math.py 68.7 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20
from paddle.common_ops_import import *
21 22
from paddle.tensor import cast
import paddle
23
from ..fluid import layers
L
Li Fuchen 已提交
24 25 26
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
27
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
28 29 30

# TODO: define math functions
# yapf: disable
31 32 33 34 35
from ..fluid.layers import abs    #DEFINE_ALIAS
from ..fluid.layers import acos    #DEFINE_ALIAS
from ..fluid.layers import asin    #DEFINE_ALIAS
from ..fluid.layers import ceil    #DEFINE_ALIAS
from ..fluid.layers import cos    #DEFINE_ALIAS
36 37
from ..fluid.layers import sinh    #DEFINE_ALIAS
from ..fluid.layers import cosh    #DEFINE_ALIAS
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
from ..fluid.layers import elementwise_add    #DEFINE_ALIAS
from ..fluid.layers import elementwise_div    #DEFINE_ALIAS
from ..fluid.layers import elementwise_floordiv    #DEFINE_ALIAS
from ..fluid.layers import elementwise_mod    #DEFINE_ALIAS
from ..fluid.layers import elementwise_mul    #DEFINE_ALIAS
from ..fluid.layers import elementwise_pow    #DEFINE_ALIAS
from ..fluid.layers import elementwise_sub    #DEFINE_ALIAS
from ..fluid.layers import exp    #DEFINE_ALIAS
from ..fluid.layers import floor    #DEFINE_ALIAS
from ..fluid.layers import log    #DEFINE_ALIAS
from ..fluid.layers import reciprocal    #DEFINE_ALIAS
from ..fluid.layers import reduce_max    #DEFINE_ALIAS
from ..fluid.layers import reduce_min    #DEFINE_ALIAS
from ..fluid.layers import reduce_prod    #DEFINE_ALIAS
from ..fluid.layers import reduce_sum    #DEFINE_ALIAS
from ..fluid.layers import round    #DEFINE_ALIAS
from ..fluid.layers import rsqrt    #DEFINE_ALIAS
from ..fluid.layers import scale    #DEFINE_ALIAS
from ..fluid.layers import square    #DEFINE_ALIAS
from ..fluid.layers import stanh    #DEFINE_ALIAS
from ..fluid.layers import atan    #DEFINE_ALIAS
from ..fluid.layers import erf    #DEFINE_ALIAS
60 61
from ..fluid.layers import sqrt    #DEFINE_ALIAS
from ..fluid.layers import sin    #DEFINE_ALIAS
62

63 64 65
from ..fluid.layers import increment    #DEFINE_ALIAS
from ..fluid.layers import multiplex    #DEFINE_ALIAS
from ..fluid.layers import sums    #DEFINE_ALIAS
G
guofei 已提交
66
from ..fluid import layers
67

68

69
__all__ = [
70 71 72 73 74 75
        'abs',
        'acos',
        'asin',
        'atan',
        'ceil',
        'cos',
76
        'cosh',
77 78 79 80 81 82 83 84 85
        'cumsum',
        'elementwise_add',
        'elementwise_div',
        'elementwise_floordiv',
        'elementwise_mod',
        'elementwise_pow',
        'elementwise_sub',
        'exp',
        'floor',
86
        'increment',
87
        'log',
88
        'logsumexp',
89
        'mul',
90
        'multiplex',
91
        'pow',
92
        'prod',
93 94 95 96 97 98 99 100 101 102
        'reciprocal',
        'reduce_max',
        'reduce_min',
        'reduce_prod',
        'reduce_sum',
        'round',
        'rsqrt',
        'scale',
        'sign',
        'sin',
103
        'sinh',
104 105 106 107
        'sqrt',
        'square',
        'stanh',
        'sum',
108
        'sums',
109 110 111
        'tanh',
        'elementwise_sum',
        'max',
112
        'maximum',
113
        'min',
114
        'minimum',
115
        'mm',
116 117 118 119 120
        'divide',
        'floor_divide',
        'remainder',
        'mod',
        'floor_mod',
121
        'multiply',
122 123 124
        'add',
        'atan',
        'logsumexp',
125
        'inverse',
126 127 128 129
        'log1p',
        'erf',
        'addcmul',
        'addmm',
Y
Yang Zhang 已提交
130
        'clip',
L
Li Fuchen 已提交
131
        'trace',
J
Jack Zhou 已提交
132 133 134 135
        'kron',
        'isfinite',
        'isinf',
        'isnan'
136 137 138
]
# yapf: enable.

139 140 141 142 143 144 145 146 147 148 149 150 151
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

152
def pow(x, y, name=None):
153
    """
154
    Compute the power of tensor elements. The equation is:
S
swtkiwi 已提交
155

156 157
    .. math::
        out = x^{y} 
158

159 160
    **Note**:
    ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
161 162


163 164 165 166 167
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        y (Tensor): An N-D Tensor with type float32, float64, int32 or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
168
    Returns:
169
        N-D Tensor. A location into which the result is stored. Its dimension equals with $x$.
170 171 172

    Examples:

173
        ..  code-block:: python
174 175 176

            import paddle

177 178 179
            paddle.disable_static()
            
            # example 1: y is a float
180
            x = paddle.to_tensor([1, 2, 3])
181 182 183 184 185 186 187 188
            y = 2
            res = paddle.pow(x, y)
            print(res.numpy()) # [1 4 9]
            
            # example 2: y is a Tensor
            y = paddle.fill_constant(shape=[1], value=2, dtype='float32')
            res = paddle.pow(x, y)
            print(res.numpy()) # [1 4 9]
189 190

    """
191
    # in dynamic graph mode
W
WuHaobo 已提交
192
    if in_dygraph_mode():
193 194 195
        if isinstance(y, (int, float)):
            return core.ops.pow(x, 'factor', y)
        elif isinstance(y, (paddle.Tensor, Variable)):
196

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
            if x.dtype != y.dtype:
                y = cast(y, dtype='float64')
                x = cast(x, dtype='float64')
                out_dygraph = _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
                return out_dygraph

            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    else:
        if isinstance(y, (int, float)):
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            if x.dtype != y.dtype:
                y = cast(y, dtype='float64')
                x = cast(x, dtype='float64')
                out = helper.create_variable_for_type_inference(dtype=x.dtype)
            else:
                out = helper.create_variable_for_type_inference(dtype=x.dtype)
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
230 231 232



233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

253 254
    out = helper.kwargs.get('out', None)

255 256 257 258 259 260 261 262 263 264 265 266
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
267 268 269 270 271 272

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
273 274 275 276 277 278 279 280 281 282 283

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
284
def add(x, y, name=None):
285 286 287 288 289 290 291
    """
Examples:

    ..  code-block:: python

        import paddle

Y
Yang Zhang 已提交
292
        paddle.disable_static()
293 294
        x = paddle.to_tensor([2, 3, 4], 'float64')
        y = paddle.to_tensor([1, 5, 2], 'float64')
W
WuHaobo 已提交
295
        z = paddle.add(x, y)
Y
Yang Zhang 已提交
296 297
        np_z = z.numpy()
        print(np_z)  # [3., 8., 6. ]
298 299 300 301 302 303

    """
    op_type = 'elementwise_add'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
Y
Yang Zhang 已提交
304
            x, y, axis=axis, op_name=op_type)
305 306 307 308

    return _elementwise_op(LayerHelper(op_type, **locals()))


309
def divide(x, y, name=None):
310
    """
311
    Divide two tensors element-wise. The equation is:
312

313 314
    .. math::
        out = x / y
315

316 317
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
318

319 320 321 322
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
323

324 325
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
326

327
    Examples:
328

329
        ..  code-block:: python
330

331
            import paddle
332

333
            paddle.disable_static()
334

335 336
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
337 338
            z = paddle.divide(x, y)
            print(z.numpy())  # [2., 0.6, 2.]
339

340 341 342 343 344 345 346
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
347

348
    return _elementwise_op(LayerHelper(op_type, **locals()))
349 350


351 352 353
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
354

355 356
    .. math::
        out = x // y
357

358 359
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
360

361 362 363 364
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
365

366 367
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
368

369
    Examples:
370

371
        ..  code-block:: python
372

373
            import paddle
374

375
            paddle.disable_static()
376

377 378
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
379 380
            z = paddle.floor_divide(x, y)
            print(z.numpy())  # [2, 0, 2, 2]
381

382 383 384 385 386 387
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
388

389
    return _elementwise_op(LayerHelper(op_type, **locals()))
390 391


392
def remainder(x, y, name=None):
393
    """
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
    Mod two tensors element-wise. The equation is:

    .. math::
        out = x \% y

    **Note**:
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.

    Examples:

        ..  code-block:: python

            import paddle

            paddle.disable_static()

418 419
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
420 421 422 423 424
            z = paddle.remainder(x, y)
            print(z.numpy())  # [0, 3, 2, 1]

    """
    op_type = 'elementwise_mod'
425 426 427
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
428
            x, y, axis=axis, op_name=op_type)
429 430 431 432

    return _elementwise_op(LayerHelper(op_type, **locals()))


433 434 435 436
mod = remainder  #DEFINE_ALIAS
floor_mod = remainder  #DEFINE_ALIAS


437 438
def multiply(x, y, axis=-1, name=None):
    """
439
    multiply two tensors element-wise. The equation is:
440

441 442
    .. math::
        out = x * y
443

444 445
    **Note**:
    ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
446

447 448 449 450
    Args:
        x (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
451

452 453
    Returns:
        N-D Tensor. A location into which the result is stored. Its dimension equals with $x$.
454

455 456 457 458 459 460 461
    Examples:

        ..  code-block:: python

            import paddle

            paddle.disable_static()
462 463
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
464 465 466
            res = paddle.multiply(x, y)
            print(res.numpy()) # [[5, 12], [21, 32]]

467 468
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 2])
469 470
            res = paddle.multiply(x, y, axis=1)
            print(res.numpy()) # [[[1, 2, 3], [2, 4, 6]]]
471 472 473 474

    """
    op_type = 'elementwise_mul'
    act = None
475 476 477 478 479
    if x.dtype != y.dtype:
        raise TypeError(
            'Input tensors must be same type, but received type of x: %s, type of y: %s '
            % (x.dtype, y.dtype))

480 481 482 483 484 485
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

    return _elementwise_op(LayerHelper(op_type, **locals()))

486 487 488 489 490 491 492 493 494 495 496
def maximum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()
  
497 498
        x = paddle.to_tensor([[1, 2], [3, 4]])
        y = paddle.to_tensor([[5, 6], [7, 8]])
499 500 501 502 503
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[[5. 6.]
        # [7. 8.]]

504 505
        x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
        y = paddle.to_tensor([1, 2])
506 507 508 509 510
        res = paddle.maximum(x, y, axis=1)
        print(res.numpy())
        #[[[1. 2. 3.]
        #  [2. 2. 3.]]]

511 512
        x = paddle.to_tensor([2, 3, 5], dtype='float32')
        y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
513 514 515 516
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[ 2.  4. nan]

517 518
        x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
        y = paddle.to_tensor([1, 4, 5], dtype='float32')
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[ 5.  4. inf]
    """
    op_type = 'elementwise_max'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

def minimum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np
538

539 540
        paddle.disable_static()
  
541 542
        x = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
        y = paddle.to_tensor([[5, 6], [7, 8]], dtype='float32')
543 544 545 546 547
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[[1. 2.]
        # [3. 4.]]

548 549
        x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]], dtype='float32')
        y = paddle.to_tensor([1, 2], dtype='float32')
550 551 552 553 554
        res = paddle.minimum(x, y, axis=1)
        print(res.numpy())
        #[[[1. 1. 1.]
        #  [2. 2. 2.]]]

555 556
        x = paddle.to_tensor([2, 3, 5], dtype='float32')
        y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
557 558 559 560
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[ 1.  3. nan]

561 562
        x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
        y = paddle.to_tensor([1, 4, 5], dtype='float32')
563 564 565 566 567 568 569 570 571 572
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[1. 3. 5.]
    """
    op_type = 'elementwise_min'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
573

574 575
for func in [
        add,
576 577 578
        maximum,
        minimum,
        multiply
579
]:
580
    proto_dict = {'add': 'elementwise_add', 'div': 'elementwise_div', 'maximum': 'elementwise_max', 'minimum': 'elementwise_min', 'multiply': 'elementwise_mul'}
581 582
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
583 584 585 586 587 588 589
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
590 591
        op_proto,
        additional_args_lines=additional_args_lines,
592
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
593
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
594
        }) + """\n""" + str(func.__doc__)
595

Y
Yang Zhang 已提交
596

597
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
598 599 600 601
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
602 603 604
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
605
            Tensor variable with a single element, otherwise must be in the
606 607 608 609 610 611 612
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
613
            value is False.
614
        name (str, optional): The default value is None. Normally there is no need for
615 616 617
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
618 619
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
        it's data type is the same as `x`.
620 621

    Raises:
622 623
        ValueError: If the data type of `x` is float64, :attr:`dtype` can not be float32 or int32.
        ValueError: If the data type of `x` is int64, :attr:`dtype` can not be int32.
624
        TypeError: The type of :attr:`axis` must be int, list or tuple.
625

626 627 628 629
    Examples:
        .. code-block:: python

            import paddle
630 631
            paddle.disable_static()

632
            # x is a Tensor with following elements:
633 634 635
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
636 637
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
638
            out1 = paddle.sum(x)  # [3.5]
639 640 641
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
642

643
            # y is a Tensor with shape [2, 2, 2] and elements as below:
644 645 646
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
647 648
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
649 650
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
651
    """
652 653 654 655 656 657 658 659 660 661 662
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

663
    attrs = {
664 665 666
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
667 668 669 670
    }
    dtype_flag = False
    if dtype is not None:
        if dtype in ['float64', 'int64']:
671 672
            if (convert_dtype(x.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(x.dtype) == "int32" and dtype == "int64"):
673
                attrs.update({
674
                    'in_dtype': x.dtype,
675 676 677 678 679
                    'out_dtype': convert_np_dtype_to_dtype_(dtype)
                })
                dtype_flag = True

    if in_dygraph_mode():
680
        axis = axis if axis != None and axis != [] else [0]
681
        if dtype_flag:
682 683 684
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
685 686
                                       convert_np_dtype_to_dtype_(dtype))
        else:
687 688
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
689
    check_variable_and_dtype(
690
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sum')
691 692 693 694 695 696 697 698 699 700 701

    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'sum')
        x_dtype = convert_dtype(x.dtype)

        if (x_dtype == "float64" and dtype in ["float32", "int32"]) or \
                (x_dtype == "int64" and dtype == "int32"):
            raise ValueError("The input(x)'s dtype is {} but the attr(dtype) of sum is {}, "
                             "which may cause data type overflows. Please reset attr(dtype) of sum."
                             .format(x_dtype, dtype))

702 703
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

704 705 706 707 708
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
709
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
710 711
    helper.append_op(
        type='reduce_sum',
712
        inputs={'X': x},
713 714 715
        outputs={'Out': out},
        attrs=attrs)
    return out
716

717

718 719 720
@templatedoc(op_type="sum")
def elementwise_sum(inputs, name=None):
    """
721 722
	:alias_main: paddle.elementwise_sum
	:alias: paddle.elementwise_sum,paddle.tensor.elementwise_sum,paddle.tensor.math.elementwise_sum
S
swtkiwi 已提交
723

724
    ${comment}
725

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]

    Args:
757 758
        inputs (Variable|list(Variable)):  A Varaible list. The shape and data type of the list elementsshould be consistent.
            Variable can be multi-dimensional Tensoror LoDTensor, and data types can be: float32, float64, int32, int64.
759 760 761 762
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
763
        Variable: the sum of input :math:`inputs` . its shape and data types are consistent with :math:`inputs` .
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = paddle.elementwise_sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[elementwise_sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
789 790
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
791 792 793 794
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
    """

    helper = LayerHelper('elementwise_sum', **locals())
795 796 797 798 799 800 801 802 803 804 805
    check_type(inputs, 'inputs', (Variable, tuple, list), 'elementwise_sum')
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
                   ['float32', 'float64', 'int32', 'int64'], 'elementwise_sum')
    else:
        check_variable_and_dtype(inputs, "inputs", \
                ['float32', 'float64', 'int32', 'int64'], 'elementwise_sum')


806 807 808 809 810 811 812 813 814 815 816
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


W
WuHaobo 已提交
817
def mm(input, mat2, name=None):
818
    """
819 820
	:alias_main: paddle.mm
	:alias: paddle.mm,paddle.tensor.mm,paddle.tensor.math.mm
S
swtkiwi 已提交
821

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        mat2 (Variable): The input variable which is a Tensor or LoDTensor.
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: The product Tensor (or LoDTensor) variable.

    Examples:
        .. code-block:: python

            # Examples to clarify shapes of the inputs and output
            # x: [B, ..., M, K], mat2: [B, ..., K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, ..., M, N]

            # x: [B, M, K], mat2: [B, K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [B, M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [M, N]

            # x: [B, M, K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [B, M]

            # x: [K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [1]

            import paddle
            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[2, 3], dtype='float32')
            mat2 = fluid.data(name='mat2', shape=[3, 2], dtype='float32')
            out = paddle.mm(x, mat2) # out shape is [2, 2]
    """
    if in_dygraph_mode():
W
WuHaobo 已提交
870
        out = _varbase_creator(dtype=input.dtype)
871 872
        core.ops.matmul(input, mat2, out)
        return out
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
910
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
911 912 913 914
    helper.append_op(
        type='matmul', inputs={'X': input,
                               'Y': mat2}, outputs={'Out': out})
    return out
915

916

Y
yaoxuefeng 已提交
917
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
918
    """
919 920
	:alias_main: paddle.addmm
	:alias: paddle.addmm,paddle.tensor.addmm,paddle.tensor.math.addmm
S
swtkiwi 已提交
921

922 923 924 925 926 927 928 929 930 931 932 933
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
934 935 936
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
937
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
938
        alpha (float): Coefficient of $x*y$.
939 940 941
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
Y
yaoxuefeng 已提交
942
        Tensor: The output Tensor of addmm op.
943 944 945

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
946
            
947 948
            import paddle

Y
yaoxuefeng 已提交
949 950 951
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
952

Y
yaoxuefeng 已提交
953
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
954 955

            print( out.numpy() )
956 957 958
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



979 980 981 982
    if in_dygraph_mode():
        out = core.ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
        return out

983 984 985 986
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
987
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
988 989 990 991 992 993 994
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
995 996


997
def logsumexp(x, axis=None, keepdim=False, name=None):
998
    """
999
    This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
1000

1001
    .. math::
1002
       logsumexp(x) = \\log\\sum exp(x)
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1022

1023
    Returns:
1024 1025
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
1026

1027
    Examples:
1028

1029
    .. code-block:: python
1030

1031 1032
        import paddle

1033
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
1034 1035
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1036 1037

    """
1038 1039 1040 1041 1042 1043 1044
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1045

1046
    if in_dygraph_mode():
1047
        return core.ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
1048

1049 1050 1051
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1052

1053
    helper = LayerHelper('logsumexp', **locals())
1054
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
1055 1056 1057 1058
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1059

S
swtkiwi 已提交
1060

1061 1062
def inverse(x, name=None):
    """
1063 1064 1065 1066 1067
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1068
        x (Variable): The input tensor. The last two
1069 1070 1071 1072 1073 1074 1075 1076
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1077 1078
        Variable: A Tensor holds the inverse of x. The shape and data type
                        is the same as x.
1079 1080 1081 1082 1083

    Examples:
        .. code-block:: python

            import paddle
1084
            paddle.disable_static()
1085 1086

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
1087 1088
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1089 1090 1091

    """
    if in_dygraph_mode():
1092
        return core.ops.inverse(x)
1093

1094 1095
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1096
                                 ['float32', 'float64'], 'inverse')
1097
        if len(x.shape) < 2:
1098 1099 1100
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1101 1102
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1103
    helper = LayerHelper('inverse', **locals())
1104
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1105
    helper.append_op(
1106
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1107 1108 1109
    return out


1110
def max(x, axis=None, keepdim=False, name=None):
1111
    """
S
swtkiwi 已提交
1112

1113
    Computes the maximum of tensor elements over the given axis.
1114 1115

    Args:
1116
        x(Tensor): A tensor, the data type is float32,
1117
            float64, int32, int64.
1118
        axis(list|int, optional): The axis along which the maximum is computed.
1119
            If :attr:`None`, compute the maximum over all elements of
1120
             `x` and return a Tensor variable with a single element,
1121 1122 1123
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1124
            output Tensor. The result tensor will have one fewer dimension
1125
            than the `x` unless :attr:`keepdim` is true, default
1126
            value is False.
1127
        name(str, optional): The default value is None.  Normally there is no need for
1128 1129 1130
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1131
        Tensor, results of maximum on the specified axis of input tensor,
1132
        it's data type is the same as `x`.
1133 1134 1135

    Examples:
        .. code-block:: python
1136

1137
            import paddle
1138

1139 1140 1141 1142
            paddle.disable_static()

            # data_x is a variable with shape [2, 4]
            # the axis is a int element
1143 1144 1145

            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
            result1 = paddle.max(x)
            print(result1.numpy())
            #[0.9]
            result2 = paddle.max(x, axis=0)
            print(result2.numpy()) 
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
            print(result3.numpy())
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
            print(result4.numpy())
            #[[0.9]
            # [0.7]]

            # data_y is a variable with shape [2, 2, 2]
            # the axis is list 
1162 1163 1164

            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1165 1166 1167 1168 1169 1170
            result5 = paddle.max(y, axis=[1, 2])
            print(result5.numpy())
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
            print(result6.numpy())
            #[7. 8.]
1171 1172
    """

1173
    if axis is not None and not isinstance(axis, list):
1174 1175 1176 1177 1178 1179 1180 1181
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1182 1183 1184 1185 1186
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
        return core.ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
                                   'reduce_all', reduce_all)
1187

1188
    helper = LayerHelper('max', **locals())
1189
    check_variable_and_dtype(
1190
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1191

1192 1193
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1194 1195
    helper.append_op(
        type='reduce_max',
1196
        inputs={'X': x},
1197 1198
        outputs={'Out': out},
        attrs={
1199 1200
            'dim': axis,
            'keep_dim': keepdim,
1201 1202 1203 1204
            'reduce_all': reduce_all
        })
    return out

1205
def min(x, axis=None, keepdim=False, name=None):
1206
    """
S
swtkiwi 已提交
1207

1208
    Computes the minimum of tensor elements over the given axis
1209

1210
    Args:
1211 1212
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis(list|int, optional): The axis along which the minimum is computed.
1213
            If :attr:`None`, compute the minimum over all elements of
1214
            `x` and return a Tensor variable with a single element,
1215 1216 1217
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1218
            output Tensor. The result tensor will have one fewer dimension
1219
            than the `x` unless :attr:`keepdim` is true, default
1220
            value is False.
W
WuHaobo 已提交
1221
        name(str, optional): The default value is None.  Normally there is no need for 
1222
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1223

1224
    Returns:
1225
        Tensor, results of minimum on the specified axis of input tensor,
1226
        it's data type is the same as input's Tensor.
1227

1228 1229 1230
    Examples:
        .. code-block:: python

1231
            import paddle
1232

1233
            paddle.disable_static()
1234

1235
            # x is a tensor with shape [2, 4]
1236
            # the axis is a int element
1237 1238
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
            result1 = paddle.min(x)
            print(result1.numpy())
            #[0.1]
            result2 = paddle.min(x, axis=0)
            print(result2.numpy())
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
            print(result3.numpy()) 
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
            print(result4.numpy())
            #[[0.2]
            # [0.1]]

1253
            # y is a variable with shape [2, 2, 2]
1254
            # the axis is list 
1255 1256
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1257 1258 1259 1260 1261 1262 1263
            result5 = paddle.min(y, axis=[1, 2])
            print(result5.numpy()) 
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
            print(result6.numpy())
            #[1. 2.]
    """
1264

1265
    if axis is not None and not isinstance(axis, list):
1266 1267 1268 1269 1270 1271 1272
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1273 1274
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1275
    if in_dygraph_mode():
1276
        return core.ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1277
                                   'reduce_all', reduce_all)
1278 1279 1280 1281 1282 1283 1284

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1285 1286
    helper.append_op(
        type='reduce_min',
1287
        inputs={'X': x},
1288 1289
        outputs={'Out': out},
        attrs={
1290 1291
            'dim': axis,
            'keep_dim': keepdim,
1292 1293 1294 1295 1296
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1297
def log1p(x, name=None):
1298
    """
1299 1300
	:alias_main: paddle.log1p
	:alias: paddle.log1p,paddle.tensor.log1p,paddle.tensor.math.log1p
S
swtkiwi 已提交
1301

1302 1303 1304 1305 1306 1307 1308 1309 1310
    Calculates the natural log of the given input tensor, element-wise.
    .. math::
        Out = \\ln(x+1)
    Args:
        x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
        Variable: The natural log of the input LoDTensor or Tensor computed element-wise.
1311

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            import numpy as np
            # Graph Organizing
            x = fluid.data(name="x", shape=[2,1], dtype="float32")
            res = paddle.log1p(x)
            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())
            # Execute
            x_i = np.array([[0], [1]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[0.], [0.6931472]]
    """

    if in_dygraph_mode():
        return core.ops.log1p(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1335
    out = helper.create_variable_for_type_inference(dtype)
1336 1337
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1338

W
WuHaobo 已提交
1339

W
WuHaobo 已提交
1340
def addcmul(input, tensor1, tensor2, value=1.0, name=None):
B
Bai Yifan 已提交
1341
    """
1342 1343
	:alias_main: paddle.addcmul
	:alias: paddle.addcmul,paddle.tensor.addcmul,paddle.tensor.math.addcmul
S
swtkiwi 已提交
1344

B
Bai Yifan 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
    Calculate the element-wise multiplication of tensor1 and tensor2,
    then multiply the result by value, and add it to input. The shape of input,
    tensor1, tensor2 should be broadcastable.
    The equation is:
    ..  math::
        out = input + value * tensor1 * tensor2
    Args:
        input(Variable): The input to be added. A Tensor with type float32, float64, int32, int64.
        tensor1(Variable): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        tensor2(Variable): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        value(int|float): The multiplier for tensor1*tensor2. For float32 and float64 type input, value must be float, otherwise an integer.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
        out(Variable): The output result. A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
          import paddle
          import paddle.fluid as fluid
          input = fluid.data(name='input', dtype='float32', shape=[3, 4])
          tensor1 = fluid.data(name='tenosr1', dtype='float32', shape=[1, 4])
          tensor2 = fluid.data(name='tensor2', dtype='float32', shape=[3, 4])
          data = paddle.addcmul(input, tensor1, tensor2, value=1.0)
    """

    check_variable_and_dtype(input, 'input', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor1, 'tensor1', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor2, 'tensor2', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    if convert_dtype(input.dtype) in ['float32', 'float64']:
        check_type(value, 'value', float, 'addcmul')
    if convert_dtype(input.dtype) in ['int32', 'int64']:
        check_type(value, 'value', int, 'addcmul')

W
WuHaobo 已提交
1378
    out = layers.elementwise_add(input, layers.elementwise_mul(tensor1, tensor2) * value)
B
Bai Yifan 已提交
1379
    return out
1380 1381


Y
Yang Zhang 已提交
1382
def clip(x, min=None, max=None, name=None):
1383
    """
Y
Yang Zhang 已提交
1384 1385
        :alias_main: paddle.clip
        :alias: paddle.clip,paddle.tensor.clip,paddle.tensor.math.clip
S
swtkiwi 已提交
1386

Y
Yang Zhang 已提交
1387
    **clip layer**
1388

Y
Yang Zhang 已提交
1389
    This operator clip all elements in input into the range [ min, max ] and return
1390 1391 1392 1393
    a resulting tensor as the following equation:

    .. math::

1394
        Out = MIN(MAX(x, min), max)
1395 1396

    Args:
Y
Yang Zhang 已提交
1397 1398
        x (Tensor): An N-D Tensor with data type float32 or float64.
        min (float32|Tensor): The lower bound with type ``float32`` or a ``Tensor``
1399
            with shape [1] and type ``int32``, ``float32``, ``float64``.
Y
Yang Zhang 已提交
1400
        max (float32|Tensor): The upper bound with type ``float32`` or a ``Tensor``
1401 1402 1403 1404 1405 1406
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1407
        Tensor: A Tensor with the same data type and data shape as input.
1408 1409 1410 1411 1412 1413

    Examples:
        .. code-block:: python

            import paddle

Y
Yang Zhang 已提交
1414
            paddle.disable_static()
1415
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
1416 1417 1418 1419 1420 1421 1422 1423
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
            print(out1.numpy())
            # [[3.5, 3.5]
            # [4.5, 5.0]]
            print(out2.numpy())
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1424 1425
    """

Y
Yang Zhang 已提交
1426 1427
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
1428

W
WuHaobo 已提交
1429
    if in_dygraph_mode():
1430 1431 1432 1433
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
Y
Yang Zhang 已提交
1434 1435
        min = fmin if min is None else min
        max = fmax if max is None else max
Y
Yang Zhang 已提交
1436
        return core.ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1437

1438
    if min is not None:
Y
Yang Zhang 已提交
1439
        check_type(min, 'min', (float, int, Variable), 'clip')
1440 1441
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1442
                        'clip', '(When the type of min in clip is Variable.)')
1443
    if max is not None:
Y
Yang Zhang 已提交
1444
        check_type(max, 'max', (float, int, Variable), 'clip')
1445 1446
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1447
                        'clip', '(When the type of max in clip is Variable.)')
1448

Y
Yang Zhang 已提交
1449
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'clip')
Y
Yang Zhang 已提交
1450 1451

    inputs = {'X': x}
Y
Yang Zhang 已提交
1452
    attrs = {'min': fmin, 'max': fmax}
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1466
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1467
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1468
        dtype=helper.input_dtype('x'))
1469 1470 1471 1472
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1473

W
WuHaobo 已提交
1474

1475
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1476
    """
1477
    **trace**
S
swtkiwi 已提交
1478

1479
    This OP computes the sum along diagonals of the input tensor x.
1480 1481

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1482

1483
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1484
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1485
    of the input tensor x.
L
Li Fuchen 已提交
1486

1487
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1488 1489 1490 1491

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1492
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
1493

L
Li Fuchen 已提交
1494
    Args:
1495
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
1496 1497 1498
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1499 1500 1501
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
1502
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
1503 1504 1505 1506 1507

    Examples:
        .. code-block:: python

            import paddle
1508

1509 1510 1511
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
1512 1513 1514
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1515
    """
1516 1517
    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1518 1519

    def __check_input(input, offset, dim1, dim2):
1520
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1521 1522 1523
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1524
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1525
        assert len(input_shape) >= 2,                     \
1526 1527
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1528 1529
                len(input_shape)

1530 1531
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1532

1533 1534 1535
        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1536

1537 1538 1539
        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1540 1541


1542 1543 1544
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1545

1546 1547 1548
    if in_dygraph_mode():
        return core.ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)

L
Li Fuchen 已提交
1549
    if not in_dygraph_mode():
1550
        __check_input(input, offset, axis1, axis2)
L
Li Fuchen 已提交
1551 1552
    helper = LayerHelper('trace', **locals())

1553
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1554 1555 1556

    helper.append_op(
        type='trace',
1557
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1558
        attrs={'offset': offset,
1559 1560
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1561 1562 1563
        outputs={'Out': [out]})
    return out

F
Feiyu Chan 已提交
1564
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1565
def kron(x, y, name=None):
S
swtkiwi 已提交
1566
    """
1567 1568
	:alias_main: paddle.kron
	:alias: paddle.kron,paddle.tensor.kron,paddle.tensor.math.kron
S
swtkiwi 已提交
1569 1570

${comment}
F
Feiyu Chan 已提交
1571 1572

    Args:
1573
        x (Variable): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1574
            float64, int32 or int64.
1575 1576
        y (Variable): the second operand of kron op, data type: float16,
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1577
            with x.
1578 1579
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1580 1581 1582 1583 1584 1585 1586
            refer to :ref:`api_guide_Name`.

    Returns:
        Variable: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.

    Examples:
        .. code-block:: python
1587

F
Feiyu Chan 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
          import paddle
          from paddle import fluid
          import paddle.fluid.dygraph as dg
          import numpy as np

          a = np.arange(1, 5).reshape(2, 2).astype(np.float32)
          b = np.arange(1, 10).reshape(3, 3).astype(np.float32)

          place = fluid.CPUPlace()
          with dg.guard(place):
              a_var = dg.to_variable(a)
              b_var = dg.to_variable(b)
              c_var = paddle.kron(a_var, b_var)
              c_np = c_var.numpy()
          print(c_np)

          #[[ 1.  2.  3.  2.  4.  6.]
          # [ 4.  5.  6.  8. 10. 12.]
          # [ 7.  8.  9. 14. 16. 18.]
          # [ 3.  6.  9.  4.  8. 12.]
          # [12. 15. 18. 16. 20. 24.]
          # [21. 24. 27. 28. 32. 36.]]
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1618
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1619 1620
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1621 1622 1623 1624


def cumsum(x, axis=None, dtype=None, name=None):
    """
1625 1626 1627 1628
    The cumulative sum of the elements along a given axis. 
    
    **Note**:
    The first element of the result is the same of the first element of the input. 
1629 1630

    Args:
1631
        x (Tensor): The input tensor needed to be cumsumed.
1632 1633 1634 1635 1636
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1637
        Tensor, the result of cumsum operator. 
1638 1639 1640 1641 1642

    Examples:
        .. code-block:: python
            
            import paddle
1643 1644 1645
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
            return core.ops.cumsum(x, 'flatten', flatten)
        else:
            return core.ops.cumsum(x, 'axis', axis, 'flatten', flatten)

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
1685

J
Jack Zhou 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1703
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
            out = paddle.tensor.isfinite(x)
            print(out.numpy())  # [False  True  True False  True False False]
    """
    if in_dygraph_mode():
        return core.ops.isfinite_v2(x)
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1732
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
            out = paddle.tensor.isinf(x)
            print(out.numpy())  # [ True False False  True False False False]
    """
    if in_dygraph_mode():
        return core.ops.isinf_v2(x)
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1761
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
            out = paddle.tensor.isnan(x)
            print(out.numpy())  # [False False False False False  True  True]
    """
    if in_dygraph_mode():
        return core.ops.isnan_v2(x)
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
1774 1775 1776 1777 1778
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
1779
        x(Tensor): The input tensor, its data type should be float32, float64, int32, int64.
G
guofei 已提交
1780 1781 1782 1783 1784 1785 1786 1787 1788
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
1789
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
G
guofei 已提交
1790 1791 1792 1793 1794 1795 1796 1797 1798
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
J
Jack Zhou 已提交
1799
    
G
guofei 已提交
1800 1801 1802 1803 1804 1805 1806 1807
    Examples:
        .. code-block:: python

            import paddle

            paddle.disable_static()

            # the axis is a int element
1808 1809
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
            out1 = paddle.prod(x)
            print(out1.numpy())
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            print(out2.numpy())
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            print(out3.numpy())
            # [0.02 0.06 0.3  0.63]
            print(out3.numpy().dtype)
            # float32

            out4 = paddle.prod(x, 0, keepdim=True)
            print(out4.numpy())
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            print(out5.numpy())
            # [0 0 0 0]
            print(out5.numpy().dtype)
            # int64

            # the axis is list
1835 1836
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
            out6 = paddle.prod(y, [0, 1])
            print(out6.numpy())
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            print(out7.numpy())
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)
W
WangXi 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871


def sign(x, name=None):
    """
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): The default value is None. Normally there is no need for user to
            set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

          paddle.disable_static()
1872
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
    if in_dygraph_mode():
        return core.ops.sign(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
    """
    Tanh Activation Operator.

    .. math::
        out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

            paddle.disable_static()
1909
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
1910 1911 1912 1913 1914 1915 1916 1917
            out = paddle.tanh(x)
            print(out.numpy())
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
    if in_dygraph_mode():
        return core.ops.tanh(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
1918
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
1919 1920 1921 1922
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out