math.py 61.3 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
18

19
from paddle.common_ops_import import *
20
from ..fluid import layers
L
Li Fuchen 已提交
21 22 23
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
24
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
25
import sys
26 27 28

# TODO: define math functions
# yapf: disable
29 30 31 32 33
from ..fluid.layers import abs    #DEFINE_ALIAS
from ..fluid.layers import acos    #DEFINE_ALIAS
from ..fluid.layers import asin    #DEFINE_ALIAS
from ..fluid.layers import ceil    #DEFINE_ALIAS
from ..fluid.layers import cos    #DEFINE_ALIAS
34 35
from ..fluid.layers import sinh    #DEFINE_ALIAS
from ..fluid.layers import cosh    #DEFINE_ALIAS
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
from ..fluid.layers import elementwise_add    #DEFINE_ALIAS
from ..fluid.layers import elementwise_div    #DEFINE_ALIAS
from ..fluid.layers import elementwise_floordiv    #DEFINE_ALIAS
from ..fluid.layers import elementwise_mod    #DEFINE_ALIAS
from ..fluid.layers import elementwise_mul    #DEFINE_ALIAS
from ..fluid.layers import elementwise_pow    #DEFINE_ALIAS
from ..fluid.layers import elementwise_sub    #DEFINE_ALIAS
from ..fluid.layers import exp    #DEFINE_ALIAS
from ..fluid.layers import floor    #DEFINE_ALIAS
from ..fluid.layers import log    #DEFINE_ALIAS
from ..fluid.layers import reciprocal    #DEFINE_ALIAS
from ..fluid.layers import reduce_max    #DEFINE_ALIAS
from ..fluid.layers import reduce_min    #DEFINE_ALIAS
from ..fluid.layers import reduce_prod    #DEFINE_ALIAS
from ..fluid.layers import reduce_sum    #DEFINE_ALIAS
from ..fluid.layers import round    #DEFINE_ALIAS
from ..fluid.layers import rsqrt    #DEFINE_ALIAS
from ..fluid.layers import scale    #DEFINE_ALIAS
from ..fluid.layers import sign    #DEFINE_ALIAS
from ..fluid.layers import square    #DEFINE_ALIAS
from ..fluid.layers import stanh    #DEFINE_ALIAS
from ..fluid.layers import atan    #DEFINE_ALIAS
from ..fluid.layers import erf    #DEFINE_ALIAS
59 60 61
from ..fluid.layers import sqrt    #DEFINE_ALIAS
from ..fluid.layers import sin    #DEFINE_ALIAS
from ..fluid.layers import tanh    #DEFINE_ALIAS
62

63 64 65
from ..fluid.layers import increment    #DEFINE_ALIAS
from ..fluid.layers import multiplex    #DEFINE_ALIAS
from ..fluid.layers import sums    #DEFINE_ALIAS
G
guofei 已提交
66
from ..fluid import layers
67

68
__all__ = [
69 70 71 72 73 74
        'abs',
        'acos',
        'asin',
        'atan',
        'ceil',
        'cos',
75
        'cosh',
76 77 78 79 80 81 82 83 84
        'cumsum',
        'elementwise_add',
        'elementwise_div',
        'elementwise_floordiv',
        'elementwise_mod',
        'elementwise_pow',
        'elementwise_sub',
        'exp',
        'floor',
85
        'increment',
86 87
        'log',
        'mul',
88
        'multiplex',
G
guofei 已提交
89
        'prod',
90 91 92 93 94 95 96 97 98 99 100
        'pow',
        'reciprocal',
        'reduce_max',
        'reduce_min',
        'reduce_prod',
        'reduce_sum',
        'round',
        'rsqrt',
        'scale',
        'sign',
        'sin',
101
        'sinh',
102 103 104 105
        'sqrt',
        'square',
        'stanh',
        'sum',
106
        'sums',
107 108 109
        'tanh',
        'elementwise_sum',
        'max',
110
        'maximum',
111
        'min',
112
        'minimum',
113 114
        'mm',
        'div',
115
        'multiply',
116 117 118
        'add',
        'atan',
        'logsumexp',
119
        'inverse',
120 121 122 123 124
        'log1p',
        'erf',
        'addcmul',
        'addmm',
        'clamp',
L
Li Fuchen 已提交
125
        'trace',
126
        'kron'
127 128 129
]
# yapf: enable.

130
@templatedoc()
W
WuHaobo 已提交
131
def pow(input, exponent, name=None):
132
    """
133 134
	:alias_main: paddle.pow
	:alias: paddle.pow,paddle.tensor.pow,paddle.tensor.math.pow
S
swtkiwi 已提交
135

136 137 138 139 140 141 142
    This is Pow Activation Operator.

    :math:`out = input^{exponent}`

    Args:
        input(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32`` or ``float64``.
        exponent(float32|Variable): A scalar with type ``float32`` or a ``Tensor`` with shape [1] and type ``float32``.
143
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
144 145 146 147 148 149 150 151 152 153
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``input``.

    Examples:

        .. code-block:: python

            import paddle
154
            import paddle.fluid as fluid
155

156
            x = fluid.data(name="x", shape=[32,32], dtype="float32")
157 158

            # example 1: argument exponent is float
W
WuHaobo 已提交
159
            y_1 = paddle.pow(x, 2.0)
160 161 162
            # y_1 is x^{2.0}

            # example 2: argument exponent is Variable
163
            exponent_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
W
WuHaobo 已提交
164
            y_2 = paddle.pow(x, exponent_tensor)
165 166
            # y_2 is x^{3.0}
    """
W
WuHaobo 已提交
167 168 169
    if in_dygraph_mode():
        return core.ops.pow(input, "exponent", exponent)

170 171 172 173 174 175 176 177 178
    helper = LayerHelper('pow', **locals())
    inputs = {'X': input}
    attrs = {}
    if isinstance(exponent, Variable):
        exponent.stop_gradient = True
        inputs['FactorTensor'] = exponent
    else:
        attrs['factor'] = exponent

W
WuHaobo 已提交
179 180 181 182 183
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    check_dtype(
        out.dtype, out.name,
        convert_dtype(input.dtype), 'pow',
        '(The out data type in pow must be the same with input data type.)')
184 185 186 187 188 189

    helper.append_op(
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out


190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
W
WuHaobo 已提交
222 223 224 225 226
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
227 228 229 230 231 232 233 234 235 236 237

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
238
def add(x, y, name=None):
239 240 241 242 243 244 245 246
    """
Examples:

    ..  code-block:: python

        import paddle
        import numpy as np

Y
Yang Zhang 已提交
247 248 249 250 251
        paddle.disable_static()
        np_x = np.array([2, 3, 4]).astype('float64')
        np_y = np.array([1, 5, 2]).astype('float64')
        x = paddle.to_variable(np_x)
        y = paddle.to_variable(np_y)
W
WuHaobo 已提交
252
        z = paddle.add(x, y)
Y
Yang Zhang 已提交
253 254
        np_z = z.numpy()
        print(np_z)  # [3., 8., 6. ]
255 256 257 258 259 260

    """
    op_type = 'elementwise_add'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
Y
Yang Zhang 已提交
261
            x, y, axis=axis, op_name=op_type)
262 263 264 265

    return _elementwise_op(LayerHelper(op_type, **locals()))


W
WuHaobo 已提交
266
def div(x, y, name=None):
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
    """
Examples:

    .. code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
            }

        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
        z = paddle.div(x, y)
        # z = x / y

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # [2., 0.6, 2.]


    .. code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((4, 5)).astype('float32')
            }

        x = fluid.data(name="x", shape=[2, 3, 4, 5], dtype='float32')
        y = fluid.data(name="y", shape=[4, 5], dtype='float32')
        z = paddle.div(x, y, name='z')
        # z = x / y

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value[0])
        print(z_value[0].shape) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }

        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
W
WuHaobo 已提交
336
        z = paddle.div(x, y)
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
        # z = x / y

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value[0])
        print(z_value[0].shape) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        with fluid.dygraph.guard(fluid.CPUPlace()):
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = fluid.dygraph.to_variable(np_x)
            y = fluid.dygraph.to_variable(np_y)
            z = paddle.div(x, y)
            np_z = z.numpy()
            print(np_z)  # [2., 0.6, 2.]

    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

    return _elementwise_op(LayerHelper(op_type, **locals()))


374 375 376 377 378 379 380 381 382 383 384 385
def multiply(x, y, axis=-1, name=None):
    """
	:alias_main: paddle.multiply
	:alias: paddle.multiply,paddle.tensor.multiply,paddle.tensor.math.multiply

Examples:

    .. code-block:: python

        import paddle
        import numpy as np

386
        paddle.disable_static()
387 388
        x_data = np.array([[1, 2], [3, 4]], dtype=np.float32)
        y_data = np.array([[5, 6], [7, 8]], dtype=np.float32)
389 390
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
391 392 393 394 395
        res = paddle.multiply(x, y)
        print(res.numpy()) # [[5, 12], [21, 32]]

        x_data = np.array([[[1, 2, 3], [1, 2, 3]]], dtype=np.float32)
        y_data = np.array([1, 2], dtype=np.float32)
396 397
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
398 399 400 401 402 403 404 405 406 407 408 409
        res = paddle.multiply(x, y, axis=1)
        print(res.numpy()) # [[[1, 2, 3], [2, 4, 6]]]

    """
    op_type = 'elementwise_mul'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

    return _elementwise_op(LayerHelper(op_type, **locals()))

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
def maximum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()
  
        x_data = np.array([[1, 2], [3, 4]], dtype=np.float32)
        y_data = np.array([[5, 6], [7, 8]], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[[5. 6.]
        # [7. 8.]]

        x_data = np.array([[[1, 2, 3], [1, 2, 3]]], dtype=np.float32)
        y_data = np.array([1, 2], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.maximum(x, y, axis=1)
        print(res.numpy())
        #[[[1. 2. 3.]
        #  [2. 2. 3.]]]

        x_data = np.array([2, 3, 5], dtype=np.float32)
        y_data = np.array([1, 4, np.nan], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[ 2.  4. nan]

        x_data = np.array([5, 3, np.inf], dtype=np.float32)
        y_data = np.array([1, 4, 5], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[ 5.  4. inf]
    """
    op_type = 'elementwise_max'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

def minimum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np
        paddle.disable_static()
  
        x_data = np.array([[1, 2], [3, 4]], dtype=np.float32)
        y_data = np.array([[5, 6], [7, 8]], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[[1. 2.]
        # [3. 4.]]

        x_data = np.array([[[1, 2, 3], [1, 2, 3]]], dtype=np.float32)
        y_data = np.array([1, 2], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.minimum(x, y, axis=1)
        print(res.numpy())
        #[[[1. 1. 1.]
        #  [2. 2. 2.]]]

        x_data = np.array([2, 3, 5], dtype=np.float32)
        y_data = np.array([1, 4, np.nan], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[ 1.  3. nan]

        x_data = np.array([5, 3, np.inf], dtype=np.float32)
        y_data = np.array([1, 4, 5], dtype=np.float32)
        x = paddle.to_variable(x_data)
        y = paddle.to_variable(y_data)
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[1. 3. 5.]
    """
    op_type = 'elementwise_min'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
512

513 514 515
for func in [
        add,
        div,
516 517 518
        maximum,
        minimum,
        multiply
519
]:
520
    proto_dict = {'add': 'elementwise_add', 'div': 'elementwise_div', 'maximum': 'elementwise_max', 'minimum': 'elementwise_min', 'multiply': 'elementwise_mul'}
521 522
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
523 524 525 526 527 528 529
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
530 531
        op_proto,
        additional_args_lines=additional_args_lines,
532
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
533
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
534
        }) + """\n""" + str(func.__doc__)
535

Y
Yang Zhang 已提交
536

537
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
538 539 540 541
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
542 543 544
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
545
            Tensor variable with a single element, otherwise must be in the
546 547 548 549 550 551 552
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
553
            value is False.
554
        name (str, optional): The default value is None. Normally there is no need for
555 556 557
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
558 559
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
        it's data type is the same as `x`.
560 561

    Raises:
562 563
        ValueError: The :attr:`dtype` must be float64 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
564

565 566 567
    Examples:
        .. code-block:: python

568
            import numpy as np
569
            import paddle
570 571
            paddle.disable_static()

572 573 574 575
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
576 577
            x_data = np.array([[0.2, 0.3, 0.5, 0.9],[0.1, 0.2, 0.6, 0.7]]).astype('float32')
            x = paddle.to_variable(x_data)
578
            out1 = paddle.sum(x)  # [3.5]
579 580 581
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
582 583 584 585 586

            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
587 588 589 590
            y_data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]).astype('float32')
            y = paddle.to_variable(y_data)
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
591
    """
592 593 594 595 596 597 598 599 600 601 602
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

603
    attrs = {
604 605 606
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
607 608 609 610
    }
    dtype_flag = False
    if dtype is not None:
        if dtype in ['float64', 'int64']:
611 612
            if (convert_dtype(x.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(x.dtype) == "int32" and dtype == "int64"):
613
                attrs.update({
614
                    'in_dtype': x.dtype,
615 616 617 618 619 620 621 622 623
                    'out_dtype': convert_np_dtype_to_dtype_(dtype)
                })
                dtype_flag = True
        else:
            raise ValueError(
                "The value of 'dtype' in sum op must be float64, int64, but received of {}".
                format(dtype))

    if in_dygraph_mode():
624
        axis = axis if axis != None and axis != [] else [0]
625
        if dtype_flag:
626 627 628
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
629 630
                                       convert_np_dtype_to_dtype_(dtype))
        else:
631 632
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
633
    check_variable_and_dtype(
634 635 636
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sum')
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

637 638 639 640 641
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
642
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
643 644
    helper.append_op(
        type='reduce_sum',
645
        inputs={'X': x},
646 647 648
        outputs={'Out': out},
        attrs=attrs)
    return out
649

650

651 652 653
@templatedoc(op_type="sum")
def elementwise_sum(inputs, name=None):
    """
654 655
	:alias_main: paddle.elementwise_sum
	:alias: paddle.elementwise_sum,paddle.tensor.elementwise_sum,paddle.tensor.math.elementwise_sum
S
swtkiwi 已提交
656

657
    ${comment}
658

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]

    Args:
690 691
        inputs (Variable|list(Variable)):  A Varaible list. The shape and data type of the list elementsshould be consistent.
            Variable can be multi-dimensional Tensoror LoDTensor, and data types can be: float32, float64, int32, int64.
692 693 694 695
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
696
        Variable: the sum of input :math:`inputs` . its shape and data types are consistent with :math:`inputs` .
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = paddle.elementwise_sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[elementwise_sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
722 723
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
724 725 726 727
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
    """

    helper = LayerHelper('elementwise_sum', **locals())
728 729 730 731 732 733 734 735 736 737 738
    check_type(inputs, 'inputs', (Variable, tuple, list), 'elementwise_sum')
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
                   ['float32', 'float64', 'int32', 'int64'], 'elementwise_sum')
    else:
        check_variable_and_dtype(inputs, "inputs", \
                ['float32', 'float64', 'int32', 'int64'], 'elementwise_sum')


739 740 741 742 743 744 745 746 747 748 749
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


W
WuHaobo 已提交
750
def mm(input, mat2, name=None):
751
    """
752 753
	:alias_main: paddle.mm
	:alias: paddle.mm,paddle.tensor.mm,paddle.tensor.math.mm
S
swtkiwi 已提交
754

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        mat2 (Variable): The input variable which is a Tensor or LoDTensor.
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: The product Tensor (or LoDTensor) variable.

    Examples:
        .. code-block:: python

            # Examples to clarify shapes of the inputs and output
            # x: [B, ..., M, K], mat2: [B, ..., K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, ..., M, N]

            # x: [B, M, K], mat2: [B, K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [B, M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [M, N]

            # x: [B, M, K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [B, M]

            # x: [K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [1]

            import paddle
            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[2, 3], dtype='float32')
            mat2 = fluid.data(name='mat2', shape=[3, 2], dtype='float32')
            out = paddle.mm(x, mat2) # out shape is [2, 2]
    """
    if in_dygraph_mode():
W
WuHaobo 已提交
803
        out = _varbase_creator(dtype=input.dtype)
804 805
        core.ops.matmul(input, mat2, out)
        return out
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
843
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
844 845 846 847
    helper.append_op(
        type='matmul', inputs={'X': input,
                               'Y': mat2}, outputs={'Out': out})
    return out
848

849

Y
yaoxuefeng 已提交
850
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
851
    """
852 853
	:alias_main: paddle.addmm
	:alias: paddle.addmm,paddle.tensor.addmm,paddle.tensor.math.addmm
S
swtkiwi 已提交
854

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
        input (Variable): The input Tensor/LoDTensor to be added to the final result.
        x (Variable): The first input Tensor/LoDTensor for matrix multiplication.
        y (Variable): The second input Tensor/LoDTensor for matrix multiplication.
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
871
        alpha (float): Coefficient of $x*y$.
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of addmm op.

    Examples:
        ..  code-block:: python

            import numpy as np
            import paddle

            data_x = np.ones((2, 2)).astype(np.float32)
            data_y = np.ones((2, 2)).astype(np.float32)
            data_input = np.ones((2, 2)).astype(np.float32)

887
            paddle.disable_static()
Y
yaoxuefeng 已提交
888

889 890 891
            x = paddle.to_variable(data_x)
            y = paddle.to_variable(data_y)
            input = paddle.to_variable(data_input)
Y
yaoxuefeng 已提交
892 893 894 895

            out = paddle.tensor.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )

            print( out.numpy() )
896 897 898
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



919 920 921 922
    if in_dygraph_mode():
        out = core.ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
        return out

923 924 925 926
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
927
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
928 929 930 931 932 933 934
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
935 936


W
WuHaobo 已提交
937
def logsumexp(x, dim=None, keepdim=False, name=None):
938
    """
939 940
	:alias_main: paddle.logsumexp
	:alias: paddle.logsumexp,paddle.tensor.logsumexp,paddle.tensor.math.logsumexp
S
swtkiwi 已提交
941

942
    This operator calculates the log of the sum of exponentials of the input Tensor.
943

944 945
    .. math::
       logsumexp(x) = \log\sum exp(x)
946 947


948 949 950 951 952 953 954 955 956 957 958
    Parameters:
       x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
       dim (list|int, optional): The dimensions along which the sum is performed. If :attr:`None`,
         sum all elements of :attr:`input` and return a Tensor variable with a single element,
         otherwise must be in the range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
         the dimension to reduce is :math:`rank + dim[i]`.
       keep_dim (bool, optional): Whether to reserve the reduced dimension in the output Tensor.
         The result tensor will have one fewer dimension than the :attr:`input` unless :attr:`keep_dim`
         is true, default value is False.
       name (str, optional): The default value is None.  Normally there is no need for user to
         set this property.  For more information, please refer to :ref:`api_guide_Name`
959

960 961
    Returns:
       Variable: The calcuated result Tensor/LoDTensor.
962

963
    Examples:
964

965
    .. code-block:: python
966

967 968 969 970 971 972 973 974 975 976
        import paddle
        import paddle.fluid as fluid
        import numpy as np

        with fluid.dygraph.guard():
          np_x = np.random.uniform(0.1, 1, [10]).astype(np.float32)
          x = fluid.dygraph.to_variable(np_x)
          print(paddle.logsumexp(x).numpy())

    ..  code-block:: python
977

978 979 980 981 982 983 984 985 986
        import paddle
        import paddle.fluid as fluid
        import numpy as np

        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [2, 3, 4]).astype(np.float32)
            x = fluid.dygraph.to_variable(np_x)
            print(paddle.logsumexp(x, dim=1).numpy())
            print(paddle.logsumexp(x, dim=[0, 2]).numpy())
987 988 989 990 991 992 993 994 995 996 997 998

    """
    op_type = 'logsumexp'
    assert x is not None, 'x cannot be None in {}'.format(op_type)

    # reduce_sum does not support float16
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], op_type)

    exp_out = layers.exp(x)
    sum_out = layers.reduce_sum(exp_out, dim, keepdim)

    return layers.log(sum_out, name)
999 1000


S
swtkiwi 已提交
1001

1002 1003
def inverse(x, name=None):
    """
1004 1005 1006 1007 1008
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1009
        x (Variable): The input tensor. The last two
1010 1011 1012 1013 1014 1015 1016 1017
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1018 1019
        Variable: A Tensor holds the inverse of x. The shape and data type
                        is the same as x.
1020 1021 1022 1023 1024 1025 1026 1027

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            mat_np = np.array([[2, 0], [0, 2]]).astype("float32")
1028 1029 1030 1031
            paddle.disable_static()
            mat = paddle.to_variable(mat_np)
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1032 1033 1034

    """
    if in_dygraph_mode():
1035
        return core.ops.inverse(x)
1036

1037 1038
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1039
                                 ['float32', 'float64'], 'inverse')
1040
        if len(x.shape) < 2:
1041 1042 1043
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1044 1045
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1046
    helper = LayerHelper('inverse', **locals())
1047
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1048
    helper.append_op(
1049
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1050 1051 1052
    return out


1053
def max(x, axis=None, keepdim=False, name=None):
1054
    """
S
swtkiwi 已提交
1055

1056
    Computes the maximum of tensor elements over the given axis.
1057 1058

    Args:
1059
        x(Tensor): A tensor, the data type is float32,
1060
            float64, int32, int64.
1061
        axis(list|int, optional): The axis along which the maximum is computed.
1062
            If :attr:`None`, compute the maximum over all elements of
1063
             `x` and return a Tensor variable with a single element,
1064 1065 1066
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1067
            output Tensor. The result tensor will have one fewer dimension
1068
            than the `x` unless :attr:`keepdim` is true, default
1069
            value is False.
1070
        name(str, optional): The default value is None.  Normally there is no need for
1071 1072 1073
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1074
        Tensor, results of maximum on the specified axis of input tensor,
1075
        it's data type is the same as `x`.
1076 1077 1078

    Examples:
        .. code-block:: python
1079 1080

            import numpy as np
1081
            import paddle
1082

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
            paddle.disable_static()

            # data_x is a variable with shape [2, 4]
            # the axis is a int element
            data_x = np.array([[0.2, 0.3, 0.5, 0.9],
                               [0.1, 0.2, 0.6, 0.7]])
            x = paddle.to_variable(data_x)
            result1 = paddle.max(x)
            print(result1.numpy())
            #[0.9]
            result2 = paddle.max(x, axis=0)
            print(result2.numpy()) 
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
            print(result3.numpy())
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
            print(result4.numpy())
            #[[0.9]
            # [0.7]]

            # data_y is a variable with shape [2, 2, 2]
            # the axis is list 
            data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
                               [[5.0, 6.0], [7.0, 8.0]]])
            y = paddle.to_variable(data_y)
            result5 = paddle.max(y, axis=[1, 2])
            print(result5.numpy())
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
            print(result6.numpy())
            #[7. 8.]
1115 1116
    """

1117
    if axis is not None and not isinstance(axis, list):
1118 1119 1120 1121 1122 1123 1124 1125
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1126 1127 1128 1129 1130
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
        return core.ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
                                   'reduce_all', reduce_all)
1131

1132
    helper = LayerHelper('max', **locals())
1133
    check_variable_and_dtype(
1134
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1135

1136 1137
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1138 1139
    helper.append_op(
        type='reduce_max',
1140
        inputs={'X': x},
1141 1142
        outputs={'Out': out},
        attrs={
1143 1144
            'dim': axis,
            'keep_dim': keepdim,
1145 1146 1147 1148
            'reduce_all': reduce_all
        })
    return out

1149
def min(x, axis=None, keepdim=False, name=None):
1150
    """
S
swtkiwi 已提交
1151

1152
    Computes the minimum of tensor elements over the given axis
1153

1154
    Args:
1155 1156
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis(list|int, optional): The axis along which the minimum is computed.
1157
            If :attr:`None`, compute the minimum over all elements of
1158
            `x` and return a Tensor variable with a single element,
1159 1160 1161
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1162
            output Tensor. The result tensor will have one fewer dimension
1163
            than the `x` unless :attr:`keepdim` is true, default
1164
            value is False.
W
WuHaobo 已提交
1165
        name(str, optional): The default value is None.  Normally there is no need for 
1166
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1167

1168
    Returns:
1169
        Tensor, results of minimum on the specified axis of input tensor,
1170
        it's data type is the same as input's Tensor.
1171

1172 1173 1174
    Examples:
        .. code-block:: python

1175 1176
            import numpy as np
            import paddle
1177

1178
            paddle.disable_static()
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
            # data_x is a variable with shape [2, 4]
            # the axis is a int element
            data_x = np.array([[0.2, 0.3, 0.5, 0.9],
                            [0.1, 0.2, 0.6, 0.7]])
            x = paddle.to_variable(data_x)
            result1 = paddle.min(x)
            print(result1.numpy())
            #[0.1]
            result2 = paddle.min(x, axis=0)
            print(result2.numpy())
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
            print(result3.numpy()) 
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
            print(result4.numpy())
            #[[0.2]
            # [0.1]]

            # data_y is a variable with shape [2, 2, 2]
            # the axis is list 
            data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
                               [[5.0, 6.0], [7.0, 8.0]]])
            y = paddle.to_variable(data_y)
            result5 = paddle.min(y, axis=[1, 2])
            print(result5.numpy()) 
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
            print(result6.numpy())
            #[1. 2.]
    """
1211

1212
    if axis is not None and not isinstance(axis, list):
1213 1214 1215 1216 1217 1218 1219
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1220 1221
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1222
    if in_dygraph_mode():
1223
        return core.ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1224
                                   'reduce_all', reduce_all)
1225 1226 1227 1228 1229 1230 1231

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1232 1233
    helper.append_op(
        type='reduce_min',
1234
        inputs={'X': x},
1235 1236
        outputs={'Out': out},
        attrs={
1237 1238
            'dim': axis,
            'keep_dim': keepdim,
1239 1240 1241 1242 1243
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1244
def log1p(x, name=None):
1245
    """
1246 1247
	:alias_main: paddle.log1p
	:alias: paddle.log1p,paddle.tensor.log1p,paddle.tensor.math.log1p
S
swtkiwi 已提交
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257
    Calculates the natural log of the given input tensor, element-wise.
    .. math::
        Out = \\ln(x+1)
    Args:
        x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
        Variable: The natural log of the input LoDTensor or Tensor computed element-wise.
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            import numpy as np
            # Graph Organizing
            x = fluid.data(name="x", shape=[2,1], dtype="float32")
            res = paddle.log1p(x)
            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())
            # Execute
            x_i = np.array([[0], [1]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[0.], [0.6931472]]
    """

    if in_dygraph_mode():
        return core.ops.log1p(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1282
    out = helper.create_variable_for_type_inference(dtype)
1283 1284
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1285

W
WuHaobo 已提交
1286

W
WuHaobo 已提交
1287
def addcmul(input, tensor1, tensor2, value=1.0, name=None):
B
Bai Yifan 已提交
1288
    """
1289 1290
	:alias_main: paddle.addcmul
	:alias: paddle.addcmul,paddle.tensor.addcmul,paddle.tensor.math.addcmul
S
swtkiwi 已提交
1291

B
Bai Yifan 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
    Calculate the element-wise multiplication of tensor1 and tensor2,
    then multiply the result by value, and add it to input. The shape of input,
    tensor1, tensor2 should be broadcastable.
    The equation is:
    ..  math::
        out = input + value * tensor1 * tensor2
    Args:
        input(Variable): The input to be added. A Tensor with type float32, float64, int32, int64.
        tensor1(Variable): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        tensor2(Variable): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        value(int|float): The multiplier for tensor1*tensor2. For float32 and float64 type input, value must be float, otherwise an integer.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
        out(Variable): The output result. A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
          import paddle
          import paddle.fluid as fluid
          input = fluid.data(name='input', dtype='float32', shape=[3, 4])
          tensor1 = fluid.data(name='tenosr1', dtype='float32', shape=[1, 4])
          tensor2 = fluid.data(name='tensor2', dtype='float32', shape=[3, 4])
          data = paddle.addcmul(input, tensor1, tensor2, value=1.0)
    """

    check_variable_and_dtype(input, 'input', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor1, 'tensor1', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor2, 'tensor2', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    if convert_dtype(input.dtype) in ['float32', 'float64']:
        check_type(value, 'value', float, 'addcmul')
    if convert_dtype(input.dtype) in ['int32', 'int64']:
        check_type(value, 'value', int, 'addcmul')

W
WuHaobo 已提交
1325
    out = layers.elementwise_add(input, layers.elementwise_mul(tensor1, tensor2) * value)
B
Bai Yifan 已提交
1326
    return out
1327 1328


W
WuHaobo 已提交
1329
def clamp(input, min=None, max=None, name=None):
1330
    """
1331 1332
	:alias_main: paddle.clamp
	:alias: paddle.clamp,paddle.tensor.clamp,paddle.tensor.math.clamp
S
swtkiwi 已提交
1333

1334 1335 1336 1337 1338 1339 1340
    **clampe layer**

    This operator clamps all elements in input into the range [ min, max ] and return
    a resulting tensor as the following equation:

    .. math::

1341
        Out = MIN(MAX(x, min), max)
1342 1343

    Args:
1344 1345
        input (Variable): An input N-D Tensor or LoDTensor
            with data type float32, float64.
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
        min (float32|Variable): The lower bound with type ``float32`` or a ``Tensor``
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        max (float32|Variable): The upper bound with type ``float32`` or a ``Tensor``
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Variable: A Tensor or LodTensor with the same data type and data shape as input's.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

            in1 = np.array([[1.2,3.5],
                            [4.5,6.4]]).astype('float32')
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = paddle.tensor.clamp(x1, min=3.5, max=5.0)
                out2 = paddle.tensor.clamp(x1, min=2.5)
                print(out1.numpy())
                # [[3.5, 3.5]
                # [4.5, 5.0]]
                print(out2.numpy())
                # [[2.5, 3.5]
                # [[4.5, 6.4]
    """

    assert min is not None or max is not None, "either min or max should be defined."

W
WuHaobo 已提交
1380 1381 1382 1383 1384
    if in_dygraph_mode():
        min = sys.float_info.min if min is None else min
        max = sys.float_info.max if max is None else max
        return core.ops.clip(input, "min", min, "max", max)

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
    if min is not None:
        check_type(min, 'min', (float, Variable), 'clamp')
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
                        'clamp', '(When the type of min in clamp is Variable.)')
    if max is not None:
        check_type(max, 'max', (float, Variable), 'clamp')
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
                        'clamp', '(When the type of max in clamp is Variable.)')

    inputs = {'X': input}
    attrs = {'min': sys.float_info.min, 'max': sys.float_info.max}

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

    helper = LayerHelper('clamp', **locals())
W
WuHaobo 已提交
1412
    output = helper.create_variable_for_type_inference(
1413 1414 1415 1416 1417
            dtype=helper.input_dtype())
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1418

W
WuHaobo 已提交
1419

1420
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1421
    """
1422 1423
	:alias_main: paddle.trace
	:alias: paddle.trace,paddle.tensor.trace,paddle.tensor.math.trace
S
swtkiwi 已提交
1424

1425
    This OP computes the sum along diagonals of the input tensor x.
1426 1427

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1428

1429
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1430
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1431
    of the input tensor x.
L
Li Fuchen 已提交
1432

1433
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1434 1435 1436 1437

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1438

L
Li Fuchen 已提交
1439
    Args:
1440 1441 1442 1443
        x(Variable): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Variable: the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
1454

L
Li Fuchen 已提交
1455 1456 1457
            case1 = np.random.randn(2, 3).astype('float32')
            case2 = np.random.randn(3, 10, 10).astype('float32')
            case3 = np.random.randn(3, 10, 5, 10).astype('float32')
1458

1459
            paddle.disable_static()
1460

1461 1462 1463
            case1 = paddle.to_variable(case1)
            case2 = paddle.to_variable(case2)
            case3 = paddle.to_variable(case3)
1464 1465 1466
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1467
    """
1468 1469
    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1470 1471

    def __check_input(input, offset, dim1, dim2):
1472
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1473 1474 1475
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1476
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1477
        assert len(input_shape) >= 2,                     \
1478 1479
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1480 1481
                len(input_shape)

1482 1483
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1484

1485 1486 1487
        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1488

1489 1490 1491
        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1492 1493


1494 1495 1496
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1497 1498

    if not in_dygraph_mode():
1499
        __check_input(input, offset, axis1, axis2)
L
Li Fuchen 已提交
1500 1501
    helper = LayerHelper('trace', **locals())

1502
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1503 1504 1505

    helper.append_op(
        type='trace',
1506
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1507
        attrs={'offset': offset,
1508 1509
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1510 1511 1512
        outputs={'Out': [out]})
    return out

F
Feiyu Chan 已提交
1513
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1514
def kron(x, y, name=None):
S
swtkiwi 已提交
1515
    """
1516 1517
	:alias_main: paddle.kron
	:alias: paddle.kron,paddle.tensor.kron,paddle.tensor.math.kron
S
swtkiwi 已提交
1518 1519

${comment}
F
Feiyu Chan 已提交
1520 1521

    Args:
1522
        x (Variable): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1523
            float64, int32 or int64.
1524 1525
        y (Variable): the second operand of kron op, data type: float16,
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1526
            with x.
1527 1528
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1529 1530 1531 1532 1533 1534 1535
            refer to :ref:`api_guide_Name`.

    Returns:
        Variable: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.

    Examples:
        .. code-block:: python
1536

F
Feiyu Chan 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
          import paddle
          from paddle import fluid
          import paddle.fluid.dygraph as dg
          import numpy as np

          a = np.arange(1, 5).reshape(2, 2).astype(np.float32)
          b = np.arange(1, 10).reshape(3, 3).astype(np.float32)

          place = fluid.CPUPlace()
          with dg.guard(place):
              a_var = dg.to_variable(a)
              b_var = dg.to_variable(b)
              c_var = paddle.kron(a_var, b_var)
              c_np = c_var.numpy()
          print(c_np)

          #[[ 1.  2.  3.  2.  4.  6.]
          # [ 4.  5.  6.  8. 10. 12.]
          # [ 7.  8.  9. 14. 16. 18.]
          # [ 3.  6.  9.  4.  8. 12.]
          # [12. 15. 18. 16. 20. 24.]
          # [21. 24. 27. 28. 32. 36.]]
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1567
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1568 1569
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588


def cumsum(x, axis=None, dtype=None, name=None):
    """
    The cumulative sum of the elements along a given axis. The first element of the result is the same of the first element of the input. 

    Args:
        x (Tensor): Input of cumsum operator, the Tensor needed to be cumsumed. 
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the result of cumsum operator, output of cumsum operator. 

    Examples:
        .. code-block:: python
            
            import paddle
1589
            from paddle import to_variable
1590 1591
            import numpy as np

1592
            paddle.disable_static()
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
            data_np = np.arange(12).reshape(3, 4)
            data = to_variable(data_np)

            y = paddle.cumsum(data)
            print(y.numpy())
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            print(y.numpy())
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            print(y.numpy())
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
            return core.ops.cumsum(x, 'flatten', flatten)
        else:
            return core.ops.cumsum(x, 'axis', axis, 'flatten', flatten)

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718

def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
        x(Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
            tensor will have one fewer dimension than the input unless keep_dim is true. Default is False.
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            # the axis is a int element
            data_x = np.array([[0.2, 0.3, 0.5, 0.9],
                         [0.1, 0.2, 0.6, 0.7]]).astype(np.float32)
            x = paddle.to_tensor(data_x)
            out1 = paddle.prod(x)
            print(out1.numpy())
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            print(out2.numpy())
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            print(out3.numpy())
            # [0.02 0.06 0.3  0.63]
            print(out3.numpy().dtype)
            # float32

            out4 = paddle.prod(x, 0, keepdim=True)
            print(out4.numpy())
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            print(out5.numpy())
            # [0 0 0 0]
            print(out5.numpy().dtype)
            # int64

            # the axis is list
            data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
                               [[5.0, 6.0], [7.0, 8.0]]])
            y = paddle.to_tensor(data_y)
            out6 = paddle.prod(y, [0, 1])
            print(out6.numpy())
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            print(out7.numpy())
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)