        print(res.numpy())
        #[[[1. 2. 3.]
        #  [2. 2. 3.]]]

        x_data = np.array([2, 3, 5], dtype=np.float32)
        y_data = np.array([1, 4, np.nan], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[ 2.  4. nan]

        x_data = np.array([5, 3, np.inf], dtype=np.float32)
        y_data = np.array([1, 4, 5], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[ 5.  4. inf]
    """
    op_type = 'elementwise_max'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

def minimum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np
        paddle.disable_static()
  
        x_data = np.array([[1, 2], [3, 4]], dtype=np.float32)
        y_data = np.array([[5, 6], [7, 8]], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[[1. 2.]
        # [3. 4.]]

        x_data = np.array([[[1, 2, 3], [1, 2, 3]]], dtype=np.float32)
        y_data = np.array([1, 2], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.minimum(x, y, axis=1)
        print(res.numpy())
        #[[[1. 1. 1.]
        #  [2. 2. 2.]]]

        x_data = np.array([2, 3, 5], dtype=np.float32)
        y_data = np.array([1, 4, np.nan], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[ 1.  3. nan]

        x_data = np.array([5, 3, np.inf], dtype=np.float32)
        y_data = np.array([1, 4, 5], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[1. 3. 5.]
    """
    op_type = 'elementwise_min'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
545

546 547
for func in [
        add,
548 549 550
        maximum,
        minimum,
        multiply
551
]:
552
    proto_dict = {'add': 'elementwise_add', 'div': 'elementwise_div', 'maximum': 'elementwise_max', 'minimum': 'elementwise_min', 'multiply': 'elementwise_mul'}
553 554
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
555 556 557 558 559 560 561
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
562 563
        op_proto,
        additional_args_lines=additional_args_lines,
564
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
565
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
566
        }) + """\n""" + str(func.__doc__)
567

Y
Yang Zhang 已提交
568

569
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
570 571 572 573
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
574 575 576
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
577
            Tensor variable with a single element, otherwise must be in the
578 579 580 581 582 583 584
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
585
            value is False.
586
        name (str, optional): The default value is None. Normally there is no need for
587 588 589
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
590 591
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
        it's data type is the same as `x`.
592 593

    Raises:
594 595
        ValueError: The :attr:`dtype` must be float64 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
596

597 598 599
    Examples:
        .. code-block:: python

600
            import numpy as np
601
            import paddle
602 603
            paddle.disable_static()

604 605 606 607
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
608 609
            x_data = np.array([[0.2, 0.3, 0.5, 0.9],[0.1, 0.2, 0.6, 0.7]]).astype('float32')
            x = paddle.to_variable(x_data)
610
            out1 = paddle.sum(x)  # [3.5]
611 612 613
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
614 615 616 617 618

            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
619 620 621 622
            y_data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]).astype('float32')
            y = paddle.to_variable(y_data)
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
623
    """
624 625 626 627 628 629 630 631 632 633 634
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

635
    attrs = {
636 637 638
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
639 640 641 642
    }
    dtype_flag = False
    if dtype is not None:
        if dtype in ['float64', 'int64']:
643 644
            if (convert_dtype(x.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(x.dtype) == "int32" and dtype == "int64"):
645
                attrs.update({
646
                    'in_dtype': x.dtype,
647 648 649 650 651 652 653 654 655
                    'out_dtype': convert_np_dtype_to_dtype_(dtype)
                })
                dtype_flag = True
        else:
            raise ValueError(
                "The value of 'dtype' in sum op must be float64, int64, but received of {}".
                format(dtype))

    if in_dygraph_mode():
656
        axis = axis if axis != None and axis != [] else [0]
657
        if dtype_flag:
658 659 660
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
661 662
                                       convert_np_dtype_to_dtype_(dtype))
        else:
663 664
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
665
    check_variable_and_dtype(
666 667 668
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sum')
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

669 670 671 672 673
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
674
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
675 676
    helper.append_op(
        type='reduce_sum',
677
        inputs={'X': x},
678 679 680
        outputs={'Out': out},
        attrs=attrs)
    return out
681

682

683 684 685
@templatedoc(op_type="sum")
def elementwise_sum(inputs, name=None):
    """
686 687
	:alias_main: paddle.elementwise_sum
	:alias: paddle.elementwise_sum,paddle.tensor.elementwise_sum,paddle.tensor.math.elementwise_sum
S
swtkiwi 已提交
688

689
    ${comment}
690

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]

    Args:
722 723
        inputs (Variable|list(Variable)):  A Varaible list. The shape and data type of the list elementsshould be consistent.
            Variable can be multi-dimensional Tensoror LoDTensor, and data types can be: float32, float64, int32, int64.
724 725 726 727
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
728
        Variable: the sum of input :math:`inputs` . its shape and data types are consistent with :math:`inputs` .
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = paddle.elementwise_sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[elementwise_sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
754 755
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
756 757 758 759
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
    """

    helper = LayerHelper('elementwise_sum', **locals())
760 761 762 763 764 765 766 767 768 769 770
    check_type(inputs, 'inputs', (Variable, tuple, list), 'elementwise_sum')
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
                   ['float32', 'float64', 'int32', 'int64'], 'elementwise_sum')
    else:
        check_variable_and_dtype(inputs, "inputs", \
                ['float32', 'float64', 'int32', 'int64'], 'elementwise_sum')


771 772 773 774 775 776 777 778 779 780 781
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


W
WuHaobo 已提交
782
def mm(input, mat2, name=None):
783
    """
784 785
	:alias_main: paddle.mm
	:alias: paddle.mm,paddle.tensor.mm,paddle.tensor.math.mm
S
swtkiwi 已提交
786

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        mat2 (Variable): The input variable which is a Tensor or LoDTensor.
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: The product Tensor (or LoDTensor) variable.

    Examples:
        .. code-block:: python

            # Examples to clarify shapes of the inputs and output
            # x: [B, ..., M, K], mat2: [B, ..., K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, ..., M, N]

            # x: [B, M, K], mat2: [B, K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [B, M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [M, N]

            # x: [B, M, K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [B, M]

            # x: [K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [1]

            import paddle
            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[2, 3], dtype='float32')
            mat2 = fluid.data(name='mat2', shape=[3, 2], dtype='float32')
            out = paddle.mm(x, mat2) # out shape is [2, 2]
    """
    if in_dygraph_mode():
W
WuHaobo 已提交
835
        out = _varbase_creator(dtype=input.dtype)
836 837
        core.ops.matmul(input, mat2, out)
        return out
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
875
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
876 877 878 879
    helper.append_op(
        type='matmul', inputs={'X': input,
                               'Y': mat2}, outputs={'Out': out})
    return out
880

881

Y
yaoxuefeng 已提交
882
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
883
    """
884 885
	:alias_main: paddle.addmm
	:alias: paddle.addmm,paddle.tensor.addmm,paddle.tensor.math.addmm
S
swtkiwi 已提交
886

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
        input (Variable): The input Tensor/LoDTensor to be added to the final result.
        x (Variable): The first input Tensor/LoDTensor for matrix multiplication.
        y (Variable): The second input Tensor/LoDTensor for matrix multiplication.
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
903
        alpha (float): Coefficient of $x*y$.
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of addmm op.

    Examples:
        ..  code-block:: python

            import numpy as np
            import paddle

            data_x = np.ones((2, 2)).astype(np.float32)
            data_y = np.ones((2, 2)).astype(np.float32)
            data_input = np.ones((2, 2)).astype(np.float32)

919
            paddle.disable_static()
Y
yaoxuefeng 已提交
920

921 922 923
            x = paddle.to_variable(data_x)
            y = paddle.to_variable(data_y)
            input = paddle.to_variable(data_input)
Y
yaoxuefeng 已提交
924 925 926 927

            out = paddle.tensor.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )

            print( out.numpy() )
928 929 930
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



951 952 953 954
    if in_dygraph_mode():
        out = core.ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
        return out

955 956 957 958
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
959
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
960 961 962 963 964 965 966
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
967 968


W
WuHaobo 已提交
969
def logsumexp(x, dim=None, keepdim=False, name=None):
970
    """
971 972
	:alias_main: paddle.logsumexp
	:alias: paddle.logsumexp,paddle.tensor.logsumexp,paddle.tensor.math.logsumexp
S
swtkiwi 已提交
973

974
    This operator calculates the log of the sum of exponentials of the input Tensor.
975

976 977
    .. math::
       logsumexp(x) = \log\sum exp(x)
978 979


980 981 982 983 984 985 986 987 988 989 990
    Parameters:
       x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
       dim (list|int, optional): The dimensions along which the sum is performed. If :attr:`None`,
         sum all elements of :attr:`input` and return a Tensor variable with a single element,
         otherwise must be in the range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
         the dimension to reduce is :math:`rank + dim[i]`.
       keep_dim (bool, optional): Whether to reserve the reduced dimension in the output Tensor.
         The result tensor will have one fewer dimension than the :attr:`input` unless :attr:`keep_dim`
         is true, default value is False.
       name (str, optional): The default value is None.  Normally there is no need for user to
         set this property.  For more information, please refer to :ref:`api_guide_Name`
991

992 993
    Returns:
       Variable: The calcuated result Tensor/LoDTensor.
994

995
    Examples:
996

997
    .. code-block:: python
998

999 1000 1001 1002 1003 1004 1005 1006 1007 1008
        import paddle
        import paddle.fluid as fluid
        import numpy as np

        with fluid.dygraph.guard():
          np_x = np.random.uniform(0.1, 1, [10]).astype(np.float32)
          x = fluid.dygraph.to_variable(np_x)
          print(paddle.logsumexp(x).numpy())

    ..  code-block:: python
1009

1010 1011 1012 1013 1014 1015 1016 1017 1018
        import paddle
        import paddle.fluid as fluid
        import numpy as np

        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [2, 3, 4]).astype(np.float32)
            x = fluid.dygraph.to_variable(np_x)
            print(paddle.logsumexp(x, dim=1).numpy())
            print(paddle.logsumexp(x, dim=[0, 2]).numpy())
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

    """
    op_type = 'logsumexp'
    assert x is not None, 'x cannot be None in {}'.format(op_type)

    # reduce_sum does not support float16
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], op_type)

    exp_out = layers.exp(x)
    sum_out = layers.reduce_sum(exp_out, dim, keepdim)

    return layers.log(sum_out, name)
1031 1032


S
swtkiwi 已提交
1033

1034 1035
def inverse(x, name=None):
    """
1036 1037 1038 1039 1040
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1041
        x (Variable): The input tensor. The last two
1042 1043 1044 1045 1046 1047 1048 1049
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1050 1051
        Variable: A Tensor holds the inverse of x. The shape and data type
                        is the same as x.
1052 1053 1054 1055 1056 1057 1058 1059

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            mat_np = np.array([[2, 0], [0, 2]]).astype("float32")
1060 1061 1062 1063
            paddle.disable_static()
            mat = paddle.to_variable(mat_np)
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1064 1065 1066

    """
    if in_dygraph_mode():
1067
        return core.ops.inverse(x)
1068

1069 1070
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1071
                                 ['float32', 'float64'], 'inverse')
1072
        if len(x.shape) < 2:
1073 1074 1075
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1076 1077
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1078
    helper = LayerHelper('inverse', **locals())
1079
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1080
    helper.append_op(
1081
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1082 1083 1084
    return out


1085
def max(x, axis=None, keepdim=False, name=None):
1086
    """
S
swtkiwi 已提交
1087

1088
    Computes the maximum of tensor elements over the given axis.
1089 1090

    Args:
1091
        x(Tensor): A tensor, the data type is float32,
1092
            float64, int32, int64.
1093
        axis(list|int, optional): The axis along which the maximum is computed.
1094
            If :attr:`None`, compute the maximum over all elements of
1095
             `x` and return a Tensor variable with a single element,
1096 1097 1098
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1099
            output Tensor. The result tensor will have one fewer dimension
1100
            than the `x` unless :attr:`keepdim` is true, default
1101
            value is False.
1102
        name(str, optional): The default value is None.  Normally there is no need for
1103 1104 1105
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1106
        Tensor, results of maximum on the specified axis of input tensor,
1107
        it's data type is the same as `x`.
1108 1109 1110

    Examples:
        .. code-block:: python
1111 1112

            import numpy as np
1113
            import paddle
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
            paddle.disable_static()

            # data_x is a variable with shape [2, 4]
            # the axis is a int element
            data_x = np.array([[0.2, 0.3, 0.5, 0.9],
                               [0.1, 0.2, 0.6, 0.7]])
            x = paddle.to_variable(data_x)
            result1 = paddle.max(x)
            print(result1.numpy())
            #[0.9]
            result2 = paddle.max(x, axis=0)
            print(result2.numpy()) 
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
            print(result3.numpy())
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
            print(result4.numpy())
            #[[0.9]
            # [0.7]]

            # data_y is a variable with shape [2, 2, 2]
            # the axis is list 
            data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
                               [[5.0, 6.0], [7.0, 8.0]]])
            y = paddle.to_variable(data_y)
            result5 = paddle.max(y, axis=[1, 2])
            print(result5.numpy())
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
            print(result6.numpy())
            #[7. 8.]
1147 1148
    """

1149
    if axis is not None and not isinstance(axis, list):
1150 1151 1152 1153 1154 1155 1156 1157
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1158 1159 1160 1161 1162
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
        return core.ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
                                   'reduce_all', reduce_all)
1163

1164
    helper = LayerHelper('max', **locals())
1165
    check_variable_and_dtype(
1166
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1167

1168 1169
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1170 1171
    helper.append_op(
        type='reduce_max',
1172
        inputs={'X': x},
1173 1174
        outputs={'Out': out},
        attrs={
1175 1176
            'dim': axis,
            'keep_dim': keepdim,
1177 1178 1179 1180
            'reduce_all': reduce_all
        })
    return out

1181
def min(x, axis=None, keepdim=False, name=None):
1182
    """
S
swtkiwi 已提交
1183

1184
    Computes the minimum of tensor elements over the given axis
1185

1186
    Args:
1187 1188
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis(list|int, optional): The axis along which the minimum is computed.
1189
            If :attr:`None`, compute the minimum over all elements of
1190
            `x` and return a Tensor variable with a single element,
1191 1192 1193
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1194
            output Tensor. The result tensor will have one fewer dimension
1195
            than the `x` unless :attr:`keepdim` is true, default
1196
            value is False.
W
WuHaobo 已提交
1197
        name(str, optional): The default value is None.  Normally there is no need for 
1198
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1199

1200
    Returns:
1201
        Tensor, results of minimum on the specified axis of input tensor,
1202
        it's data type is the same as input's Tensor.
1203

1204 1205 1206
    Examples:
        .. code-block:: python

1207 1208
            import numpy as np
            import paddle
1209

1210
            paddle.disable_static()
1211

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
            # data_x is a variable with shape [2, 4]
            # the axis is a int element
            data_x = np.array([[0.2, 0.3, 0.5, 0.9],
                            [0.1, 0.2, 0.6, 0.7]])
            x = paddle.to_variable(data_x)
            result1 = paddle.min(x)
            print(result1.numpy())
            #[0.1]
            result2 = paddle.min(x, axis=0)
            print(result2.numpy())
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
            print(result3.numpy()) 
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
            print(result4.numpy())
            #[[0.2]
            # [0.1]]

            # data_y is a variable with shape [2, 2, 2]
            # the axis is list 
            data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
                               [[5.0, 6.0], [7.0, 8.0]]])
            y = paddle.to_variable(data_y)
            result5 = paddle.min(y, axis=[1, 2])
            print(result5.numpy()) 
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
            print(result6.numpy())
            #[1. 2.]
    """
1243

1244
    if axis is not None and not isinstance(axis, list):
1245 1246 1247 1248 1249 1250 1251
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1252 1253
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1254
    if in_dygraph_mode():
1255
        return core.ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1256
                                   'reduce_all', reduce_all)
1257 1258 1259 1260 1261 1262 1263

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1264 1265
    helper.append_op(
        type='reduce_min',
1266
        inputs={'X': x},
1267 1268
        outputs={'Out': out},
        attrs={
1269 1270
            'dim': axis,
            'keep_dim': keepdim,
1271 1272 1273 1274 1275
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1276
def log1p(x, name=None):
1277
    """
1278 1279
	:alias_main: paddle.log1p
	:alias: paddle.log1p,paddle.tensor.log1p,paddle.tensor.math.log1p
S
swtkiwi 已提交
1280

1281 1282 1283 1284 1285 1286 1287 1288 1289
    Calculates the natural log of the given input tensor, element-wise.
    .. math::
        Out = \\ln(x+1)
    Args:
        x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
        Variable: The natural log of the input LoDTensor or Tensor computed element-wise.
1290

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            import numpy as np
            # Graph Organizing
            x = fluid.data(name="x", shape=[2,1], dtype="float32")
            res = paddle.log1p(x)
            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())
            # Execute
            x_i = np.array([[0], [1]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[0.], [0.6931472]]
    """

    if in_dygraph_mode():
        return core.ops.log1p(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1314
    out = helper.create_variable_for_type_inference(dtype)
1315 1316
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1317

W
WuHaobo 已提交
1318

W
WuHaobo 已提交
1319
def addcmul(input, tensor1, tensor2, value=1.0, name=None):
B
Bai Yifan 已提交
1320
    """
1321 1322
	:alias_main: paddle.addcmul
	:alias: paddle.addcmul,paddle.tensor.addcmul,paddle.tensor.math.addcmul
S
swtkiwi 已提交
1323

B
Bai Yifan 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
    Calculate the element-wise multiplication of tensor1 and tensor2,
    then multiply the result by value, and add it to input. The shape of input,
    tensor1, tensor2 should be broadcastable.
    The equation is:
    ..  math::
        out = input + value * tensor1 * tensor2
    Args:
        input(Variable): The input to be added. A Tensor with type float32, float64, int32, int64.
        tensor1(Variable): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        tensor2(Variable): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        value(int|float): The multiplier for tensor1*tensor2. For float32 and float64 type input, value must be float, otherwise an integer.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
        out(Variable): The output result. A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
          import paddle
          import paddle.fluid as fluid
          input = fluid.data(name='input', dtype='float32', shape=[3, 4])
          tensor1 = fluid.data(name='tenosr1', dtype='float32', shape=[1, 4])
          tensor2 = fluid.data(name='tensor2', dtype='float32', shape=[3, 4])
          data = paddle.addcmul(input, tensor1, tensor2, value=1.0)
    """

    check_variable_and_dtype(input, 'input', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor1, 'tensor1', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor2, 'tensor2', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    if convert_dtype(input.dtype) in ['float32', 'float64']:
        check_type(value, 'value', float, 'addcmul')
    if convert_dtype(input.dtype) in ['int32', 'int64']:
        check_type(value, 'value', int, 'addcmul')

W
WuHaobo 已提交
1357
    out = layers.elementwise_add(input, layers.elementwise_mul(tensor1, tensor2) * value)
B
Bai Yifan 已提交
1358
    return out
1359 1360


Y
Yang Zhang 已提交
1361
def clip(x, min=None, max=None, name=None):
1362
    """
Y
Yang Zhang 已提交
1363 1364
        :alias_main: paddle.clip
        :alias: paddle.clip,paddle.tensor.clip,paddle.tensor.math.clip
S
swtkiwi 已提交
1365

Y
Yang Zhang 已提交
1366
    **clip layer**
1367

Y
Yang Zhang 已提交
1368
    This operator clip all elements in input into the range [ min, max ] and return
1369 1370 1371 1372
    a resulting tensor as the following equation:

    .. math::

1373
        Out = MIN(MAX(x, min), max)
1374 1375

    Args:
Y
Yang Zhang 已提交
1376 1377
        x (Tensor): An N-D Tensor with data type float32 or float64.
        min (float32|Tensor): The lower bound with type ``float32`` or a ``Tensor``
1378
            with shape [1] and type ``int32``, ``float32``, ``float64``.
Y
Yang Zhang 已提交
1379
        max (float32|Tensor): The upper bound with type ``float32`` or a ``Tensor``
1380 1381 1382 1383 1384 1385
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1386
        Tensor: A Tensor with the same data type and data shape as input.
1387 1388 1389 1390 1391 1392 1393

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

Y
Yang Zhang 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
            paddle.disable_static()
            x = np.array([[1.2,3.5], [4.5,6.4]]).astype('float32')
            x1 = paddle.to_variable(x)
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
            print(out1.numpy())
            # [[3.5, 3.5]
            # [4.5, 5.0]]
            print(out2.numpy())
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1405 1406 1407 1408
    """

    assert min is not None or max is not None, "either min or max should be defined."

W
WuHaobo 已提交
1409 1410 1411
    if in_dygraph_mode():
        min = sys.float_info.min if min is None else min
        max = sys.float_info.max if max is None else max
Y
Yang Zhang 已提交
1412
        return core.ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1413

1414
    if min is not None:
Y
Yang Zhang 已提交
1415
        check_type(min, 'min', (float, int, Variable), 'clip')
1416 1417
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1418
                        'clip', '(When the type of min in clip is Variable.)')
1419
    if max is not None:
Y
Yang Zhang 已提交
1420
        check_type(max, 'max', (float, int, Variable), 'clip')
1421 1422
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1423
                        'clip', '(When the type of max in clip is Variable.)')
1424

Y
Yang Zhang 已提交
1425 1426 1427
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'clip')

    inputs = {'X': x}
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    attrs = {'min': sys.float_info.min, 'max': sys.float_info.max}

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1442
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1443
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1444
        dtype=helper.input_dtype())
1445 1446 1447 1448
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1449

W
WuHaobo 已提交
1450

1451
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1452
    """
1453 1454
	:alias_main: paddle.trace
	:alias: paddle.trace,paddle.tensor.trace,paddle.tensor.math.trace
S
swtkiwi 已提交
1455

1456
    This OP computes the sum along diagonals of the input tensor x.
1457 1458

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1459

1460
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1461
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1462
    of the input tensor x.
L
Li Fuchen 已提交
1463

1464
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1465 1466 1467 1468

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1469

L
Li Fuchen 已提交
1470
    Args:
1471 1472 1473 1474
        x(Variable): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Variable: the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
1485

L
Li Fuchen 已提交
1486 1487 1488
            case1 = np.random.randn(2, 3).astype('float32')
            case2 = np.random.randn(3, 10, 10).astype('float32')
            case3 = np.random.randn(3, 10, 5, 10).astype('float32')
1489

1490
            paddle.disable_static()
1491

1492 1493 1494
            case1 = paddle.to_variable(case1)
            case2 = paddle.to_variable(case2)
            case3 = paddle.to_variable(case3)
1495 1496 1497
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1498
    """
1499 1500
    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1501 1502

    def __check_input(input, offset, dim1, dim2):
1503
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1504 1505 1506
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1507
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1508
        assert len(input_shape) >= 2,                     \
1509 1510
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1511 1512
                len(input_shape)

1513 1514
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1515

1516 1517 1518
        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1519

1520 1521 1522
        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1523 1524


1525 1526 1527
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1528 1529

    if not in_dygraph_mode():
1530
        __check_input(input, offset, axis1, axis2)
L
Li Fuchen 已提交
1531 1532
    helper = LayerHelper('trace', **locals())

1533
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1534 1535 1536

    helper.append_op(
        type='trace',
1537
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1538
        attrs={'offset': offset,
1539 1540
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1541 1542 1543
        outputs={'Out': [out]})
    return out

F
Feiyu Chan 已提交
1544
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1545
def kron(x, y, name=None):
S
swtkiwi 已提交
1546
    """
1547 1548
	:alias_main: paddle.kron
	:alias: paddle.kron,paddle.tensor.kron,paddle.tensor.math.kron
S
swtkiwi 已提交
1549 1550

${comment}
F
Feiyu Chan 已提交
1551 1552

    Args:
1553
        x (Variable): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1554
            float64, int32 or int64.
1555 1556
        y (Variable): the second operand of kron op, data type: float16,
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1557
            with x.
1558 1559
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1560 1561 1562 1563 1564 1565 1566
            refer to :ref:`api_guide_Name`.

    Returns:
        Variable: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.

    Examples:
        .. code-block:: python
1567

F
Feiyu Chan 已提交
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
          import paddle
          from paddle import fluid
          import paddle.fluid.dygraph as dg
          import numpy as np

          a = np.arange(1, 5).reshape(2, 2).astype(np.float32)
          b = np.arange(1, 10).reshape(3, 3).astype(np.float32)

          place = fluid.CPUPlace()
          with dg.guard(place):
              a_var = dg.to_variable(a)
              b_var = dg.to_variable(b)
              c_var = paddle.kron(a_var, b_var)
              c_np = c_var.numpy()
          print(c_np)

          #[[ 1.  2.  3.  2.  4.  6.]
          # [ 4.  5.  6.  8. 10. 12.]
          # [ 7.  8.  9. 14. 16. 18.]
          # [ 3.  6.  9.  4.  8. 12.]
          # [12. 15. 18. 16. 20. 24.]
          # [21. 24. 27. 28. 32. 36.]]
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1598
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1599 1600
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619


def cumsum(x, axis=None, dtype=None, name=None):
    """
    The cumulative sum of the elements along a given axis. The first element of the result is the same of the first element of the input. 

    Args:
        x (Tensor): Input of cumsum operator, the Tensor needed to be cumsumed. 
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the result of cumsum operator, output of cumsum operator. 

    Examples:
        .. code-block:: python
            
            import paddle
1620
            from paddle import to_variable
1621 1622
            import numpy as np

1623
            paddle.disable_static()
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
            data_np = np.arange(12).reshape(3, 4)
            data = to_variable(data_np)

            y = paddle.cumsum(data)
            print(y.numpy())
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            print(y.numpy())
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            print(y.numpy())
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
            return core.ops.cumsum(x, 'flatten', flatten)
        else:
            return core.ops.cumsum(x, 'axis', axis, 'flatten', flatten)

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749

def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
        x(Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
            tensor will have one fewer dimension than the input unless keep_dim is true. Default is False.
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            # the axis is a int element
            data_x = np.array([[0.2, 0.3, 0.5, 0.9],
                         [0.1, 0.2, 0.6, 0.7]]).astype(np.float32)
            x = paddle.to_tensor(data_x)
            out1 = paddle.prod(x)
            print(out1.numpy())
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            print(out2.numpy())
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            print(out3.numpy())
            # [0.02 0.06 0.3  0.63]
            print(out3.numpy().dtype)
            # float32

            out4 = paddle.prod(x, 0, keepdim=True)
            print(out4.numpy())
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            print(out5.numpy())
            # [0 0 0 0]
            print(out5.numpy().dtype)
            # int64

            # the axis is list
            data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
                               [[5.0, 6.0], [7.0, 8.0]]])
            y = paddle.to_tensor(data_y)
            out6 = paddle.prod(y, [0, 1])
            print(out6.numpy())
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            print(out7.numpy())
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)