math.py 75.7 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20
from paddle.common_ops_import import *
21 22
from paddle.tensor import cast
import paddle
23
from ..fluid import layers
24
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
25 26
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
27
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
28 29 30

# TODO: define math functions
# yapf: disable
31 32 33 34 35
from ..fluid.layers import abs    #DEFINE_ALIAS
from ..fluid.layers import acos    #DEFINE_ALIAS
from ..fluid.layers import asin    #DEFINE_ALIAS
from ..fluid.layers import ceil    #DEFINE_ALIAS
from ..fluid.layers import cos    #DEFINE_ALIAS
36 37
from ..fluid.layers import sinh    #DEFINE_ALIAS
from ..fluid.layers import cosh    #DEFINE_ALIAS
38 39 40 41 42 43 44
# from ..fluid.layers import elementwise_add    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_div    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_floordiv    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_mod    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_mul    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_pow    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_sub    #DEFINE_ALIAS
45 46 47 48
from ..fluid.layers import exp    #DEFINE_ALIAS
from ..fluid.layers import floor    #DEFINE_ALIAS
from ..fluid.layers import log    #DEFINE_ALIAS
from ..fluid.layers import reciprocal    #DEFINE_ALIAS
49 50
from ..fluid.layers import reduce_all    #DEFINE_ALIAS
from ..fluid.layers import reduce_any    #DEFINE_ALIAS
51 52 53 54
# from ..fluid.layers import reduce_max    #DEFINE_ALIAS
# from ..fluid.layers import reduce_min    #DEFINE_ALIAS
# from ..fluid.layers import reduce_prod    #DEFINE_ALIAS
# from ..fluid.layers import reduce_sum    #DEFINE_ALIAS
55 56 57 58 59 60 61
from ..fluid.layers import round    #DEFINE_ALIAS
from ..fluid.layers import rsqrt    #DEFINE_ALIAS
from ..fluid.layers import scale    #DEFINE_ALIAS
from ..fluid.layers import square    #DEFINE_ALIAS
from ..fluid.layers import stanh    #DEFINE_ALIAS
from ..fluid.layers import atan    #DEFINE_ALIAS
from ..fluid.layers import erf    #DEFINE_ALIAS
62 63
from ..fluid.layers import sqrt    #DEFINE_ALIAS
from ..fluid.layers import sin    #DEFINE_ALIAS
64

65
from ..fluid.layers import multiplex    #DEFINE_ALIAS
G
guofei 已提交
66
from ..fluid import layers
67

68

69
__all__ = [
70 71 72 73 74 75
        'abs',
        'acos',
        'asin',
        'atan',
        'ceil',
        'cos',
76
        'cosh',
77 78 79
        'cumsum',
        'exp',
        'floor',
80
        'increment',
81
        'log',
82
        'logsumexp',
83
        'mul',
84
        'multiplex',
85
        'pow',
86
        'prod',
87 88 89 90 91 92
        'reciprocal',
        'round',
        'rsqrt',
        'scale',
        'sign',
        'sin',
93
        'sinh',
94 95 96 97 98
        'sqrt',
        'square',
        'stanh',
        'sum',
        'tanh',
S
Steffy-zxf 已提交
99
        'add_n',
100
        'max',
101
        'maximum',
102
        'min',
103
        'minimum',
104
        'mm',
105 106 107 108 109
        'divide',
        'floor_divide',
        'remainder',
        'mod',
        'floor_mod',
110
        'multiply',
111 112 113
        'add',
        'atan',
        'logsumexp',
114
        'inverse',
115 116 117 118
        'log1p',
        'erf',
        'addcmul',
        'addmm',
Y
Yang Zhang 已提交
119
        'clip',
L
Li Fuchen 已提交
120
        'trace',
J
Jack Zhou 已提交
121 122 123 124
        'kron',
        'isfinite',
        'isinf',
        'isnan'
125 126 127
]
# yapf: enable.

128 129 130 131 132 133 134 135 136 137 138 139 140
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

141
def pow(x, y, name=None):
142
    """
143
    Compute the power of tensor elements. The equation is:
S
swtkiwi 已提交
144

145 146
    .. math::
        out = x^{y} 
147

148 149
    **Note**:
    ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
150 151


152 153 154 155 156
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        y (Tensor): An N-D Tensor with type float32, float64, int32 or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
157
    Returns:
158
        N-D Tensor. A location into which the result is stored. Its dimension equals with $x$.
159 160 161

    Examples:

162
        ..  code-block:: python
163 164 165

            import paddle

166 167 168
            paddle.disable_static()
            
            # example 1: y is a float
169
            x = paddle.to_tensor([1, 2, 3])
170 171 172 173 174
            y = 2
            res = paddle.pow(x, y)
            print(res.numpy()) # [1 4 9]
            
            # example 2: y is a Tensor
175
            y = paddle.full(shape=[1], fill_value=2, dtype='float32')
176 177
            res = paddle.pow(x, y)
            print(res.numpy()) # [1 4 9]
178 179

    """
180
    # in dynamic graph mode
W
WuHaobo 已提交
181
    if in_dygraph_mode():
182 183 184
        if isinstance(y, (int, float)):
            return core.ops.pow(x, 'factor', y)
        elif isinstance(y, (paddle.Tensor, Variable)):
185

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
            if x.dtype != y.dtype:
                y = cast(y, dtype='float64')
                x = cast(x, dtype='float64')
                out_dygraph = _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
                return out_dygraph

            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    else:
        if isinstance(y, (int, float)):
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            if x.dtype != y.dtype:
                y = cast(y, dtype='float64')
                x = cast(x, dtype='float64')
                out = helper.create_variable_for_type_inference(dtype=x.dtype)
            else:
                out = helper.create_variable_for_type_inference(dtype=x.dtype)
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
219 220 221



222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

242 243
    out = helper.kwargs.get('out', None)

244 245 246 247 248 249 250 251 252 253 254 255
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
256 257 258 259 260 261

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
262 263 264 265 266 267 268 269 270 271 272

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
273
def add(x, y, name=None):
274 275 276 277 278 279 280
    """
Examples:

    ..  code-block:: python

        import paddle

Y
Yang Zhang 已提交
281
        paddle.disable_static()
282 283
        x = paddle.to_tensor([2, 3, 4], 'float64')
        y = paddle.to_tensor([1, 5, 2], 'float64')
W
WuHaobo 已提交
284
        z = paddle.add(x, y)
Y
Yang Zhang 已提交
285 286
        np_z = z.numpy()
        print(np_z)  # [3., 8., 6. ]
287 288 289 290 291 292

    """
    op_type = 'elementwise_add'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
Y
Yang Zhang 已提交
293
            x, y, axis=axis, op_name=op_type)
294 295 296 297

    return _elementwise_op(LayerHelper(op_type, **locals()))


298
def divide(x, y, name=None):
299
    """
300
    Divide two tensors element-wise. The equation is:
301

302 303
    .. math::
        out = x / y
304

305 306
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
307

308 309 310 311
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
312

313 314
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
315

316
    Examples:
317

318
        ..  code-block:: python
319

320
            import paddle
321

322
            paddle.disable_static()
323

324 325
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
326 327
            z = paddle.divide(x, y)
            print(z.numpy())  # [2., 0.6, 2.]
328

329 330 331 332 333 334 335
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
336

337
    return _elementwise_op(LayerHelper(op_type, **locals()))
338 339


340 341 342
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
343

344 345
    .. math::
        out = x // y
346

347 348
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
349

350 351 352 353
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
354

355 356
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
357

358
    Examples:
359

360
        ..  code-block:: python
361

362
            import paddle
363

364
            paddle.disable_static()
365

366 367
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
368 369
            z = paddle.floor_divide(x, y)
            print(z.numpy())  # [2, 0, 2, 2]
370

371 372 373 374 375 376
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
377

378
    return _elementwise_op(LayerHelper(op_type, **locals()))
379 380


381
def remainder(x, y, name=None):
382
    """
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    Mod two tensors element-wise. The equation is:

    .. math::
        out = x \% y

    **Note**:
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.

    Examples:

        ..  code-block:: python

            import paddle

            paddle.disable_static()

407 408
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
409 410 411 412 413
            z = paddle.remainder(x, y)
            print(z.numpy())  # [0, 3, 2, 1]

    """
    op_type = 'elementwise_mod'
414 415 416
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
417
            x, y, axis=axis, op_name=op_type)
418 419 420 421

    return _elementwise_op(LayerHelper(op_type, **locals()))


422 423 424 425
mod = remainder  #DEFINE_ALIAS
floor_mod = remainder  #DEFINE_ALIAS


426 427
def multiply(x, y, axis=-1, name=None):
    """
428
    multiply two tensors element-wise. The equation is:
429

430 431
    .. math::
        out = x * y
432

433 434
    **Note**:
    ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
435

436 437 438 439
    Args:
        x (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
440

441 442
    Returns:
        N-D Tensor. A location into which the result is stored. Its dimension equals with $x$.
443

444 445 446 447 448 449 450
    Examples:

        ..  code-block:: python

            import paddle

            paddle.disable_static()
451 452
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
453 454 455
            res = paddle.multiply(x, y)
            print(res.numpy()) # [[5, 12], [21, 32]]

456 457
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 2])
458 459
            res = paddle.multiply(x, y, axis=1)
            print(res.numpy()) # [[[1, 2, 3], [2, 4, 6]]]
460 461 462 463

    """
    op_type = 'elementwise_mul'
    act = None
464

465 466 467 468 469
    if x.dtype != y.dtype:
        raise TypeError(
            'Input tensors must be same type, but received type of x: %s, type of y: %s '
            % (x.dtype, y.dtype))

470
    if in_dygraph_mode():
471 472 473 474
        if not isinstance(x, (paddle.Tensor)):
            x = paddle.to_tensor(x)
        if not isinstance(y, (paddle.Tensor)):
            y = paddle.to_tensor(y)
475 476 477
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

478 479 480 481 482 483 484
    if not isinstance(x, (paddle.Tensor, Variable)):
        x = paddle.static.data(
            name='x', shape=x.shape, dtype=x.dtype)
    if not isinstance(y, (paddle.Tensor, Variable)):
        y = paddle.static.data(
            name='y', shape=y.shape, dtype=y.dtype)

485 486
    return _elementwise_op(LayerHelper(op_type, **locals()))

487 488 489 490 491 492 493 494 495 496 497
def maximum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()
  
498 499
        x = paddle.to_tensor([[1, 2], [3, 4]])
        y = paddle.to_tensor([[5, 6], [7, 8]])
500 501 502 503 504
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[[5. 6.]
        # [7. 8.]]

505 506
        x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
        y = paddle.to_tensor([1, 2])
507 508 509 510 511
        res = paddle.maximum(x, y, axis=1)
        print(res.numpy())
        #[[[1. 2. 3.]
        #  [2. 2. 3.]]]

512 513
        x = paddle.to_tensor([2, 3, 5], dtype='float32')
        y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
514 515 516 517
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[ 2.  4. nan]

518 519
        x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
        y = paddle.to_tensor([1, 4, 5], dtype='float32')
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[ 5.  4. inf]
    """
    op_type = 'elementwise_max'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

def minimum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np
539

540 541
        paddle.disable_static()
  
542 543
        x = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
        y = paddle.to_tensor([[5, 6], [7, 8]], dtype='float32')
544 545 546 547 548
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[[1. 2.]
        # [3. 4.]]

549 550
        x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]], dtype='float32')
        y = paddle.to_tensor([1, 2], dtype='float32')
551 552 553 554 555
        res = paddle.minimum(x, y, axis=1)
        print(res.numpy())
        #[[[1. 1. 1.]
        #  [2. 2. 2.]]]

556 557
        x = paddle.to_tensor([2, 3, 5], dtype='float32')
        y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
558 559 560 561
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[ 1.  3. nan]

562 563
        x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
        y = paddle.to_tensor([1, 4, 5], dtype='float32')
564 565 566 567 568 569 570 571 572 573
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[1. 3. 5.]
    """
    op_type = 'elementwise_min'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
574

575 576
for func in [
        add,
577 578 579
        maximum,
        minimum,
        multiply
580
]:
581
    proto_dict = {'add': 'elementwise_add', 'div': 'elementwise_div', 'maximum': 'elementwise_max', 'minimum': 'elementwise_min', 'multiply': 'elementwise_mul'}
582 583
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
584 585 586 587 588 589 590
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
591 592
        op_proto,
        additional_args_lines=additional_args_lines,
593
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
594
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
595
        }) + """\n""" + str(func.__doc__)
596

Y
Yang Zhang 已提交
597

598
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
599 600 601 602
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
603 604 605
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
606
            Tensor variable with a single element, otherwise must be in the
607 608 609 610 611 612 613
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
614
            value is False.
615
        name (str, optional): The default value is None. Normally there is no need for
616 617 618
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
619 620
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
        it's data type is the same as `x`.
621 622

    Raises:
623 624
        ValueError: If the data type of `x` is float64, :attr:`dtype` can not be float32 or int32.
        ValueError: If the data type of `x` is int64, :attr:`dtype` can not be int32.
625
        TypeError: The type of :attr:`axis` must be int, list or tuple.
626

627 628 629 630
    Examples:
        .. code-block:: python

            import paddle
631 632
            paddle.disable_static()

633
            # x is a Tensor with following elements:
634 635 636
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
637 638
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
639
            out1 = paddle.sum(x)  # [3.5]
640 641 642
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
643

644
            # y is a Tensor with shape [2, 2, 2] and elements as below:
645 646 647
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
648 649
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
650 651
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
652
    """
653 654 655 656 657 658 659 660 661 662 663
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

664
    attrs = {
665 666 667
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
668 669 670 671
    }
    dtype_flag = False
    if dtype is not None:
        if dtype in ['float64', 'int64']:
672 673
            if (convert_dtype(x.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(x.dtype) == "int32" and dtype == "int64"):
674
                attrs.update({
675
                    'in_dtype': x.dtype,
676 677 678 679 680
                    'out_dtype': convert_np_dtype_to_dtype_(dtype)
                })
                dtype_flag = True

    if in_dygraph_mode():
681
        axis = axis if axis != None and axis != [] else [0]
682
        if dtype_flag:
683 684 685
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
686 687
                                       convert_np_dtype_to_dtype_(dtype))
        else:
688 689
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
690
    check_variable_and_dtype(
691
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sum')
692 693 694 695 696 697 698 699 700 701 702

    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'sum')
        x_dtype = convert_dtype(x.dtype)

        if (x_dtype == "float64" and dtype in ["float32", "int32"]) or \
                (x_dtype == "int64" and dtype == "int32"):
            raise ValueError("The input(x)'s dtype is {} but the attr(dtype) of sum is {}, "
                             "which may cause data type overflows. Please reset attr(dtype) of sum."
                             .format(x_dtype, dtype))

703 704
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

705 706 707 708 709
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
710
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
711 712
    helper.append_op(
        type='reduce_sum',
713
        inputs={'X': x},
714 715 716
        outputs={'Out': out},
        attrs=attrs)
    return out
717

718

719
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
720
def add_n(inputs, name=None):
721 722
    """
    ${comment}
723

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]

    Args:
S
Steffy-zxf 已提交
755 756
        inputs (Tensor|list(Tensor)):  A Tensor list. The shape and data type of the list elements should be consistent.
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
757 758 759 760
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
S
Steffy-zxf 已提交
761
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
762 763 764 765 766 767

    Examples:
        .. code-block:: python

            import paddle

S
Steffy-zxf 已提交
768 769 770 771 772
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
            # [[8., 10., 12.], 
            #  [14., 16., 18.]]
773
    """
S
Steffy-zxf 已提交
774 775 776 777
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
        return core.ops.sum(inputs, 'use_mkldnn', False)
778

S
Steffy-zxf 已提交
779 780
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
781 782 783 784
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
S
Steffy-zxf 已提交
785
                   ['float32', 'float64', 'int32', 'int64'], 'add_n')
786 787
    else:
        check_variable_and_dtype(inputs, "inputs", \
S
Steffy-zxf 已提交
788
                ['float32', 'float64', 'int32', 'int64'], 'add_n')
789 790


791 792 793 794 795 796 797 798 799 800 801
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


W
WuHaobo 已提交
802
def mm(input, mat2, name=None):
803
    """
804 805
	:alias_main: paddle.mm
	:alias: paddle.mm,paddle.tensor.mm,paddle.tensor.math.mm
S
swtkiwi 已提交
806

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        mat2 (Variable): The input variable which is a Tensor or LoDTensor.
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: The product Tensor (or LoDTensor) variable.

    Examples:
        .. code-block:: python

            # Examples to clarify shapes of the inputs and output
            # x: [B, ..., M, K], mat2: [B, ..., K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, ..., M, N]

            # x: [B, M, K], mat2: [B, K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [B, M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [M, N]

            # x: [B, M, K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [B, M]

            # x: [K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [1]

            import paddle
            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[2, 3], dtype='float32')
            mat2 = fluid.data(name='mat2', shape=[3, 2], dtype='float32')
            out = paddle.mm(x, mat2) # out shape is [2, 2]
    """
    if in_dygraph_mode():
W
WuHaobo 已提交
855
        out = _varbase_creator(dtype=input.dtype)
856 857
        core.ops.matmul(input, mat2, out)
        return out
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
895
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
896 897 898 899
    helper.append_op(
        type='matmul', inputs={'X': input,
                               'Y': mat2}, outputs={'Out': out})
    return out
900

901

Y
yaoxuefeng 已提交
902
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
903
    """
904 905
	:alias_main: paddle.addmm
	:alias: paddle.addmm,paddle.tensor.addmm,paddle.tensor.math.addmm
S
swtkiwi 已提交
906

907 908 909 910 911 912 913 914 915 916 917 918
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
919 920 921
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
922
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
923
        alpha (float): Coefficient of $x*y$.
924 925 926
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
Y
yaoxuefeng 已提交
927
        Tensor: The output Tensor of addmm op.
928 929 930

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
931
            
932 933
            import paddle

Y
yaoxuefeng 已提交
934 935 936
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
937

Y
yaoxuefeng 已提交
938
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
939 940

            print( out.numpy() )
941 942 943
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



964 965 966 967
    if in_dygraph_mode():
        out = core.ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
        return out

968 969 970 971
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
972
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
973 974 975 976 977 978 979
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
980 981


982
def logsumexp(x, axis=None, keepdim=False, name=None):
983
    """
984
    This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
985

986
    .. math::
987
       logsumexp(x) = \\log\\sum exp(x)
988

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1007

1008
    Returns:
1009 1010
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
1011

1012
    Examples:
1013

1014
    .. code-block:: python
1015

1016 1017
        import paddle

1018
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
1019 1020
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1021 1022

    """
1023 1024 1025 1026 1027 1028 1029
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1030

1031
    if in_dygraph_mode():
1032
        return core.ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
1033

1034 1035 1036
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1037

1038
    helper = LayerHelper('logsumexp', **locals())
1039
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
1040 1041 1042 1043
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1044

S
swtkiwi 已提交
1045

1046 1047
def inverse(x, name=None):
    """
1048 1049 1050 1051 1052
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1053
        x (Variable): The input tensor. The last two
1054 1055 1056 1057 1058 1059 1060 1061
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1062 1063
        Variable: A Tensor holds the inverse of x. The shape and data type
                        is the same as x.
1064 1065 1066 1067 1068

    Examples:
        .. code-block:: python

            import paddle
1069
            paddle.disable_static()
1070 1071

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
1072 1073
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1074 1075 1076

    """
    if in_dygraph_mode():
1077
        return core.ops.inverse(x)
1078

1079 1080
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1081
                                 ['float32', 'float64'], 'inverse')
1082
        if len(x.shape) < 2:
1083 1084 1085
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1086 1087
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1088
    helper = LayerHelper('inverse', **locals())
1089
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1090
    helper.append_op(
1091
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1092 1093 1094
    return out


1095
def max(x, axis=None, keepdim=False, name=None):
1096
    """
S
swtkiwi 已提交
1097

1098
    Computes the maximum of tensor elements over the given axis.
1099 1100

    Args:
1101
        x(Tensor): A tensor, the data type is float32,
1102
            float64, int32, int64.
1103
        axis(list|int, optional): The axis along which the maximum is computed.
1104
            If :attr:`None`, compute the maximum over all elements of
李灿 已提交
1105
            `x` and return a Tensor variable with a single element,
1106 1107 1108
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1109
            output Tensor. The result tensor will have one fewer dimension
1110
            than the `x` unless :attr:`keepdim` is true, default
1111
            value is False.
1112
        name(str, optional): The default value is None.  Normally there is no need for
1113 1114 1115
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1116
        Tensor, results of maximum on the specified axis of input tensor,
1117
        it's data type is the same as `x`.
1118 1119 1120

    Examples:
        .. code-block:: python
1121

1122
            import paddle
1123

1124 1125 1126 1127
            paddle.disable_static()

            # data_x is a variable with shape [2, 4]
            # the axis is a int element
1128 1129 1130

            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
            result1 = paddle.max(x)
            print(result1.numpy())
            #[0.9]
            result2 = paddle.max(x, axis=0)
            print(result2.numpy()) 
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
            print(result3.numpy())
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
            print(result4.numpy())
            #[[0.9]
            # [0.7]]

            # data_y is a variable with shape [2, 2, 2]
            # the axis is list 
1147 1148 1149

            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1150 1151 1152 1153 1154 1155
            result5 = paddle.max(y, axis=[1, 2])
            print(result5.numpy())
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
            print(result6.numpy())
            #[7. 8.]
1156 1157
    """

1158
    if axis is not None and not isinstance(axis, list):
1159 1160 1161 1162 1163 1164 1165 1166
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1167 1168 1169 1170 1171
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
        return core.ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
                                   'reduce_all', reduce_all)
1172

1173
    helper = LayerHelper('max', **locals())
1174
    check_variable_and_dtype(
1175
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1176

1177 1178
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1179 1180
    helper.append_op(
        type='reduce_max',
1181
        inputs={'X': x},
1182 1183
        outputs={'Out': out},
        attrs={
1184 1185
            'dim': axis,
            'keep_dim': keepdim,
1186 1187 1188 1189
            'reduce_all': reduce_all
        })
    return out

1190
def min(x, axis=None, keepdim=False, name=None):
1191
    """
S
swtkiwi 已提交
1192

1193
    Computes the minimum of tensor elements over the given axis
1194

1195
    Args:
1196 1197
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis(list|int, optional): The axis along which the minimum is computed.
1198
            If :attr:`None`, compute the minimum over all elements of
1199
            `x` and return a Tensor variable with a single element,
1200 1201 1202
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1203
            output Tensor. The result tensor will have one fewer dimension
1204
            than the `x` unless :attr:`keepdim` is true, default
1205
            value is False.
W
WuHaobo 已提交
1206
        name(str, optional): The default value is None.  Normally there is no need for 
1207
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1208

1209
    Returns:
1210
        Tensor, results of minimum on the specified axis of input tensor,
1211
        it's data type is the same as input's Tensor.
1212

1213 1214 1215
    Examples:
        .. code-block:: python

1216
            import paddle
1217

1218
            paddle.disable_static()
1219

1220
            # x is a tensor with shape [2, 4]
1221
            # the axis is a int element
1222 1223
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
            result1 = paddle.min(x)
            print(result1.numpy())
            #[0.1]
            result2 = paddle.min(x, axis=0)
            print(result2.numpy())
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
            print(result3.numpy()) 
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
            print(result4.numpy())
            #[[0.2]
            # [0.1]]

1238
            # y is a variable with shape [2, 2, 2]
1239
            # the axis is list 
1240 1241
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1242 1243 1244 1245 1246 1247 1248
            result5 = paddle.min(y, axis=[1, 2])
            print(result5.numpy()) 
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
            print(result6.numpy())
            #[1. 2.]
    """
1249

1250
    if axis is not None and not isinstance(axis, list):
1251 1252 1253 1254 1255 1256 1257
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1258 1259
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1260
    if in_dygraph_mode():
1261
        return core.ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1262
                                   'reduce_all', reduce_all)
1263 1264 1265 1266 1267 1268 1269

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1270 1271
    helper.append_op(
        type='reduce_min',
1272
        inputs={'X': x},
1273 1274
        outputs={'Out': out},
        attrs={
1275 1276
            'dim': axis,
            'keep_dim': keepdim,
1277 1278 1279 1280 1281
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1282
def log1p(x, name=None):
1283 1284 1285 1286
    """
    Calculates the natural log of the given input tensor, element-wise.
    .. math::
        Out = \\ln(x+1)
S
Steffy-zxf 已提交
1287

1288
    Args:
S
Steffy-zxf 已提交
1289
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
1290 1291 1292
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
S
Steffy-zxf 已提交
1293
        Tensor, the natural log of the input Tensor computed element-wise.
1294

1295 1296
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
1297

1298
            import paddle
S
Steffy-zxf 已提交
1299 1300 1301 1302

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
1303 1304 1305 1306 1307 1308 1309 1310 1311
    """

    if in_dygraph_mode():
        return core.ops.log1p(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1312
    out = helper.create_variable_for_type_inference(dtype)
1313 1314
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1315

W
WuHaobo 已提交
1316

W
WuHaobo 已提交
1317
def addcmul(input, tensor1, tensor2, value=1.0, name=None):
B
Bai Yifan 已提交
1318
    """
S
swtkiwi 已提交
1319

B
Bai Yifan 已提交
1320 1321 1322 1323 1324
    Calculate the element-wise multiplication of tensor1 and tensor2,
    then multiply the result by value, and add it to input. The shape of input,
    tensor1, tensor2 should be broadcastable.
    The equation is:
    ..  math::
1325

B
Bai Yifan 已提交
1326 1327
        out = input + value * tensor1 * tensor2
    Args:
1328 1329 1330
        input(Tensor): The input to be added. A Tensor with type float32, float64, int32, int64.
        tensor1(Tensor): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        tensor2(Tensor): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
B
Bai Yifan 已提交
1331 1332 1333 1334
        value(int|float): The multiplier for tensor1*tensor2. For float32 and float64 type input, value must be float, otherwise an integer.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
1335
        out(Tensor): The output result. A Tensor with the same data type as input's.
B
Bai Yifan 已提交
1336 1337
    Examples:
        .. code-block:: python
1338
          
B
Bai Yifan 已提交
1339
          import paddle
1340 1341 1342
          input = paddle.ones([2,2])
          tensor1 = paddle.ones([2,2])
          tensor2 = paddle.ones([2,2])
1343
          out = paddle.tensor.math.addcmul(input, tensor1, tensor2, value=0.5)
1344 1345 1346
          print(out.numpy())
          # [[1.5 1.5]
          # [1.5 1.5]]
B
Bai Yifan 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
    """

    check_variable_and_dtype(input, 'input', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor1, 'tensor1', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor2, 'tensor2', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    if convert_dtype(input.dtype) in ['float32', 'float64']:
        check_type(value, 'value', float, 'addcmul')
    if convert_dtype(input.dtype) in ['int32', 'int64']:
        check_type(value, 'value', int, 'addcmul')

W
WuHaobo 已提交
1357
    out = layers.elementwise_add(input, layers.elementwise_mul(tensor1, tensor2) * value)
B
Bai Yifan 已提交
1358
    return out
1359 1360


Y
Yang Zhang 已提交
1361
def clip(x, min=None, max=None, name=None):
1362
    """
Y
Yang Zhang 已提交
1363 1364
        :alias_main: paddle.clip
        :alias: paddle.clip,paddle.tensor.clip,paddle.tensor.math.clip
S
swtkiwi 已提交
1365

Y
Yang Zhang 已提交
1366
    **clip layer**
1367

Y
Yang Zhang 已提交
1368
    This operator clip all elements in input into the range [ min, max ] and return
1369 1370 1371 1372
    a resulting tensor as the following equation:

    .. math::

1373
        Out = MIN(MAX(x, min), max)
1374 1375

    Args:
Y
Yang Zhang 已提交
1376 1377
        x (Tensor): An N-D Tensor with data type float32 or float64.
        min (float32|Tensor): The lower bound with type ``float32`` or a ``Tensor``
1378
            with shape [1] and type ``int32``, ``float32``, ``float64``.
Y
Yang Zhang 已提交
1379
        max (float32|Tensor): The upper bound with type ``float32`` or a ``Tensor``
1380 1381 1382 1383 1384 1385
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1386
        Tensor: A Tensor with the same data type and data shape as input.
1387 1388 1389 1390 1391 1392

    Examples:
        .. code-block:: python

            import paddle

Y
Yang Zhang 已提交
1393
            paddle.disable_static()
1394
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
1395 1396 1397 1398 1399 1400 1401 1402
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
            print(out1.numpy())
            # [[3.5, 3.5]
            # [4.5, 5.0]]
            print(out2.numpy())
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1403 1404
    """

Y
Yang Zhang 已提交
1405 1406
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
1407

W
WuHaobo 已提交
1408
    if in_dygraph_mode():
1409 1410 1411 1412
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
Y
Yang Zhang 已提交
1413 1414
        min = fmin if min is None else min
        max = fmax if max is None else max
Y
Yang Zhang 已提交
1415
        return core.ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1416

1417
    if min is not None:
Y
Yang Zhang 已提交
1418
        check_type(min, 'min', (float, int, Variable), 'clip')
1419 1420
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1421
                        'clip', '(When the type of min in clip is Variable.)')
1422
    if max is not None:
Y
Yang Zhang 已提交
1423
        check_type(max, 'max', (float, int, Variable), 'clip')
1424 1425
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1426
                        'clip', '(When the type of max in clip is Variable.)')
1427

Y
Yang Zhang 已提交
1428
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'clip')
Y
Yang Zhang 已提交
1429 1430

    inputs = {'X': x}
Y
Yang Zhang 已提交
1431
    attrs = {'min': fmin, 'max': fmax}
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1445
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1446
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1447
        dtype=helper.input_dtype('x'))
1448 1449 1450 1451
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1452

W
WuHaobo 已提交
1453

1454
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1455
    """
1456
    **trace**
S
swtkiwi 已提交
1457

1458
    This OP computes the sum along diagonals of the input tensor x.
1459 1460

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1461

1462
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1463
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1464
    of the input tensor x.
L
Li Fuchen 已提交
1465

1466
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1467 1468 1469 1470

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1471
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
1472

L
Li Fuchen 已提交
1473
    Args:
1474
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
1475 1476 1477
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1478 1479 1480
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
1481
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
1482 1483 1484 1485 1486

    Examples:
        .. code-block:: python

            import paddle
1487

1488 1489 1490
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
1491 1492 1493
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1494
    """
1495 1496
    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1497 1498

    def __check_input(input, offset, dim1, dim2):
1499
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1500 1501 1502
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1503
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1504
        assert len(input_shape) >= 2,                     \
1505 1506
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1507 1508
                len(input_shape)

1509 1510
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1511

1512 1513 1514
        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1515

1516 1517 1518
        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1519 1520


1521 1522 1523
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1524

1525 1526 1527
    if in_dygraph_mode():
        return core.ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)

L
Li Fuchen 已提交
1528
    if not in_dygraph_mode():
1529
        __check_input(input, offset, axis1, axis2)
L
Li Fuchen 已提交
1530 1531
    helper = LayerHelper('trace', **locals())

1532
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1533 1534 1535

    helper.append_op(
        type='trace',
1536
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1537
        attrs={'offset': offset,
1538 1539
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1540 1541 1542
        outputs={'Out': [out]})
    return out

F
Feiyu Chan 已提交
1543
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1544
def kron(x, y, name=None):
S
swtkiwi 已提交
1545
    """
1546 1547
	:alias_main: paddle.kron
	:alias: paddle.kron,paddle.tensor.kron,paddle.tensor.math.kron
S
swtkiwi 已提交
1548 1549

${comment}
F
Feiyu Chan 已提交
1550 1551

    Args:
1552
        x (Variable): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1553
            float64, int32 or int64.
1554 1555
        y (Variable): the second operand of kron op, data type: float16,
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1556
            with x.
1557 1558
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1559 1560 1561 1562 1563 1564 1565
            refer to :ref:`api_guide_Name`.

    Returns:
        Variable: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.

    Examples:
        .. code-block:: python
1566

F
Feiyu Chan 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
          import paddle
          from paddle import fluid
          import paddle.fluid.dygraph as dg
          import numpy as np

          a = np.arange(1, 5).reshape(2, 2).astype(np.float32)
          b = np.arange(1, 10).reshape(3, 3).astype(np.float32)

          place = fluid.CPUPlace()
          with dg.guard(place):
              a_var = dg.to_variable(a)
              b_var = dg.to_variable(b)
              c_var = paddle.kron(a_var, b_var)
              c_np = c_var.numpy()
          print(c_np)

          #[[ 1.  2.  3.  2.  4.  6.]
          # [ 4.  5.  6.  8. 10. 12.]
          # [ 7.  8.  9. 14. 16. 18.]
          # [ 3.  6.  9.  4.  8. 12.]
          # [12. 15. 18. 16. 20. 24.]
          # [21. 24. 27. 28. 32. 36.]]
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1597
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1598 1599
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1600 1601 1602 1603


def cumsum(x, axis=None, dtype=None, name=None):
    """
1604 1605 1606 1607
    The cumulative sum of the elements along a given axis. 
    
    **Note**:
    The first element of the result is the same of the first element of the input. 
1608 1609

    Args:
1610
        x (Tensor): The input tensor needed to be cumsumed.
1611 1612 1613 1614 1615
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1616
        Tensor, the result of cumsum operator. 
1617 1618 1619 1620 1621

    Examples:
        .. code-block:: python
            
            import paddle
1622 1623 1624
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
            return core.ops.cumsum(x, 'flatten', flatten)
        else:
            return core.ops.cumsum(x, 'axis', axis, 'flatten', flatten)

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
1664

J
Jack Zhou 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1682
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
            out = paddle.tensor.isfinite(x)
            print(out.numpy())  # [False  True  True False  True False False]
    """
    if in_dygraph_mode():
        return core.ops.isfinite_v2(x)
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1711
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
            out = paddle.tensor.isinf(x)
            print(out.numpy())  # [ True False False  True False False False]
    """
    if in_dygraph_mode():
        return core.ops.isinf_v2(x)
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1740
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
            out = paddle.tensor.isnan(x)
            print(out.numpy())  # [False False False False False  True  True]
    """
    if in_dygraph_mode():
        return core.ops.isnan_v2(x)
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
1753 1754 1755 1756 1757
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
1758
        x(Tensor): The input tensor, its data type should be float32, float64, int32, int64.
G
guofei 已提交
1759 1760 1761 1762 1763 1764 1765 1766 1767
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
1768
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
G
guofei 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
J
Jack Zhou 已提交
1778
    
G
guofei 已提交
1779 1780 1781 1782 1783 1784 1785 1786
    Examples:
        .. code-block:: python

            import paddle

            paddle.disable_static()

            # the axis is a int element
1787 1788
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
            out1 = paddle.prod(x)
            print(out1.numpy())
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            print(out2.numpy())
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            print(out3.numpy())
            # [0.02 0.06 0.3  0.63]
            print(out3.numpy().dtype)
            # float32

            out4 = paddle.prod(x, 0, keepdim=True)
            print(out4.numpy())
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            print(out5.numpy())
            # [0 0 0 0]
            print(out5.numpy().dtype)
            # int64

            # the axis is list
1814 1815
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
            out6 = paddle.prod(y, [0, 1])
            print(out6.numpy())
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            print(out7.numpy())
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)
W
WangXi 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850


def sign(x, name=None):
    """
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): The default value is None. Normally there is no need for user to
            set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

          paddle.disable_static()
1851
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
    if in_dygraph_mode():
        return core.ops.sign(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
    """
    Tanh Activation Operator.

    .. math::
        out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

            paddle.disable_static()
1888
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
1889 1890 1891 1892 1893 1894 1895 1896
            out = paddle.tanh(x)
            print(out.numpy())
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
    if in_dygraph_mode():
        return core.ops.tanh(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
1897
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
1898 1899 1900 1901
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937

def increment(x, value=1.0, name=None):
    """
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
        value(float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
    if in_dygraph_mode():
        return core.ops.increment(x, 'step', value)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)})
    return x
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135


def all(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical and`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
            Tensor variable with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np
            
            # set as static mode
            paddle.disable_static()
            
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            print(x)
            x = layers.cast(x, 'bool')
            
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [False, True], out.shape should be (2,)
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
            
            # keep_dim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keep_dim=True)
            out4 = layers.cast(out4, 'int32')  # [[False], [True]]
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    dtype_flag = False


    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
        return core.ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
    check_variable_and_dtype(x, 'x', ['bool'], 'all')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_all',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical or`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
            Tensor variable with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np
            
            # set as static mode
            paddle.disable_static()
            
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            print(x)
            x = layers.cast(x, 'bool')
            
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.any(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [True, False], out.shape should be (2,)
            out3 = paddle.any(x, axis=-1)  # [True, False]
            print(out3)
            
            # keep_dim=True, result should be [[True], [False]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keep_dim=True)
            out4 = layers.cast(out4, 'int32')  # [[True], [False]]
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    dtype_flag = False


    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
        return core.ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
    check_variable_and_dtype(x, 'x', ['bool'], 'any')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_any',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out