math.py 171.3 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20 21 22 23 24 25
from paddle.common_ops_import import VarDesc
from paddle.common_ops_import import dygraph_only
from paddle.common_ops_import import OpProtoHolder
from paddle.common_ops_import import templatedoc
from paddle.common_ops_import import dygraph_utils

26 27 28 29
from .manipulation import cast
from .creation import _complex_to_real_dtype
from .layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn

30
import paddle
31
from ..static import Variable
32
from ..framework import core, in_dygraph_mode, _non_static_mode, LayerHelper, _in_legacy_dygraph
33
from ..fluid.framework import _in_legacy_dygraph
Z
zhiboniu 已提交
34
from ..framework import _varbase_creator, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
35
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
36
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
37 38 39

# TODO: define math functions
# yapf: disable
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
from .ops import abs    # noqa: F401
from .ops import acos    # noqa: F401
from .ops import asin    # noqa: F401
from .ops import ceil    # noqa: F401
from .ops import ceil_    # noqa: F401
from .ops import cos    # noqa: F401
from .ops import tan    # noqa: F401
from .ops import sinh    # noqa: F401
from .ops import cosh    # noqa: F401
from .ops import exp    # noqa: F401
from .ops import exp_    # noqa: F401
from .ops import expm1    # noqa: F401
from .ops import floor    # noqa: F401
from .ops import floor_    # noqa: F401
from .ops import reciprocal    # noqa: F401
from .ops import reciprocal_    # noqa: F401
from .ops import round    # noqa: F401
from .ops import round_    # noqa: F401
from .ops import rsqrt    # noqa: F401
from .ops import rsqrt_    # noqa: F401
from .ops import square    # noqa: F401
from .ops import atan    # noqa: F401
from .ops import erf    # noqa: F401
from .ops import sqrt    # noqa: F401
from .ops import sqrt_    # noqa: F401
from .ops import sin    # noqa: F401
from .ops import asinh    # noqa: F401
from .ops import acosh    # noqa: F401
from .ops import atanh    # noqa: F401


Z
zhiboniu 已提交
71
from ..fluid.layers import elementwise_sub
W
wanghuancoder 已提交
72
from paddle import _C_ops
73

74 75
__all__ = []

76 77 78 79 80 81 82 83 84 85 86 87 88
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

89

90 91
def log(x, name=None):
    r"""
C
Chen Long 已提交
92
    Calculates the natural log of the given input Tensor, element-wise.
93 94 95

    .. math::

96
        Out = \ln(x)
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

            import paddle

            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_log(x)
    if _in_legacy_dygraph():
        return _C_ops.log(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log")
    inputs = {'X': [x]}
    helper = LayerHelper('log', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
    return out


def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
148 149 150 151 152 153
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
        scale (float|Tensor): The scale factor of the input, it should be a float number or a Tensor with shape [1] and data type as float32.
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
154 155

    Returns:
C
Chen Long 已提交
156
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

    Examples:
        .. code-block:: python
            
            # scale as a float32 number
            import paddle

            data = paddle.randn(shape=[2,3], dtype='float32')
            res = paddle.scale(data, scale=2.0, bias=1.0)

        .. code-block:: python

            # scale with parameter scale as a Tensor
            import paddle

            data = paddle.randn(shape=[2, 3], dtype='float32')
            factor = paddle.to_tensor([2], dtype='float32')
            res = paddle.scale(data, scale=factor, bias=1.0)

    """

    if in_dygraph_mode():
        out = _C_ops.final_state_scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out)
    if _non_static_mode():
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
        out = _C_ops.scale(x, 'scale',
                           float(_scale), 'bias',
                           float(bias), 'bias_after_scale', bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out)

    check_variable_and_dtype(x, "x", [
        'float16', 'uint16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], "scale")
    inputs = {'X': [x]}
    attrs = {
        'bias': float(bias),
        'bias_after_scale': bias_after_scale,
    }
    if isinstance(scale, Variable):
        inputs['ScaleTensor'] = [scale]
    else:
        attrs['scale'] = float(scale)
    helper = LayerHelper('scale', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return helper.append_activation(out)


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
    """
    stanh activation.

    .. math::

215
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463]

    """

    if _non_static_mode():
        return _C_ops.stanh(x, 'scale_a', scale_a, 'scale_b', scale_b)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'stanh')

    helper = LayerHelper('stanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out

def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
283
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
284

285 286 287 288 289 290
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python
291
            :name: code-example1
292 293

            import paddle
294
            
295 296 297 298
            img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            inputs = [img1, img2]
            index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
299
            res = paddle.multiplex(inputs, index)
300
            print(res) # Tensor([[5., 6.], [3., 4.]], dtype=float32)
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

    """
    if _non_static_mode():
        return _C_ops.multiplex(index, inputs)
    helper = LayerHelper('multiplex', **locals())

    check_type(inputs, 'inputs', (list), 'multiplex')
    if len(inputs) < 2:
        raise ValueError(
            "inputs should be a list object with at least 2 elements.")
    for id, x in enumerate(inputs):
        check_variable_and_dtype(x, 'input[' + str(id) + ']',
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'multiplex')
    check_variable_and_dtype(index, "index", ['int32', 'int64'], 'multiplex')

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out

325 326 327 328 329 330
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
331 332 333 334 335 336 337
    if in_dygraph_mode():
        return _C_ops.final_state_scale_(x, scale, float(bias), bias_after_scale)
    if _in_legacy_dygraph():
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
        return _C_ops.scale_(x, 'scale',
                                float(_scale), 'bias',
                                float(bias), 'bias_after_scale', bias_after_scale)
338 339


340
def pow(x, y, name=None):
341
    """
C
Chen Long 已提交
342
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
343

344 345
    .. math::
        out = x^{y} 
346

347 348
    **Note**:
    ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
349 350


351 352
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
353
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
354 355
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
356
    Returns:
357
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
358 359 360

    Examples:

361
        ..  code-block:: python
362 363 364

            import paddle

365 366 367 368 369 370 371 372 373 374 375 376
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

377
            # example 2: y is a Tensor
378
            y = paddle.to_tensor([2], dtype='float32')
379
            res = paddle.pow(x, y)
380 381 382
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
383 384

    """
385
    # in dynamic graph mode
386
    if in_dygraph_mode():
387
        if isinstance(y, (int, float)):
388
            return _C_ops.final_state_pow(x, y)
389 390 391 392 393
        elif isinstance(y, (paddle.Tensor, Variable)):
            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
394
    if _in_legacy_dygraph():
395
        if isinstance(y, (int, float)):
396
            return _C_ops.pow(x, 'factor', y)
397
        elif isinstance(y, (paddle.Tensor, Variable)):
398 399
            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
400
        else:
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    if isinstance(y, (int, float)):
        helper = LayerHelper('pow', **locals())
        inputs = {'X': x}
        attrs = {'factor': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
        return out
    elif isinstance(y, (paddle.Tensor, Variable)):
        # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
        helper = LayerHelper('elementwise_pow', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
    else:
        raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
418 419


420 421 422 423 424
OP_NAMEMAPPING = {
    'elementwise_max': 'final_state_maximum',
    'elementwise_min': 'final_state_minimum',
    'elementwise_pow': 'final_state_elementwise_pow',
    'elementwise_floordiv': 'final_state_floor_divide',
425
    'elementwise_mod': 'final_state_modulo',
426 427 428 429
    'elementwise_add': 'final_state_add',
    'elementwise_sub': 'final_state_subtract',
    'elementwise_mul': 'final_state_multiply',
    'elementwise_div': 'final_state_divide',
430
}
431

432 433 434 435 436 437 438
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
439 440 441
    def is_inplace(op_name):
        return  op_name[-1] == "_"

442
    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
443 444
        op = getattr(_C_ops, op_name)
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
W
wanghuancoder 已提交
445 446 447 448 449 450 451 452
    else:
        if in_dygraph_mode():
            op = getattr(_C_ops, OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name)
            out = op(x, y)

        if _in_legacy_dygraph():
            op = getattr(_C_ops, op_name)
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
453 454 455 456 457 458 459 460 461 462

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)

def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

463 464
    out = helper.kwargs.get('out', None)

465 466 467
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
468
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
469 470
        original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
471
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
472 473 474 475 476
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
477 478 479 480 481 482

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
483 484 485 486 487 488 489 490 491 492 493

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
494
def add(x, y, name=None):
495
    """
496
    Examples:
497 498 499 500

    ..  code-block:: python

        import paddle
501

502 503
        x = paddle.to_tensor([2, 3, 4], 'float64')
        y = paddle.to_tensor([1, 5, 2], 'float64')
W
WuHaobo 已提交
504
        z = paddle.add(x, y)
505
        print(z)  # [3., 8., 6. ]
506 507

    """
508

J
Jiabin Yang 已提交
509 510 511 512 513 514 515
    if in_dygraph_mode():
        return _C_ops.final_state_add( x, y)
    else:
        if _in_legacy_dygraph():
            return _C_ops.elementwise_add(x, y)
        else:
            return _elementwise_op(LayerHelper('elementwise_add', **locals()))
516 517


518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """
    op_type = 'elementwise_add_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

    out = _elementwise_op_in_dygraph(
        x, y, axis=axis, op_name=op_type)
    return out


536 537
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
538
    Substract two tensors element-wise. The equation is:
539 540 541 542

    .. math::
        out = x - y

543 544
    Note:
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
545 546 547 548 549 550 551 552 553 554 555 556

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
557

558 559 560 561 562 563
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
564 565 566
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[-4, -4],
            #         [ 4,  4]])
567 568 569 570 571

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
572 573 574
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[ 0,  2, -1],
            #          [ 0,  2, -1]]])
575

576 577
            x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
578 579
            res = paddle.subtract(x, y)
            print(res)
580 581
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
582

583
            x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
584 585 586
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
587 588
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 4.  ,  inf., -inf.])
589 590 591 592
    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
J
Jiabin Yang 已提交
593 594 595 596 597 598 599 600
    if in_dygraph_mode():
        return _C_ops.final_state_subtract(x, y)
    else:
        if _in_legacy_dygraph():
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type)
        else:
            return _elementwise_op(LayerHelper(op_type, **locals()))
601 602


603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """
    axis = -1
    act = None

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

    out = _elementwise_op_in_dygraph(
        x, y, axis=axis, act=act, op_name='elementwise_sub_')
    return out


621
def divide(x, y, name=None):
622
    """
623
    Divide two tensors element-wise. The equation is:
624

625 626
    .. math::
        out = x / y
627

628 629
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
630

631 632 633 634
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
635

636
    Returns:
637
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
638

639
    Examples:
640

641
        ..  code-block:: python
642

643
            import paddle
644

645 646
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
647
            z = paddle.divide(x, y)
648
            print(z)  # [2., 0.6, 2.]
649

650 651 652 653
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
J
Jiabin Yang 已提交
654 655 656 657 658 659 660 661
    if in_dygraph_mode():
        return _C_ops.final_state_divide( x, y)
    else:
        if _in_legacy_dygraph():
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type)
        else:
            return _elementwise_op(LayerHelper(op_type, **locals()))
662 663


664 665 666
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
667

668 669
    .. math::
        out = x // y
670

671 672
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
673

674 675 676 677
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
678

679 680
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
681

682
    Examples:
683

684
        ..  code-block:: python
685

686
            import paddle
687

688 689
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
690
            z = paddle.floor_divide(x, y)
691
            print(z)  # [2, 0, 2, 2]
692

693 694 695
    """
    op_type = 'elementwise_floordiv'
    axis = -1
Z
zhiboniu 已提交
696
    if paddle.in_dynamic_mode():
697 698
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
699

700
    return _elementwise_op(LayerHelper(op_type, **locals()))
701 702


703
def remainder(x, y, name=None):
704
    r"""
705 706 707
    Mod two tensors element-wise. The equation is:

    .. math::
708

709 710 711
        out = x \% y

    **Note**:
712
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
713 714

    Args:
W
WangXi 已提交
715 716
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
717 718 719
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
720
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
721 722 723 724 725 726 727

    Examples:

        ..  code-block:: python

            import paddle

728 729
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
730
            z = paddle.remainder(x, y)
W
WangXi 已提交
731
            print(z)  # [0, 3, 2, 1]
732 733 734

    """
    op_type = 'elementwise_mod'
735
    axis = -1
Z
zhiboniu 已提交
736
    if paddle.in_dynamic_mode():
737
        return _elementwise_op_in_dygraph(
738
            x, y, axis=axis, op_name=op_type)
739 740 741 742

    return _elementwise_op(LayerHelper(op_type, **locals()))


743 744
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
745 746


747
def multiply(x, y, name=None):
748
    """
749
    multiply two tensors element-wise. The equation is:
750

751 752
    .. math::
        out = x * y
753

754 755
    **Note**:
    ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
756

757
    Args:
W
will-jl944 已提交
758 759
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
760
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
761

762
    Returns:
763
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
764

765 766 767 768 769 770
    Examples:

        ..  code-block:: python

            import paddle

771 772
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
773
            res = paddle.multiply(x, y)
774
            print(res) # [[5, 12], [21, 32]]
775

776
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
777 778 779
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
780 781 782 783

    """
    op_type = 'elementwise_mul'
    act = None
784
    axis = -1
785

J
Jiabin Yang 已提交
786 787 788 789 790 791 792 793 794 795 796
    if in_dygraph_mode():
        return _C_ops.final_state_multiply(x, y)
    else:
        if _in_legacy_dygraph():
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type)
        else:
            if x.dtype != y.dtype:
                raise TypeError(
                    'Input tensors must be same type, but received type of x: %s, type of y: %s '
                    % (x.dtype, y.dtype))
797

J
Jiabin Yang 已提交
798
            return _elementwise_op(LayerHelper(op_type, **locals()))
799

800
def maximum(x, y, name=None):
801
    """
W
Wei Shengyu 已提交
802
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
803

804 805
    .. math::
        out = max(x, y)
806

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
    **Note**:
    ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [ 2., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [  5.,   3., inf.]
850 851
    """
    op_type = 'elementwise_max'
852
    axis = -1
853
    act = None
Z
zhiboniu 已提交
854
    if paddle.in_dynamic_mode():
855 856 857 858
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

859
def minimum(x, y, name=None):
860
    """
C
Chen Long 已提交
861
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
862

863 864
    .. math::
        out = min(x, y)
865

866 867 868 869 870 871 872 873 874
    **Note**:
    ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
875
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.minimum(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.minimum(x, y)
            print(res)
            #       [   1., -inf.,    5.]
909 910
    """
    op_type = 'elementwise_min'
911
    axis = -1
912
    act = None
Z
zhiboniu 已提交
913
    if paddle.in_dynamic_mode():
914 915 916
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
917

L
LJQ❤️ 已提交
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

    **Note**:
    ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.fmax(x, y)
            print(res)
            #    [ 2., 3., 5.]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.fmax(x, y)
            print(res)
            #    [  5.,   3., inf.]
    """
    op_type = 'elementwise_fmax'
    axis = -1
    act = None
974 975 976
    if in_dygraph_mode():
        return _C_ops.final_state_fmax(x, y, axis)
    if _in_legacy_dygraph():
L
LJQ❤️ 已提交
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

    **Note**:
    ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.fmin(x, y)
            print(res)
            #       [ 1., 3., 5.]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.fmin(x, y)
            print(res)
            #       [   1., -inf.,    5.]
    """
    op_type = 'elementwise_fmin'
    axis = -1
    act = None
1037 1038 1039
    if in_dygraph_mode():
        return _C_ops.final_state_fmin(x, y, axis)
    if _in_legacy_dygraph():
L
LJQ❤️ 已提交
1040 1041 1042 1043
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

1044 1045
for func in [
        add,
1046
        multiply
1047
]:
1048
    proto_dict = {'add': 'elementwise_add', 'multiply': 'elementwise_mul'}
1049 1050
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
1051 1052 1053 1054 1055 1056 1057
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
1058 1059
        op_proto,
        additional_args_lines=additional_args_lines,
1060
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
1061
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
1062
        }) + """\n""" + str(func.__doc__)
1063

Y
Yang Zhang 已提交
1064

1065
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1066 1067 1068 1069
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1070
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1071 1072
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1073
            Tensor with a single element, otherwise must be in the
1074 1075 1076 1077 1078 1079 1080
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1081
            value is False.
1082
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1083 1084

    Returns:
1085
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1086 1087
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`, 
        otherwise it's data type is the same as `x`.
1088 1089 1090 1091 1092

    Examples:
        .. code-block:: python

            import paddle
1093

1094
            # x is a Tensor with following elements:
1095 1096 1097
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
1098 1099
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1100
            out1 = paddle.sum(x)  # [3.5]
1101 1102 1103
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
1104

1105
            # y is a Tensor with shape [2, 2, 2] and elements as below:
1106 1107 1108
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
1109 1110
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
1111 1112
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
            
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
            out7 = paddle.sum(x)  # [4]
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
1123
    """
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

1135 1136 1137 1138
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1139 1140 1141 1142 1143 1144 1145

    if in_dygraph_mode():
        if reduce_all_flag:
            axis = range(len(x.shape))
        else:
            axis = axis if axis != None and axis != [] else [0]

1146
        return _C_ops.final_state_sum(x, axis, dtype, keepdim)
F
From00 已提交
1147 1148

    if _in_legacy_dygraph():
1149
        axis = axis if axis != None and axis != [] else [0]
1150
        if dtype_flag:
W
wanghuancoder 已提交
1151
            return _C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
1152
                                       'reduce_all', reduce_all_flag, 'in_dtype',
1153
                                       x.dtype, 'out_dtype', dtype)
1154
        else:
W
wanghuancoder 已提交
1155
            return _C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
1156
                                       'reduce_all', reduce_all_flag)
W
wanghuancoder 已提交
1157 1158 1159 1160 1161 1162 1163

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

1164 1165 1166
    if dtype_flag:
        attrs.update({
            'in_dtype': x.dtype,
1167
            'out_dtype': dtype
1168
        })
W
wanghuancoder 已提交
1169

1170
    check_variable_and_dtype(
1171
        x, 'x', ['bool', 'float16', 'float32', 'float64',
1172
                'int16', 'int32', 'int64', 'complex64', 'complex128',
1173 1174
                u'bool', u'float16', u'float32', u'float64',
                u'int32', u'int64', u'complex64', u'complex128'], 'sum')
1175

1176 1177
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

1178 1179 1180
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
1181
            dtype=dtype)
1182
    else:
1183
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1184 1185
    helper.append_op(
        type='reduce_sum',
1186
        inputs={'X': x},
1187 1188 1189
        outputs={'Out': out},
        attrs=attrs)
    return out
1190

1191

W
wangguanqun 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1209
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            # x is a Tensor with following elements:
            #    [[nan, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, -nan, 0.7]]
            # Each example is followed by the corresponding output tensor.
            x = np.array([[float('nan'), 0.3, 0.5, 0.9],
                            [0.1, 0.2, float('-nan'), 0.7]]).astype(np.float32)
            x = paddle.to_tensor(x)
            out1 = paddle.nansum(x)  # [2.7]
            out2 = paddle.nansum(x, axis=0)  # [0.1, 0.5, 0.5, 1.6]
            out3 = paddle.nansum(x, axis=-1)  # [1.7, 1.0]
            out4 = paddle.nansum(x, axis=1, keepdim=True)  # [[1.7], [1.0]]

            # y is a Tensor with shape [2, 2, 2] and elements as below:
            #      [[[1, nan], [3, 4]],
            #      [[5, 6], [-nan, 8]]]
            # Each example is followed by the corresponding output tensor.
            y = np.array([[[1, float('nan')], [3, 4]], 
                            [[5, 6], [float('-nan'), 8]]])
            y = paddle.to_tensor(y)
            out5 = paddle.nansum(y, axis=[1, 2]) # [8, 19]
            out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18]
    """
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'nansum')
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                                  [0.1, 0.2, float('-nan'), 0.7]])
            out1 = paddle.nanmean(x)
            # [0.44999996]
            out2 = paddle.nanmean(x, axis=0)
            # [0.1, 0.25, 0.5, 0.79999995]
            out3 = paddle.nanmean(x, axis=0, keepdim=True)
            # [[0.1, 0.25, 0.5, 0.79999995]]
            out4 = paddle.nanmean(x, axis=1)
            # [0.56666666 0.33333334]
            out5 = paddle.nanmean(x, axis=1, keepdim=True)
            # [[0.56666666]
            #  [0.33333334]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
                                   [[5, 6], [float('-nan'), 8]]])
            out6 = paddle.nanmean(y, axis=[1, 2])
            # [2.66666675, 6.33333349]
            out7 = paddle.nanmean(y, axis=[0, 1])
            # [3., 6.]
    """
    if isinstance(axis, int):
        axis = [axis]
    check_variable_and_dtype(x, 'x/input',
                             ['uint16', 'float16', 'float32', 'float64'],
                             'nanmean' )
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

    cnt = paddle.sum(~paddle.isnan(x), axis = axis,keepdim=keepdim)
    return paddle.divide(paddle.nansum(x, axis=axis, keepdim=keepdim, name=name), cnt.astype(x.dtype))


1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python
            :name: count_nonzero-example

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            out1 = paddle.count_nonzero(x)
            # [3]
            out2 = paddle.count_nonzero(x, axis=0)
            # [0, 1, 2]
            out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            # [[0, 1, 2]]
            out4 = paddle.count_nonzero(x, axis=1)
            # [2, 1, 0]
            out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            #[[2],
            # [1],
            # [0]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
                                  [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            out6 = paddle.count_nonzero(y, axis=[1, 2])
            # [3, 6]
            out7 = paddle.count_nonzero(y, axis=[0, 1])
            # [1, 3, 5]
    """


    if axis is not None:
        if isinstance(axis, int):
            axis = [axis]
        dims = len(x.shape)
        for i in range(len(axis)):
            if not isinstance(axis[i], int) or not (axis[i] < dims and axis[i] >= -dims):
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1384
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1385
def add_n(inputs, name=None):
1386
    """
1387
    Sum one or more Tensor of the input.
S
Steffy-zxf 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
    
    For example:

    .. code-block:: text
    
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
       
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1422 1423

    Args:
1424
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1425
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1426
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1427 1428

    Returns:
S
Steffy-zxf 已提交
1429
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1430 1431 1432

    Examples:
        .. code-block:: python
1433
          :name: code-example1
1434 1435
            import paddle

S
Steffy-zxf 已提交
1436 1437 1438 1439 1440
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
            # [[8., 10., 12.], 
            #  [14., 16., 18.]]
1441
    """
1442 1443 1444
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
1445 1446 1447
        for x in inputs:
            if not x.is_dense():
                return _C_ops.sum(inputs, 'use_mkldnn', False)
1448 1449
        return _C_ops.final_state_add_n(inputs)
    if _in_legacy_dygraph():
S
Steffy-zxf 已提交
1450 1451
        if isinstance(inputs, Variable):
            inputs = [inputs]
W
wanghuancoder 已提交
1452
        return _C_ops.sum(inputs, 'use_mkldnn', False)
1453

S
Steffy-zxf 已提交
1454 1455
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1456 1457 1458 1459
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
W
WangXi 已提交
1460
                   ['float16', 'float32', 'float64', 'int32', 'int64'], 'add_n')
1461 1462
    else:
        check_variable_and_dtype(inputs, "inputs", \
W
WangXi 已提交
1463
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'add_n')
1464 1465


1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
    
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: The output Tensor of trunc.
    
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
J
Jiabin Yang 已提交
1505 1506
    if in_dygraph_mode():
        return  _C_ops.final_state_trunc(input)
1507
    else:
J
Jiabin Yang 已提交
1508 1509 1510 1511 1512
        if _in_legacy_dygraph():
            return _C_ops.trunc(input)
        else:
            inputs = {"X": input}
            attrs = {}
1513

J
Jiabin Yang 已提交
1514 1515 1516
            helper = LayerHelper("trunc", **locals())
            check_variable_and_dtype(input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc')
            out = helper.create_variable_for_type_inference(dtype=input.dtype)
1517

J
Jiabin Yang 已提交
1518 1519 1520
            helper.append_op(
                type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out})
            return out
1521 1522 1523



W
WuHaobo 已提交
1524
def mm(input, mat2, name=None):
1525
    """
S
swtkiwi 已提交
1526

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1538
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1539
        mat2 (Tensor): The input tensor which is a Tensor.
1540
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1541 1542

    Returns:
N
Noel 已提交
1543
        Tensor: The product Tensor.
1544

W
wawltor 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

1577 1578 1579 1580
    Examples:
        .. code-block:: python

            import paddle
1581 1582 1583 1584 1585 1586 1587 1588
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1589

1590
    """
1591 1592 1593
    if in_dygraph_mode():
        return _C_ops.final_state_matmul(input, mat2, False, False)
    elif paddle.in_dynamic_mode():
1594
        return _C_ops.matmul_v2(input, mat2)
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
1632
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
1633
    helper.append_op(
1634
        type='matmul_v2', inputs={'X': input,
1635 1636
                               'Y': mat2}, outputs={'Out': out})
    return out
1637

1638

Y
yaoxuefeng 已提交
1639
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1640 1641 1642
    """
    **addmm**

1643
    Perform matrix multiplication for input $x$ and $y$.
1644 1645 1646 1647 1648 1649 1650 1651 1652
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1653 1654 1655
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1656 1657
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
1658
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1659 1660

    Returns:
1661
        Tensor: The output Tensor of addmm.
1662 1663 1664

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
1665
            
1666 1667
            import paddle

Y
yaoxuefeng 已提交
1668 1669 1670
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1671

Y
yaoxuefeng 已提交
1672
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1673

N
Noel 已提交
1674
            print(out)
1675 1676 1677
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1678 1679 1680
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
1681 1682
    if not len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(x_shape, y_shape))
Y
yaoxuefeng 已提交
1683 1684
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
                raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
                raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
                raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
            raise ValueError("The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(input_shape, x_shape[0], y_shape[1]))
    else:
        raise ValueError("The dimention of input should be 2 or 1 but receive input's shape: {}".format(input_shape))
Y
yaoxuefeng 已提交
1699 1700 1701



J
Jiabin Yang 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710
    if in_dygraph_mode():
        return _C_ops.final_state_addmm( input, x, y, alpha, beta)
    else:
        if _in_legacy_dygraph():
            out = _C_ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
            return out
        else:
            inputs = {'Input': input, "X": x, "Y": y}
            attrs = {'Alpha': alpha, 'Beta': beta}
1711

J
Jiabin Yang 已提交
1712 1713 1714 1715 1716
            helper = LayerHelper("addmm", **locals())
            check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
            check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
            check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1717

J
Jiabin Yang 已提交
1718 1719 1720
            helper.append_op(
                type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
            return out
1721

S
seemingwang 已提交
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
    part, if the p-norm for part i is larger than max-norm, then each element 
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
        ..  code-block:: python
            
            import paddle
            input = [[[2.0,2,-2],[3,0.3,3]],[[2,-8,2],[3.1,3.7,3]]]
            x = paddle.to_tensor(input,dtype='float32')
            y = paddle.renorm(x, 1.0, 2, 2.05)
            print(y)        
    #        [[[ 0.40594056,  0.29285714, -0.41000000],
    #          [ 0.60891086,  0.04392857,  0.61500001]],
    #         [[ 0.40594056, -1.17142856,  0.41000000],
    #          [ 0.62920785,  0.54178572,  0.61500001]]])
    
    """
    input_shape = x.shape
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
    if not axis < len(input_shape):
        raise ValueError("the axis:{} should be less then the shape's size {}:{}".format(axis,len(input_shape),input_shape))
    if not axis >=0:
        if not axis >= -1 * len(input_shape):
            raise ValueError("the axis:{} should not be less than -1 * length of input_shape:{}".format(axis,-1 * len(input_shape)))
        axis = axis + len(input_shape)
Z
zhiboniu 已提交
1764
    if paddle.in_dynamic_mode():
H
hong 已提交
1765
        out = _C_ops.renorm(x, 'p',p, 'axis',axis, 'max_norm', max_norm)
S
seemingwang 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
        return out

    inputs = {'X': x}
    attrs = {'p': p, 'axis': axis, 'max_norm':max_norm}

    helper = LayerHelper("renorm", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out

1778

Z
zhiboniu 已提交
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789

def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
    
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
1790
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            out = paddle.inner(x, y)
            print(out)
            #        ([[14, 32, 50],
            #         [32, 77, 122]])


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
        dstshape = list(xshape[:-1])+list(yshape[:-1])
        if len(dstshape)==0:
            dstshape = [1]
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

1819 1820 1821
        if in_dygraph_mode():
            return _C_ops.final_state_matmul(nx, ny.T, False, False).reshape(dstshape)
        elif paddle.in_dynamic_mode():
Z
zhiboniu 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
            return _C_ops.matmul_v2(nx, ny.T).reshape(dstshape)

        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(val, name,
                                        ['float16', 'float32', 'float64'], 'inner')
            x_shape = list(xshape)
            y_shape = list(yshape)

            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-1]:
                if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                    raise ValueError(
                        "After performing an optional transpose, Input X's last dim should be "
                        "equal to Y's last dim for multiplication "
                        "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                        % (x_shape, y_shape))

        __check_input(nx, ny)

        helper = LayerHelper('inner', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
        helper.append_op(
            type='matmul_v2', inputs={'X': nx,
                                'Y': ny.T}, outputs={'Out': out})
        return out.reshape(dstshape)


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. 
        y (Tensor): An N-D Tensor or a Scalar Tensor. 
1861
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 4).astype('float32')
            y = paddle.arange(1, 6).astype('float32')
            out = paddle.outer(x, y)
            print(out)
            #        ([[1, 2, 3, 4, 5],
            #         [2, 4, 6, 8, 10],
            #         [3, 6, 9, 12, 15]])


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

1883 1884 1885
    if in_dygraph_mode():
        return _C_ops.final_state_matmul(nx, ny, False, False)
    elif paddle.in_dynamic_mode():
Z
zhiboniu 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
        return _C_ops.matmul_v2(nx, ny)

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'inner')

    __check_input(nx, ny)

    helper = LayerHelper('outer', **locals())
    out = helper.create_variable_for_type_inference(dtype=nx.dtype)
    helper.append_op(
        type='matmul_v2', inputs={'X': nx,
                               'Y': ny}, outputs={'Out': out})
    return out


1904
def logsumexp(x, axis=None, keepdim=False, name=None):
1905
    r"""
1906
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
1907

1908
    .. math::
1909
       logsumexp(x) = \log\sum exp(x)
1910

1911
    Args:
S
Shang Zhizhou 已提交
1912 1913
        x (Tensor): The input Tensor with data type float32 or float64, which 
            have no more than 4 dimensions.
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1930

1931
    Returns:
1932 1933
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
1934

1935
    Examples:
1936

1937
    .. code-block:: python
1938

1939 1940
        import paddle

1941
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
1942 1943
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1944 1945

    """
1946 1947 1948 1949 1950 1951 1952
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1953

1954 1955 1956 1957 1958
    if in_dygraph_mode():
        if reduce_all:
            axis = range(len(x.shape))
        return _C_ops.final_state_logsumexp(x, axis, keepdim, reduce_all)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1959
        return _C_ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
1960

1961 1962 1963
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1964

1965
    helper = LayerHelper('logsumexp', **locals())
1966
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
1967 1968 1969 1970
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1971

S
swtkiwi 已提交
1972

1973 1974
def inverse(x, name=None):
    """
1975 1976 1977 1978 1979
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1980
        x (Tensor): The input tensor. The last two
1981 1982 1983
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
1984
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1985 1986

    Returns:
1987
        Tensor: A Tensor holds the inverse of x. The shape and data type
1988
                        is the same as x.
1989 1990 1991 1992 1993

    Examples:
        .. code-block:: python

            import paddle
1994 1995

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
1996 1997
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1998 1999

    """
2000 2001 2002
    if in_dygraph_mode():
        return _C_ops.final_state_inverse(x)
    elif paddle.in_dynamic_mode():
W
wanghuancoder 已提交
2003
        return _C_ops.inverse(x)
2004

2005 2006
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
2007
                                 ['float32', 'float64'], 'inverse')
2008
        if len(x.shape) < 2:
2009 2010 2011
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
2012 2013
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
2014
    helper = LayerHelper('inverse', **locals())
2015
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2016
    helper.append_op(
2017
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
2018 2019
    return out

T
Tao Luo 已提交
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
def _get_reduce_all_value(axis):
    """
    Internal function for max, min, amax and amin. 
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    return reduce_all, axis
2037

2038
def max(x, axis=None, keepdim=False, name=None):
2039
    """
S
swtkiwi 已提交
2040

2041
    Computes the maximum of tensor elements over the given axis.
2042

T
Tao Luo 已提交
2043 2044 2045 2046 2047 2048
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
        amax evenly distributes gradient between these equal values, 
        while max propagates gradient to all of them.


2049
    Args:
2050 2051
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2052
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2053
            `x` and return a Tensor with a single element,
2054 2055
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2056
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2057
            output Tensor. The result tensor will have one fewer dimension
2058
            than the `x` unless :attr:`keepdim` is true, default
2059
            value is False.
2060
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2061 2062

    Returns:
2063
        Tensor, results of maximum on the specified axis of input tensor,
2064
        it's data type is the same as `x`.
2065 2066 2067

    Examples:
        .. code-block:: python
2068

2069
            import paddle
2070

N
Noel 已提交
2071
            # data_x is a Tensor with shape [2, 4]
2072
            # the axis is a int element
2073
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2074 2075
                                  [0.1, 0.2, 0.6, 0.7]], 
                                 dtype='float64', stop_gradient=False)
2076
            result1 = paddle.max(x)
2077 2078 2079 2080 2081
            result1.backward()
            print(result1, x.grad) 
            #[0.9], [[0., 0., 0., 1.], [0., 0., 0., 0.]]

            x.clear_grad()
2082
            result2 = paddle.max(x, axis=0)
2083 2084 2085 2086 2087
            result2.backward()
            print(result2, x.grad) 
            #[0.2, 0.3, 0.6, 0.9], [[1., 1., 0., 1.], [0., 0., 1., 0.]]

            x.clear_grad()
2088
            result3 = paddle.max(x, axis=-1)
2089 2090 2091 2092 2093
            result3.backward()
            print(result3, x.grad) 
            #[0.9, 0.7], [[0., 0., 0., 1.], [0., 0., 0., 1.]]

            x.clear_grad()
2094
            result4 = paddle.max(x, axis=1, keepdim=True)
2095 2096 2097
            result4.backward()
            print(result4, x.grad) 
            #[[0.9], [0.7]], [[0., 0., 0., 1.], [0., 0., 0., 1.]]
2098

N
Noel 已提交
2099
            # data_y is a Tensor with shape [2, 2, 2]
2100
            # the axis is list 
2101
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2102 2103
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2104
            result5 = paddle.max(y, axis=[1, 2])
2105 2106 2107 2108 2109
            result5.backward()
            print(result5, y.grad) 
            #[4., 8.], [[[0., 0.], [0., 1.]], [[0., 0.], [0., 1.]]]

            y.clear_grad()
2110
            result6 = paddle.max(y, axis=[0, 1])
2111 2112 2113
            result6.backward()
            print(result6, y.grad) 
            #[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
2114 2115
    """

T
Tao Luo 已提交
2116
    reduce_all, axis = _get_reduce_all_value(axis)
2117 2118 2119 2120 2121
    if in_dygraph_mode():
        if reduce_all:
            axis = range(len(x.shape))
        return _C_ops.final_state_max(x, axis, keepdim)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
2122
        return _C_ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
2123
                                   'reduce_all', reduce_all)
2124

2125
    helper = LayerHelper('max', **locals())
2126
    check_variable_and_dtype(
2127
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
2128

2129
    out = helper.create_variable_for_type_inference(
2130
            dtype=x.dtype)
2131 2132
    helper.append_op(
        type='reduce_max',
2133
        inputs={'X': x},
2134 2135
        outputs={'Out': out},
        attrs={
2136 2137
            'dim': axis,
            'keep_dim': keepdim,
2138 2139 2140 2141
            'reduce_all': reduce_all
        })
    return out

2142
def min(x, axis=None, keepdim=False, name=None):
2143
    """
S
swtkiwi 已提交
2144

2145
    Computes the minimum of tensor elements over the given axis
2146

T
Tao Luo 已提交
2147 2148 2149 2150 2151
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
        amin evenly distributes gradient between these equal values, 
        while min propagates gradient to all of them.

2152
    Args:
2153 2154
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2155
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2156
            `x` and return a Tensor with a single element,
2157 2158
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2159
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2160
            output Tensor. The result tensor will have one fewer dimension
2161
            than the `x` unless :attr:`keepdim` is true, default
2162
            value is False.
2163
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2164

2165
    Returns:
2166
        Tensor, results of minimum on the specified axis of input tensor,
2167
        it's data type is the same as input's Tensor.
2168

2169 2170 2171
    Examples:
        .. code-block:: python

2172
            import paddle
2173

2174
            # data_x is a Tensor with shape [2, 4]
2175
            # the axis is a int element
2176
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2177 2178
                                  [0.1, 0.2, 0.6, 0.7]], 
                                 dtype='float64', stop_gradient=False)
2179
            result1 = paddle.min(x)
2180 2181 2182 2183 2184
            result1.backward()
            print(result1, x.grad) 
            #[0.1], [[0., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2185
            result2 = paddle.min(x, axis=0)
2186 2187 2188 2189 2190
            result2.backward()
            print(result2, x.grad) 
            #[0.1, 0.2, 0.5, 0.7], [[0., 0., 1., 0.], [1., 1., 0., 1.]]

            x.clear_grad()
2191
            result3 = paddle.min(x, axis=-1)
2192 2193 2194 2195 2196
            result3.backward()
            print(result3, x.grad) 
            #[0.2, 0.1], [[1., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2197
            result4 = paddle.min(x, axis=1, keepdim=True)
2198 2199 2200
            result4.backward()
            print(result4, x.grad) 
            #[[0.2], [0.1]], [[1., 0., 0., 0.], [1., 0., 0., 0.]]
2201

2202
            # data_y is a Tensor with shape [2, 2, 2]
2203
            # the axis is list 
2204
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2205 2206
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2207
            result5 = paddle.min(y, axis=[1, 2])
2208 2209 2210 2211 2212
            result5.backward()
            print(result5, y.grad) 
            #[1., 5.], [[[1., 0.], [0., 0.]], [[1., 0.], [0., 0.]]]

            y.clear_grad()
2213
            result6 = paddle.min(y, axis=[0, 1])
2214 2215 2216
            result6.backward()
            print(result6, y.grad) 
            #[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
2217
    """
2218

T
Tao Luo 已提交
2219
    reduce_all, axis = _get_reduce_all_value(axis)
2220 2221 2222 2223 2224 2225
    if in_dygraph_mode():
        if reduce_all:
            axis = range(len(x.shape))
        return _C_ops.final_state_min(x, axis, keepdim)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
2226
        return _C_ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
2227
                                   'reduce_all', reduce_all)
2228 2229 2230 2231 2232 2233

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
2234
            dtype=x.dtype)
2235 2236
    helper.append_op(
        type='reduce_min',
2237
        inputs={'X': x},
2238 2239
        outputs={'Out': out},
        attrs={
2240 2241
            'dim': axis,
            'keep_dim': keepdim,
2242 2243 2244 2245
            'reduce_all': reduce_all
        })
    return out

T
Tao Luo 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
        amax evenly distributes gradient between these equal values, 
        while max propagates gradient to all of them.

    Args:
2256
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2257
            the dimension is no more than 4.
2258
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2259 2260 2261 2262
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2263
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2264 2265 2266
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2267
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
                                  [0.9, 0.9, 0.6, 0.7]], 
                                 dtype='float64', stop_gradient=False)
T
Tao Luo 已提交
2283 2284 2285 2286 2287
            # There are 5 maximum elements: 
            # 1) amax evenly distributes gradient between these equal values, 
            #    thus the corresponding gradients are 1/5=0.2;
            # 2) while max propagates gradient to all of them, 
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2288 2289 2290 2291 2292
            result1 = paddle.amax(x)
            result1.backward()
            print(result1, x.grad) 
            #[0.9], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2293 2294 2295 2296 2297 2298 2299 2300
            x.clear_grad()
            result1_max = paddle.max(x)
            result1_max.backward()
            print(result1_max, x.grad) 
            #[0.9], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
            x.clear_grad()
            result2 = paddle.amax(x, axis=0)
            result2.backward()
            print(result2, x.grad) 
            #[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amax(x, axis=-1)
            result3.backward()
            print(result3, x.grad) 
            #[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amax(x, axis=1, keepdim=True)
            result4.backward()
            print(result4, x.grad) 
            #[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
            # the axis is list 
            y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
                                  [[0.9, 0.9], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amax(y, axis=[1, 2])
            result5.backward()
            print(result5, y.grad) 
            #[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amax(y, axis=[0, 1])
            result6.backward()
            print(result6, y.grad) 
            #[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """

    reduce_all, axis = _get_reduce_all_value(axis)
2337 2338 2339 2340 2341
    if in_dygraph_mode():
        if reduce_all:
            axis = range(len(x.shape))
        return _C_ops.final_state_amax(x,  axis,  keepdim)
    if _in_legacy_dygraph():
T
Tao Luo 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
        return _C_ops.reduce_amax(x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all)

    helper = LayerHelper('amax', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax')

    out = helper.create_variable_for_type_inference(
            dtype=x.dtype)
    helper.append_op(
        type='reduce_amax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all
        })
    return out

def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
        amin evenly distributes gradient between these equal values, 
        while min propagates gradient to all of them.

    Args:
2372
        x (Tensor): A tensor, the data type is float32, float64, int32, int64, 
2373
            the dimension is no more than 4.
2374
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
2375 2376 2377 2378
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2379
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2380 2381 2382
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2383
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
                                  [0.1, 0.1, 0.6, 0.7]], 
                                 dtype='float64', stop_gradient=False)
T
Tao Luo 已提交
2399 2400 2401 2402 2403
            # There are 5 minimum elements: 
            # 1) amin evenly distributes gradient between these equal values, 
            #    thus the corresponding gradients are 1/5=0.2;
            # 2) while min propagates gradient to all of them, 
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2404 2405 2406 2407 2408
            result1 = paddle.amin(x)
            result1.backward()
            print(result1, x.grad) 
            #[0.1], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2409 2410 2411 2412 2413 2414 2415 2416
            x.clear_grad()
            result1_min = paddle.min(x)
            result1_min.backward()
            print(result1_min, x.grad) 
            #[0.1], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
            x.clear_grad()
            result2 = paddle.amin(x, axis=0)
            result2.backward()
            print(result2, x.grad) 
            #[0.1, 0.1, 0.1, 0.1], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amin(x, axis=-1)
            result3.backward()
            print(result3, x.grad) 
            #[0.1, 0.1], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amin(x, axis=1, keepdim=True)
            result4.backward()
            print(result4, x.grad) 
            #[[0.1], [0.1]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
            # the axis is list 
            y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
                                  [[0.1, 0.1], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amin(y, axis=[1, 2])
            result5.backward()
            print(result5, y.grad) 
            #[0.1., 0.1], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amin(y, axis=[0, 1])
            result6.backward()
            print(result6, y.grad) 
            #[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """

    reduce_all, axis = _get_reduce_all_value(axis)
2453 2454 2455 2456 2457
    if in_dygraph_mode():
        if reduce_all:
            axis = range(len(x.shape))
        return _C_ops.final_state_amin(x, axis, keepdim)
    elif _in_legacy_dygraph():
T
Tao Luo 已提交
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
        return _C_ops.reduce_amin(x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all)
    helper = LayerHelper('amin', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin')

    out = helper.create_variable_for_type_inference(
            dtype=x.dtype)
    helper.append_op(
        type='reduce_amin',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all
        })
    return out

W
WuHaobo 已提交
2476
def log1p(x, name=None):
2477
    r"""
2478
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
2479

2480
    .. math::
2481
        Out = \ln(x+1)
S
Steffy-zxf 已提交
2482

2483
    Args:
S
Steffy-zxf 已提交
2484
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
2485 2486
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        
2487
    Returns:
S
Steffy-zxf 已提交
2488
        Tensor, the natural log of the input Tensor computed element-wise.
2489

2490 2491
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
2492

2493
            import paddle
S
Steffy-zxf 已提交
2494 2495 2496 2497

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
2498 2499
    """

2500 2501 2502
    if in_dygraph_mode():
        return _C_ops.final_state_log1p(x)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
2503
        return _C_ops.log1p(x)
2504 2505 2506 2507 2508

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
2509
    out = helper.create_variable_for_type_inference(dtype)
2510 2511
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
2512

J
joejiong 已提交
2513
def log2(x, name=None):
2514
    r"""
J
joejiong 已提交
2515 2516 2517 2518
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

2519
        Out = \log_2x
J
joejiong 已提交
2520 2521 2522

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2523
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
2551 2552 2553
    if in_dygraph_mode():
        return _C_ops.final_state_log2(x)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
2554
        return _C_ops.log2(x)
J
joejiong 已提交
2555 2556 2557 2558 2559 2560 2561 2562

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
2563

J
joejiong 已提交
2564 2565

def log10(x, name=None):
2566
    r"""
J
joejiong 已提交
2567 2568 2569 2570
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

2571
        Out = \log_10_x
J
joejiong 已提交
2572 2573 2574

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2575
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
2603 2604 2605
    if in_dygraph_mode():
        return _C_ops.final_state_log10(x)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
2606
        return _C_ops.log10(x)
J
joejiong 已提交
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


Y
Yang Zhang 已提交
2617
def clip(x, min=None, max=None, name=None):
2618
    """
Y
Yang Zhang 已提交
2619
    This operator clip all elements in input into the range [ min, max ] and return
2620 2621 2622 2623
    a resulting tensor as the following equation:

    .. math::

2624
        Out = MIN(MAX(x, min), max)
2625 2626

    Args:
2627
        x (Tensor): An N-D Tensor with data type float32, float64, int32 or int64.
2628
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``Tensor``
2629
            with shape [1] and type ``int32``, ``float32``, ``float64``.
2630
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``Tensor``
2631
            with shape [1] and type ``int32``, ``float32``, ``float64``.
2632
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2633 2634

    Returns:
Y
Yang Zhang 已提交
2635
        Tensor: A Tensor with the same data type and data shape as input.
2636 2637 2638 2639 2640

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
2641

2642
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
2643 2644
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
2645
            print(out1)
Y
Yang Zhang 已提交
2646 2647
            # [[3.5, 3.5]
            # [4.5, 5.0]]
2648
            print(out2)
Y
Yang Zhang 已提交
2649 2650
            # [[2.5, 3.5]
            # [[4.5, 6.4]
2651 2652
    """

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
2663

C
chentianyu03 已提交
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
    if in_dygraph_mode():
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
        min = min_ if min is None else min
        max = max_ if max is None else max
        return _C_ops.final_state_clip(x, min, max)

    if _in_legacy_dygraph():
2674 2675 2676 2677
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
2678 2679
        min = min_ if min is None else min
        max = max_ if max is None else max
W
wanghuancoder 已提交
2680
        return _C_ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
2681

2682
    if min is not None:
Y
Yang Zhang 已提交
2683
        check_type(min, 'min', (float, int, Variable), 'clip')
2684 2685
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
2686
                        'clip', '(When the type of min in clip is Variable.)')
2687
    if max is not None:
Y
Yang Zhang 已提交
2688
        check_type(max, 'max', (float, int, Variable), 'clip')
2689 2690
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
2691
                        'clip', '(When the type of max in clip is Variable.)')
2692

2693
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'clip')
Y
Yang Zhang 已提交
2694 2695

    inputs = {'X': x}
2696
    attrs = {'min': min_, 'max': max_}
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
2710
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
2711
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
2712
        dtype=helper.input_dtype('x'))
2713 2714 2715 2716
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
2717

W
WuHaobo 已提交
2718

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
        min = min.numpy().item(0)
    if isinstance(max, Variable):
        max = max.numpy().item(0)
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
2733 2734 2735 2736 2737 2738

    if in_dygraph_mode():
        return _C_ops.final_state_clip_(x, min, max)

    if _in_legacy_dygraph():
        return _C_ops.clip_(x, "min", min, "max", max)
2739 2740 2741



2742
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
2743
    """
S
swtkiwi 已提交
2744

2745
    Computes the sum along diagonals of the input tensor x.
2746 2747

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
2748

2749
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
2750
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
2751
    of the input tensor x.
L
Li Fuchen 已提交
2752

2753
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
2754 2755 2756 2757

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
2758
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
2759

L
Li Fuchen 已提交
2760
    Args:
2761 2762 2763 2764 2765
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
2766 2767

    Returns:
2768
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
2769 2770 2771 2772 2773

    Examples:
        .. code-block:: python

            import paddle
2774

2775 2776 2777
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
2778 2779 2780
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
2781 2782
    """
    def __check_input(input, offset, dim1, dim2):
2783
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
2784 2785 2786
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

2787
        input_shape = list(x.shape)
L
Li Fuchen 已提交
2788
        assert len(input_shape) >= 2,                     \
2789 2790
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
2791 2792
                len(input_shape)

2793 2794
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
2795

X
XiangGao 已提交
2796
        assert ((0 <= axis1_) and (axis1_ < len(input_shape))),     \
2797 2798
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
2799

X
XiangGao 已提交
2800
        assert ((0 <= axis2_) and (axis2_ < len(input_shape))),   \
2801 2802
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
2803 2804


2805 2806 2807
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
2808

W
wanghuancoder 已提交
2809
    __check_input(input, offset, axis1, axis2)
H
hong 已提交
2810 2811 2812 2813
    if in_dygraph_mode():
        return _C_ops.final_state_trace( x, offset, axis1, axis2 )

    if _in_legacy_dygraph():
X
XiangGao 已提交
2814 2815 2816 2817
        return _C_ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)

    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
2818 2819
    helper = LayerHelper('trace', **locals())

2820
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
2821 2822 2823

    helper.append_op(
        type='trace',
2824
        inputs={'Input': [x]},
L
Li Fuchen 已提交
2825
        attrs={'offset': offset,
2826 2827
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
2828 2829 2830
        outputs={'Out': [out]})
    return out

2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
    This OP computes the diagonals of the input tensor x.

    If ``x`` is 2D, returns the diagonal.
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2. 
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
    
    Args:
2846 2847 2848 2849 2850
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
            
    """
J
Jiabin Yang 已提交
2896 2897 2898 2899 2900
    if in_dygraph_mode():
        return _C_ops.final_state_diagonal(x, offset, axis1, axis2)
    else:
        if _in_legacy_dygraph():
            return _C_ops.diagonal(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)
W
wanghuancoder 已提交
2901

2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
    def __check_input(input, offset, dim1, dim2):
        check_dtype(x.dtype, 'Input',
                    ['bool', 'int32', 'int64', 'float16', 'float32', 'float64'],
                    'diagonal')

        input_shape = list(x.shape)
        assert len(input_shape) >= 2,                     \
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
                len(input_shape)

        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2

        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)

        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)

        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)

    __check_input(input, offset, axis1, axis2)
    helper = LayerHelper('diagonal', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diagonal',
        inputs={'Input': [x]},
        attrs={'offset': offset,
               'axis1': axis1,
               'axis2': axis2},
               outputs={'Out': [out]})
    return out


F
Feiyu Chan 已提交
2942
@templatedoc(op_type="kron")
W
WuHaobo 已提交
2943
def kron(x, y, name=None):
S
swtkiwi 已提交
2944 2945
    """

2946
    ${comment}
F
Feiyu Chan 已提交
2947 2948

    Args:
2949 2950
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
2951
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
2952 2953

    Returns:
2954
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
2955 2956 2957

    Examples:
        .. code-block:: python
2958

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
2970
    """
2971
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
2972
        return _C_ops.kron(x, y)
2973 2974
    if in_dygraph_mode():
        return _C_ops.final_state_kron(x, y)
F
Feiyu Chan 已提交
2975 2976 2977 2978
    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
2979
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
2980 2981
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
2982 2983 2984 2985


def cumsum(x, axis=None, dtype=None, name=None):
    """
2986 2987 2988
    The cumulative sum of the elements along a given axis. 
    
    **Note**:
2989
    The first element of the result is the same as the first element of the input. 
2990 2991

    Args:
2992
        x (Tensor): The input tensor needed to be cumsumed.
2993 2994 2995 2996 2997
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2998
        Tensor, the result of cumsum operator. 
2999 3000 3001 3002 3003

    Examples:
        .. code-block:: python
            
            import paddle
3004 3005 3006
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
3023
            # paddle.float64
3024 3025 3026 3027 3028 3029
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3030
        x = cast(x, dtype)
3031

H
hong 已提交
3032
    if in_dygraph_mode():
3033
        if axis is None: axis = -1
H
hong 已提交
3034 3035
        return _C_ops.final_state_cumsum(x, axis, flatten, False, False)
    if _in_legacy_dygraph():
3036
        if axis is None:
W
wanghuancoder 已提交
3037
            return _C_ops.cumsum(x, 'flatten', flatten)
3038
        else:
W
wanghuancoder 已提交
3039
            return _C_ops.cumsum(x, 'axis', axis, 'flatten', flatten)
3040 3041 3042 3043 3044 3045 3046 3047 3048

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
3049

3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122

def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis. 

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
    
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the result of logcumsumexp operator. 

    Examples:
        .. code-block:: python
            
            import paddle
            
            data = paddle.arange(12, dtype='float64')
            data = paddle.reshape(data, (3, 4))

            y = paddle.logcumsumexp(data)
            # [ 0.         1.3132617  2.4076061  3.4401898  4.4519143  5.4561934
            #   6.4577627  7.4583397  8.458551   9.45863   10.458658  11.458669 ]

            y = paddle.logcumsumexp(data, axis=0)
            # [[ 0.        1.        2.        3.      ]
            #  [ 4.01815   5.01815   6.01815   7.01815 ]
            #  [ 8.018479  9.018479 10.018479 11.018479]]
            
            y = paddle.logcumsumexp(data, axis=-1)
            # [[ 0.         1.3132617  2.4076061  3.4401898]
            #  [ 4.         5.3132615  6.407606   7.44019  ]
            #  [ 8.         9.313262  10.407606  11.440189 ]]

            y = paddle.logcumsumexp(data, dtype='float64')
            print(y.dtype)
            # paddle.float64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

    if in_dygraph_mode():
        if axis is None: axis = -1
        return _C_ops.final_state_logcumsumexp(x, axis, flatten, False, False)
    if _in_legacy_dygraph():
        if axis is None:
            return _C_ops.logcumsumexp(x, 'flatten', flatten)
        else:
            return _C_ops.logcumsumexp(x, 'axis', axis, 'flatten', flatten)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "logcumsumexp")

    helper = LayerHelper('logcumsumexp', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logcumsumexp', inputs={'X': x}, outputs={'Out': out}, attrs={'axis': axis, 'flatten': flatten})
    return out


H
hlygit66666 已提交
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

    **Note**:
    The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): the input tensor need to be cumproded.
        dim (int): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank), where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64, complex128. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
H
hlygit66666 已提交
3134
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3171
        x = cast(x, dtype)
H
hlygit66666 已提交
3172

3173 3174 3175
    if in_dygraph_mode():
        return _C_ops.final_state_cumprod(x, dim)
    if _in_legacy_dygraph():
H
hlygit66666 已提交
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
        return _C_ops.cumprod(x, 'dim', dim)

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'cumprod')
    check_type(dim, 'dim', int, 'cumprod')

    helper = LayerHelper('cumprod', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='cumprod', inputs={'X': x}, outputs={'Out': out}, attrs={'dim': dim})
    return out

J
Jack Zhou 已提交
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3202

3203
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3204
            out = paddle.isfinite(x)
N
Noel 已提交
3205
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
3206
    """
H
hong 已提交
3207 3208 3209
    if in_dygraph_mode():
        return _C_ops.final_state_isfinite( x )
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3210
        return _C_ops.isfinite_v2(x)
J
Jack Zhou 已提交
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3233

3234
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3235
            out = paddle.isinf(x)
N
Noel 已提交
3236
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
3237
    """
H
hong 已提交
3238 3239 3240
    if in_dygraph_mode():
        return _C_ops.final_state_isinf( x )
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3241
        return _C_ops.isinf_v2(x)
J
Jack Zhou 已提交
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3264
            
3265
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3266
            out = paddle.isnan(x)
N
Noel 已提交
3267
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
3268
    """
H
hong 已提交
3269 3270 3271 3272
    if in_dygraph_mode():
        return _C_ops.final_state_isnan( x )

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3273
        return _C_ops.isnan_v2(x)
J
Jack Zhou 已提交
3274 3275 3276 3277 3278 3279 3280
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
3281 3282 3283 3284 3285
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
3286 3287
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
G
guofei 已提交
3288 3289 3290
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
3291 3292
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
3293
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
G
guofei 已提交
3294 3295 3296
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
3297
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
3298 3299 3300

    Returns:
        Tensor, result of product on the specified dim of input tensor.
J
Jack Zhou 已提交
3301
    
G
guofei 已提交
3302 3303 3304 3305 3306 3307
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
3308 3309
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
3326 3327
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3338
            x = cast(x, dtype)
G
guofei 已提交
3339

3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
    dim = axis
    if dim is not None and not isinstance(dim, list):
        if isinstance(dim, tuple):
            dim = list(dim)
        elif isinstance(dim, int):
            dim = [dim]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".
                format(type(dim)))
3350 3351 3352 3353 3354

    reduce_all = True if dim is None or len(dim) == 0 or len(dim) == len(x.shape) else False
    if dim is None or len(dim) == 0:
        dim = [0]

3355
    if in_dygraph_mode():
3356 3357 3358 3359
        return _C_ops.final_state_reduce_prod(x, dim, keepdim, reduce_all)
    if _in_legacy_dygraph():
        return _C_ops.reduce_prod(
            x, 'dim', dim, 'keep_dim', keepdim, 'reduce_all', reduce_all)
3360 3361 3362

    helper = LayerHelper('reduce_prod', **locals())
    check_variable_and_dtype(
3363
        x, 'x/input', ['float32', 'float64', 'int32', 'int64'], 'reduce_prod')
3364 3365 3366
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_prod',
3367
        inputs={'X': x},
3368 3369
        outputs={'Out': out},
        attrs={
3370 3371 3372
            'dim': dim,
            'keep_dim': keepdim,
            'reduce_all': reduce_all
3373 3374
        })
    return out
W
WangXi 已提交
3375 3376 3377 3378


def sign(x, name=None):
    """
3379
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
3380 3381

    Args:
3382 3383
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
3384 3385 3386 3387 3388 3389 3390 3391 3392

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

3393
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
3394 3395 3396
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
H
hong 已提交
3397 3398 3399 3400
    if in_dygraph_mode():
        return _C_ops.final_state_sign(x)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3401
        return _C_ops.sign(x)
W
WangXi 已提交
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
3413
    r"""
W
WangXi 已提交
3414 3415 3416
    Tanh Activation Operator.

    .. math::
3417
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

3432
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
3433
            out = paddle.tanh(x)
N
Noel 已提交
3434
            print(out)
W
WangXi 已提交
3435 3436
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
H
hong 已提交
3437 3438 3439 3440
    if in_dygraph_mode():
        return _C_ops.final_state_tanh( x )

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3441
        return _C_ops.tanh(x)
W
WangXi 已提交
3442 3443

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
3444
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
3445 3446 3447 3448
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
3449

3450
@inplace_apis_in_dygraph_only
3451 3452 3453 3454 3455
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
W
wanghuancoder 已提交
3456
    return _C_ops.tanh_(x)
3457 3458


S
Steffy-zxf 已提交
3459 3460 3461 3462 3463 3464 3465
def increment(x, value=1.0, name=None):
    """
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
3466
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
H
hong 已提交
3482 3483 3484 3485
    if in_dygraph_mode():
        return _C_ops.final_state_increment( x, value)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3486
        return _C_ops.increment(x, 'step', value)
S
Steffy-zxf 已提交
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)})
    return x
3497 3498 3499 3500


def all(x, axis=None, keepdim=False, name=None):
    """
3501
    Computes the ``logical and`` of tensor elements over the given dimension.
3502 3503 3504 3505 3506

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3507
            Tensor with a single element, otherwise must be in the
3508 3509 3510 3511 3512 3513
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3514
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3515 3516 3517 3518 3519 3520 3521 3522

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3523

N
Noel 已提交
3524
            # x is a bool Tensor with following elements:
3525 3526
            #    [[True, False]
            #     [True, True]]
C
Chen Long 已提交
3527
            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
3528
            print(x)
S
syyxsxx 已提交
3529
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3530

3531 3532 3533
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
C
Chen Long 已提交
3534

3535 3536 3537
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
C
Chen Long 已提交
3538 3539

            # keepdim=False, out3 should be [False, True], out.shape should be (2,)
3540 3541
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
C
Chen Long 已提交
3542 3543 3544

            # keepdim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keepdim=True) # [[False], [True]]
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

3559 3560 3561 3562 3563 3564
    if in_dygraph_mode():
        if reduce_all_flag:
            axis = range(len(x.shape))
        return _C_ops.final_state_all(x, axis, keepdim)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3565
        axis = axis if axis != None and axis != [] else [0]
W
wanghuancoder 已提交
3566
        return _C_ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
W
wanghuancoder 已提交
3567 3568
                                       'reduce_all', reduce_all_flag)

3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    check_variable_and_dtype(x, 'x', ['bool'], 'all')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_all',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
3591
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
3592 3593 3594 3595 3596

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3597
            Tensor with a single element, otherwise must be in the
3598 3599 3600 3601 3602 3603
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3604
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3605 3606 3607 3608 3609 3610 3611 3612

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3613 3614 3615

            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            x = paddle.assign(x)
3616
            print(x)
S
syyxsxx 已提交
3617
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3618 3619 3620 3621
            # x is a bool Tensor with following elements:
            #    [[True, False]
            #     [True, True]]

3622 3623 3624
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
C
Chen Long 已提交
3625

3626 3627
            # out2 should be [True, True]
            out2 = paddle.any(x, axis=0)  # [True, True]
3628
            print(out2)
C
Chen Long 已提交
3629 3630

            # keepdim=False, out3 should be [True, True], out.shape should be (2,)
3631
            out3 = paddle.any(x, axis=-1)  # [True, True]
3632
            print(out3)
C
Chen Long 已提交
3633 3634 3635 3636

            # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keepdim=True)  # [[True], [True]]
            print(out4) 
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

3650 3651 3652 3653 3654 3655
    if in_dygraph_mode():
        if reduce_all_flag:
            axis = range(len(x.shape))
        return _C_ops.final_state_any(x, axis, keepdim)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3656
        axis = axis if axis != None and axis != [] else [0]
W
wanghuancoder 已提交
3657
        return _C_ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
W
wanghuancoder 已提交
3658 3659
                                       'reduce_all', reduce_all_flag)

3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

    check_variable_and_dtype(x, 'x', ['bool'], 'any')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_any',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out
L
Leo Chen 已提交
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705

def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
        

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
            
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
3706 3707 3708 3709 3710 3711

def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
C
Chen Long 已提交
3712
        x (Tensor): The input Tensor which hold the complex numbers. 
3713
            Optional data types are: complex64, complex128, float32, float64, int32 or int64.
3714
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3715 3716

    Returns:
C
Chen Long 已提交
3717
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
3718 3719 3720 3721 3722

    Examples:
        .. code-block:: python

          import paddle
C
Chen Long 已提交
3723
          
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
H
hong 已提交
3735 3736 3737
    if in_dygraph_mode():
        return _C_ops.final_state_conj(x)

Z
zhiboniu 已提交
3738
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
3739
        return _C_ops.conj(x)
3740 3741 3742 3743 3744 3745 3746 3747 3748

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'conj')

    helper = LayerHelper('conj', **locals())
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

    helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
    return out
3749

Z
zyfncg 已提交
3750 3751 3752 3753 3754 3755 3756 3757 3758
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
3759
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

J
Jiabin Yang 已提交
3776 3777 3778 3779 3780
    if in_dygraph_mode():
        return _C_ops.final_state_digamma(x)
    else:
        if _in_legacy_dygraph():
            return _C_ops.digamma(x)
Z
zyfncg 已提交
3781 3782 3783 3784 3785 3786 3787

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'digamma')
    helper = LayerHelper('digamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
    return out

3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.lgamma(x)
            print(out)
            # [1.31452441, 1.76149750, 2.25271273, 1.09579802]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_lgamma(x)
    elif _in_legacy_dygraph():
        return _C_ops.lgamma(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lgamma')
    helper = LayerHelper('lgamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
    return out


3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

Z
zhiboniu 已提交
3847
    return scale(x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name)
R
ronnywang 已提交
3848

3849
def atan2(x, y, name=None):
R
ronnywang 已提交
3850
    r"""
3851
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
3852 3853 3854 3855

    Equation:
        .. math::

3856 3857 3858 3859 3860 3861 3862 3863
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
3864 3865

    Args:
3866 3867
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
3868 3869 3870 3871 3872 3873 3874 3875
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

3876
            import paddle
R
ronnywang 已提交
3877

3878 3879 3880
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
3881

3882 3883 3884
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
3885

3886 3887 3888
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
3889 3890 3891

    """

J
Jiabin Yang 已提交
3892 3893
    if in_dygraph_mode():
        return _C_ops.final_state_atan2( x, y)
R
ronnywang 已提交
3894
    else:
J
Jiabin Yang 已提交
3895 3896 3897 3898 3899
        if _in_legacy_dygraph():
            return _C_ops.atan2(x, y)
        else:
            check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2')
            check_variable_and_dtype(y, 'y', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2')
R
ronnywang 已提交
3900

J
Jiabin Yang 已提交
3901 3902 3903 3904 3905 3906
            helper = LayerHelper('atan2', **locals())
            inputs = {'X1' : x, 'X2' : y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                    type='atan2', inputs=inputs, outputs={'Out': out})
            return out
A
andyjpaddle 已提交
3907

W
wangzhen38 已提交
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
 
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]  

    """

    if eps == None:
        eps = 0.0
3951
    if _in_legacy_dygraph():
W
wangzhen38 已提交
3952
        return _C_ops.logit(x, 'eps', eps)
3953 3954
    if in_dygraph_mode():
        return _C_ops.final_state_logit(x, eps)
W
wangzhen38 已提交
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'logit')
    helper = LayerHelper("logit", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logit',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'eps': eps})
    return out

3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
3975 3976 3977
        x (Tensor): An N-D Tensor with starting points, the data type is float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is float32, float64.
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
            
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
3991
            out = paddle.lerp(x, y, 0.5)
3992 3993 3994
            # out: [5.5., 6., 6.5, 7.]

    """
H
hong 已提交
3995
    if in_dygraph_mode():
3996
        check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
H
hong 已提交
3997 3998 3999 4000 4001
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)

        return _C_ops.final_state_lerp( x, y, weight)
    if _in_legacy_dygraph():
4002 4003 4004 4005
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)
        return _C_ops.lerp(x, y, weight)

4006 4007 4008
    if isinstance(weight, float):
        weight = paddle.full(shape=[1], fill_value=weight, dtype=x.dtype)

4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'], 'lerp')

    helper = LayerHelper('lerp', **locals())
    inputs = {'X': x, 'Y': y, 'Weight': weight}
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
    return out

@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))
    return _C_ops.lerp_(x, y, weight)

W
wuhuanzhou 已提交
4035 4036
def erfinv(x, name=None):
    r"""
4037
    The inverse error function of x.
W
wuhuanzhou 已提交
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060

    Equation:
        .. math::

            erfinv(erf(x)) = x.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
            
            x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            out = paddle.erfinv(x)
            # out: [0, 0.4769, -inf]

    """
H
hong 已提交
4061 4062 4063
    if in_dygraph_mode():
        return _C_ops.final_state_erfinv( x )

W
wuhuanzhou 已提交
4064 4065
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'erfinv')

Z
zhiboniu 已提交
4066
    if paddle.in_dynamic_mode():
W
wuhuanzhou 已提交
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
        return _C_ops.erfinv(x)

    helper = LayerHelper('erfinv', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
    return out

@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
    return _C_ops.erfinv_(x)

4083
def rad2deg(x, name=None):
4084
    r"""
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
    Convert each of the elements of input x from angles in radians to degrees.
    
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

            x2 = paddle.to_tensor(np.pi/2)
            result2 = paddle.rad2deg(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [90.])
                     
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [57.29578018])
    """
    rad2deg_scale = 180 / np.pi
4125 4126 4127 4128 4129
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
        return _C_ops.final_state_scale(x, rad2deg_scale, 0.0, True)
    elif paddle.in_dynamic_mode():
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
        return _C_ops.scale(x, 'scale', rad2deg_scale)
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg')
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            out_cast = helper.create_variable_for_type_inference(dtype=paddle.float32)
            helper.append_op(
                    type='cast', inputs={'X':x}, outputs={'Out': out_cast}, attrs={'in_dtype': x.dtype,'out_dtype': paddle.float32})
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
        helper.append_op(
            type='scale', inputs={'X':out_cast}, outputs={'Out': out}, attrs={'scale': rad2deg_scale})
        return out

def deg2rad(x, name=None):
4147
    r"""
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
    Convert each of the elements of input x from degrees to angles in radians.
    
    Equation:
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274])
    """
    deg2rad_scale = np.pi / 180.0
4182 4183 4184 4185 4186
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
        return _C_ops.final_state_scale(x, deg2rad_scale, 0.0, True)
    elif paddle.in_dynamic_mode():
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
        return _C_ops.scale(x, 'scale', deg2rad_scale)
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad')
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            out_cast = helper.create_variable_for_type_inference(dtype=paddle.float32)
            helper.append_op(
                    type='cast', inputs={'X':x}, outputs={'Out': out_cast}, attrs={'in_dtype': x.dtype,'out_dtype': paddle.float32})
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
        helper.append_op(
            type='scale', inputs={'X':out_cast}, outputs={'Out': out}, attrs={'scale': deg2rad_scale})
        return out
A
andyjpaddle 已提交
4202

T
Tao Luo 已提交
4203 4204 4205 4206 4207 4208 4209 4210
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
    
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
4211 4212
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4213
    Args:
T
Tao Luo 已提交
4214 4215
        x (Tensor): An N-D Tensor, the data type is int32,int64. 
        y (Tensor): An N-D Tensor, the data type is int32,int64. 
T
Tao Luo 已提交
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])

T
Tao Luo 已提交
4232
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20])

            paddle.gcd(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
            
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
        return paddle.any(y != 0)

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
        y_not_equal_0 = (y != 0)
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
        x, y = (paddle.where(y_not_equal_0, y, x),
                  paddle.where(y_not_equal_0, paddle.mod(x, y_safe),paddle.zeros(y.shape, y.dtype)))
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

Z
zhiboniu 已提交
4270
    if paddle.in_dynamic_mode():
T
Tao Luo 已提交
4271 4272 4273 4274 4275
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
4276 4277
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
    
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
4289 4290
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4291
    Args:
T
Tao Luo 已提交
4292 4293
        x (Tensor): An N-D Tensor, the data type is int32,int64. 
        y (Tensor): An N-D Tensor, the data type is int32,int64. 
T
Tao Luo 已提交
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])

T
Tao Luo 已提交
4310
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])

            paddle.lcm(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
            
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
    out = paddle.where(d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe)
    return out

A
andyjpaddle 已提交
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
    The first-order differences is computed by using the following formula: 

    .. math::

        out[i] = x[i+1] - x[i]
    
    Higher-order differences are computed by using paddle.diff() recursively. 
    Only n=1 is currently supported.

    Args:
4351 4352
        x (Tensor): The input tensor to compute the forward difference on
        n (int, optional): The number of times to recursively compute the difference. 
A
andyjpaddle 已提交
4353
                          Only support n=1. Default:1
4354 4355
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
A
andyjpaddle 已提交
4356 4357
                                   It's dimensions must be equivalent to that of x, 
                                   and its shapes must match x's shape except on axis.
4358
        append (Tensor, optional): The tensor to append to input along axis before computing the difference, 
A
andyjpaddle 已提交
4359 4360
                                   It's dimensions must be equivalent to that of x, 
                                   and its shapes must match x's shape except on axis.
4361
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
A
andyjpaddle 已提交
4362 4363 4364 4365 4366 4367 4368 4369
    
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
4370

A
andyjpaddle 已提交
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
            # out: 
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
    infer_flags = list(1 for i in range(len(axes)))
Z
zhiboniu 已提交
4403
    if paddle.in_dynamic_mode():
A
andyjpaddle 已提交
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
4416 4417
            new_input = _varbase_creator()
            _C_ops.concat(input_list, new_input, 'axis', axis)
A
andyjpaddle 已提交
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4430 4431 4432 4433 4434 4435
        if in_dygraph_mode():
            input_front = _C_ops.final_state_slice(new_input, axes, starts_1, ends_1, infer_flags,
                                            [])
        else:
            input_front = _C_ops.slice(new_input, None, None, None, None, 'axes', axes, \
                'infer_flags', infer_flags, *attrs_1)
A
andyjpaddle 已提交
4436 4437 4438 4439
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4440
        if in_dygraph_mode():
4441
            input_back = _C_ops.final_state_slice(new_input, axes, starts_2, ends_2, infer_flags,
4442 4443 4444 4445
                                            [])
        else:
            input_back = _C_ops.slice(new_input, None, None, None, None, 'axes', axes, \
                'infer_flags', infer_flags, *attrs_2)
A
andyjpaddle 已提交
4446 4447

        if x.dtype == paddle.bool:
4448 4449 4450 4451
            if in_dygraph_mode():
                return _C_ops.final_state_logical_xor(input_back, input_front)
            else:
                return _C_ops.logical_xor(input_back, input_front)
A
andyjpaddle 已提交
4452
        else:
4453
            return elementwise_sub(input_back, input_front, axis=axis)
4454

A
andyjpaddle 已提交
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64', 'bool', 'int32', 'int64'], 'diff')
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='concat', inputs={'X': input_list}, outputs={'Out': [new_input]}, attrs={'axis': axis}
            )
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='slice', inputs={'Input': new_input}, attrs=attrs_1, outputs={'Out': input_front}
        )
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='slice', inputs={'Input': new_input}, attrs=attrs_2, outputs={'Out': input_back}
        )

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='logical_xor', inputs={"X": input_back, "Y": input_front}, outputs={"Out": out}
            )
        else:
Z
zhiboniu 已提交
4505
            out = elementwise_sub(input_back, input_front, axis=axis)
A
andyjpaddle 已提交
4506 4507

        return out
F
Feiyu Chan 已提交
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523

def angle(x, name=None):
    r"""
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while 
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4524
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
            print(z.numpy())
            # [[-2.-2.j -2.-1.j -2.+0.j -2.+1.j]
            #  [-1.-2.j -1.-1.j -1.+0.j -1.+1.j]
            #  [ 0.-2.j  0.-1.j  0.+0.j  0.+1.j]
            #  [ 1.-2.j  1.-1.j  1.+0.j  1.+1.j]]

            theta = paddle.angle(z)
            print(theta.numpy())
            # [[-2.3561945 -2.6779451  3.1415927  2.6779451]
            #  [-2.0344439 -2.3561945  3.1415927  2.3561945]
            #  [-1.5707964 -1.5707964  0.         1.5707964]
            #  [-1.1071488 -0.7853982  0.         0.7853982]]
    """

W
WangZhen 已提交
4548 4549 4550
    if in_dygraph_mode():
        return _C_ops.final_state_angle(x)
    elif paddle.in_dynamic_mode():
F
Feiyu Chan 已提交
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
        return _C_ops.angle(x)

    check_variable_and_dtype(x, 'x',
        ['float32', 'float64', 'complex64', 'complex128'], 'angle')
    op_type = "angle"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(x.dtype))
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
4563

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
def heaviside(x, y, name=None):
    """
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
                \\begin{array}{lcl}
                0,& &\\text{if} \ x < 0, \\\\
                y,& &\\text{if} \ x = 0, \\\\
                1,& &\\text{if} \ x > 0.
                \end{array}
            \\right.

    Notes:
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float32, float64, int32 or int64.
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python
            :name: heaviside-example

            import paddle
            x = paddle.to_tensor([-0.5, 0, 0.5])
            y = paddle.to_tensor([0.1])
            paddle.heaviside(x, y)
            #    [0.        , 0.10000000, 1.        ]
            x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            y = paddle.to_tensor([0.1, 0.2, 0.3])
            paddle.heaviside(x, y)
            #    [[0.        , 0.20000000, 1.        ],
            #     [0.        , 1.        , 0.30000001]]
     """
    op_type = 'elementwise_heaviside'
    axis = -1
    act = None
    if _non_static_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

4612 4613 4614 4615 4616 4617
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
4618
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
        .. code-block:: Python

            import paddle
            import numpy as np

            input = paddle.rand([3, 3], 'float32')
            print(input.numpy())
            # [[ 1.2203873  -1.0035421  -0.35193074]
            #  [-0.00928353  0.58917075 -0.8407828 ]
            #  [-1.5131804   0.5850153  -0.17597814]]

            output = paddle.frac(input)
            print(output.numpy())
            # [[ 0.22038734 -0.00354207 -0.35193074]
            #  [-0.00928353  0.58917075 -0.8407828 ]
            #  [-0.5131804   0.5850153  -0.17597814]]
    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
    if x.dtype not in [paddle.int32, paddle.int64, paddle.float32, paddle.float64]:
        raise TypeError(
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(x.dtype))
    if in_dygraph_mode():
        y = _C_ops.final_state_trunc(x)
        return _C_ops.final_state_subtract(x, y)
    else:
        if _in_legacy_dygraph():
            y = _C_ops.trunc(x)
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type)
        else:
            inputs = {"X": x}
            attrs = {}

            helper = LayerHelper("trunc", **locals())
            check_variable_and_dtype(x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc')
            y = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y})
            return _elementwise_op(LayerHelper(op_type, **locals()))