math.py 65.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
18

19
from paddle.common_ops_import import *
20
from ..fluid import layers
L
Li Fuchen 已提交
21 22 23
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
24
from ..fluid.layers.layer_function_generator import _generate_doc_string_
25
import sys
26 27 28

# TODO: define math functions
# yapf: disable
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
from ..fluid.layers import abs    #DEFINE_ALIAS
from ..fluid.layers import acos    #DEFINE_ALIAS
from ..fluid.layers import asin    #DEFINE_ALIAS
from ..fluid.layers import ceil    #DEFINE_ALIAS
from ..fluid.layers import cos    #DEFINE_ALIAS
from ..fluid.layers import cumsum    #DEFINE_ALIAS
from ..fluid.layers import elementwise_add    #DEFINE_ALIAS
from ..fluid.layers import elementwise_div    #DEFINE_ALIAS
from ..fluid.layers import elementwise_floordiv    #DEFINE_ALIAS
from ..fluid.layers import elementwise_max    #DEFINE_ALIAS
from ..fluid.layers import elementwise_min    #DEFINE_ALIAS
from ..fluid.layers import elementwise_mod    #DEFINE_ALIAS
from ..fluid.layers import elementwise_mul    #DEFINE_ALIAS
from ..fluid.layers import elementwise_pow    #DEFINE_ALIAS
from ..fluid.layers import elementwise_sub    #DEFINE_ALIAS
from ..fluid.layers import exp    #DEFINE_ALIAS
from ..fluid.layers import floor    #DEFINE_ALIAS
from ..fluid.layers import log    #DEFINE_ALIAS
from ..fluid.layers import reciprocal    #DEFINE_ALIAS
from ..fluid.layers import reduce_max    #DEFINE_ALIAS
from ..fluid.layers import reduce_min    #DEFINE_ALIAS
from ..fluid.layers import reduce_prod    #DEFINE_ALIAS
from ..fluid.layers import reduce_sum    #DEFINE_ALIAS
from ..fluid.layers import round    #DEFINE_ALIAS
from ..fluid.layers import rsqrt    #DEFINE_ALIAS
from ..fluid.layers import scale    #DEFINE_ALIAS
from ..fluid.layers import sign    #DEFINE_ALIAS
from ..fluid.layers import square    #DEFINE_ALIAS
from ..fluid.layers import stanh    #DEFINE_ALIAS
from ..fluid.layers import atan    #DEFINE_ALIAS
from ..fluid.layers import erf    #DEFINE_ALIAS

61
__all__ = [
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        'abs',
        'acos',
        'asin',
        'atan',
        'ceil',
        'cos',
        'cumsum',
        'elementwise_add',
        'elementwise_div',
        'elementwise_floordiv',
        'elementwise_max',
        'elementwise_min',
        'elementwise_mod',
        'elementwise_mul',
        'elementwise_pow',
        'elementwise_sub',
        'exp',
        'floor',
#       'increment',
        'log',
        'mul',
#       'multiplex',
        'pow',
        'reciprocal',
        'reduce_max',
        'reduce_min',
        'reduce_prod',
        'reduce_sum',
        'round',
        'rsqrt',
        'scale',
        'sign',
        'sin',
        'sqrt',
        'square',
        'stanh',
        'sum',
#       'sums',
        'tanh',
        'elementwise_sum',
        'max',
        'min',
        'mm',
        'div',
        'add',
        'atan',
        'logsumexp',
109
        'inverse',
110 111 112 113 114
        'log1p',
        'erf',
        'addcmul',
        'addmm',
        'clamp',
L
Li Fuchen 已提交
115
        'trace',
116
        'kron'
117
]
118

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
# yapf: enable.


def generate_op_noattr(op_type):
    """Register the Python layer for an Operator without Attribute..

    Args:
       op_type: The name of the operator to be created.

    This function takes in the operator type (sin, tanh etc) and
    creates the operator functionality.

    """
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)

    def func(x, name=None, out=None):
        if in_dygraph_mode():
            op = getattr(core.ops, op_type)
            return op(x)

        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 op_type)
        helper = LayerHelper(op_type, **locals())

        if name and out:
            warnings.warn(
                "Both name and out parameters have been set in fluid.tensor.math.%s(), only out will take effect to specify the result storage. "
                "You can discard either one to solve this warning." % op_type,
                category=UserWarning,
                stacklevel=2)
        if not out:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type=op_type, inputs={"X": x}, outputs={"Out": out})
        return out

    func.__name__ = op_type
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
            "name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`.\n    "
            "out(Variable, optional): The default value is None. Optional output can be any created Variable that meets the requirements to store the result of operation. if out is None, a new Varibale will be create to store the result."
        ])
    func.__doc__ = func.__doc__ + """

Return type
  Variable
Examples:
    .. code-block:: python

        import numpy as np
        
        import paddle
        import paddle.fluid as fluid

        inputs = fluid.data(name="x", shape = [None, 4], dtype='float32')
        output = paddle.%s(inputs)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        #input.shape=1X4, batch_size=1
        img = np.array([[1.0, 2.0, 3.0, 4.0]]).astype(np.float32)
        res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
        print(res)
""" % op_type
    return func

186 187 188
@templatedoc()
def pow(input, exponent, out=None, name=None):
    """
S
swtkiwi 已提交
189 190 191
	:alias_main: paddle.pow
	:alias: paddle.pow,paddle.tensor.pow,paddle.tensor.math.pow

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    This is Pow Activation Operator.

    :math:`out = input^{exponent}`

    Args:
        input(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32`` or ``float64``.
        exponent(float32|Variable): A scalar with type ``float32`` or a ``Tensor`` with shape [1] and type ``float32``.
        out (Variable, optional):  The Variable that stores results of the operation. 
            If out is None, a new Variable will be created to store the results.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``input``.

    Examples:

        .. code-block:: python

            import paddle
212
            import paddle.fluid as fluid
213

214
            x = fluid.data(name="x", shape=[32,32], dtype="float32")
215 216

            # example 1: argument exponent is float
217
            res = fluid.data(name="output", shape=[32,32], dtype="float32")
218 219 220 221
            y_1 = paddle.pow(x, 2.0, out=res)
            # y_1 is x^{2.0}

            # example 2: argument exponent is Variable
222
            exponent_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
223
            res = fluid.data(name="output", shape=[32,32], dtype="float32")
224
            y_2 = paddle.pow(x, exponent_tensor, out=res)
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
            # y_2 is x^{3.0}
    """
    helper = LayerHelper('pow', **locals())
    inputs = {'X': input}
    attrs = {}
    if isinstance(exponent, Variable):
        exponent.stop_gradient = True
        inputs['FactorTensor'] = exponent
    else:
        attrs['factor'] = exponent

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        check_dtype(
            out.dtype, out.name,
            convert_dtype(input.dtype), 'pow',
            '(The out data type in pow must be the same with input data type.)')
        if name:
            warnings.warn(
                "The output Variable name of the paddle.tensor.pow operation can only be given by parameter out or name. \
                When parameter out and name are set at the same time, out has a higher priority than name. \
                Finally, the output Variable name is same as the out name %s"
                                                                              %
                out.name,
                category=UserWarning,
                stacklevel=2)

    helper.append_op(
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out


def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, out=None, name=None):
    """
S
swtkiwi 已提交
260 261 262
	:alias_main: paddle.mul
	:alias: paddle.mul,paddle.tensor.mul,paddle.tensor.math.mul

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. 
    But the output only shares the LoD information with input $x$.

    Args:
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. 
            If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional 
            matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first 
            dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` 
            dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). 
            As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' 
            sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` 
            dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], 
            and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1. 
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the 
            input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. 
            The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. 
            Default is 1. 
        out(Variable, optinal): The Variable that stores results of the operation. If out is None, 
            a new Variable will be created to store the results.
        name (str, optional): Name of the output. Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`. Default is None. If both of out and name are not None, 
            the output name will be same as out. 

    Returns:
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.

    Examples:
        ..  code-block:: python
            
            import paddle
302 303 304
            import paddle.fluid as fluid
            dataX = fluid.data(name="dataX", shape=[2, 5], dtype="float32")
            dataY = fluid.data(name="dataY", shape=[5, 3], dtype="float32")
305
            
306
            res = fluid.data(name="output", shape=[2, 3], dtype="float32")
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
            output = paddle.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1, 
                                      out=res)
            

    """
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
    if in_dygraph_mode():
        outs = core.ops.mul(inputs, attrs)
        return outs['Out'][0]

    helper = LayerHelper("mul", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        check_dtype(
            out.dtype, out.name,
            convert_dtype(x.dtype), 'mul',
            '(The out data type in pow must be the same with input data type.)')
        if name:
            warnings.warn(
                "The output Variable name of the paddle.tensor.pow operation can only be given by parameter out or name.\
                When parameter out and name are set at the same time, out has a higher priority than name. \
                Finally, the output Variable name is same as the out name %s"
                                                                              %
                out.name,
                category=UserWarning,
                stacklevel=2)
    helper.append_op(
        type="mul", inputs={"X": x,
                            "Y": y}, attrs=attrs, outputs={"Out": out})
    return out

345 346 347 348 349 350 351 352 353 354

__ops__noattr__ = [
    'atan',
    'sin',
    'sqrt',
    'tanh',
]

for _OP in set(__ops__noattr__):
    globals()[_OP] = generate_op_noattr(_OP)
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408


@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
    out = helper.kwargs.get('out', None)
    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


def add(x, y, alpha=1, out=None, name=None):
    """
S
swtkiwi 已提交
409 410 411
	:alias_main: paddle.add
	:alias: paddle.add,paddle.tensor.add,paddle.tensor.math.add

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
Examples:

    .. code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
            }

        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
        z1 = paddle.add(x, y)
        z2 = paddle.add(x, y, alpha=10)
        # z = x + y

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z1.name, z2.name])

        print(z_value[0]) # [3., 8., 6.]
        print(z_value[1]) # [12. 53. 24.]


    .. code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((4, 5)).astype('float32')
            }

        x = fluid.data(name="x", shape=[2, 3, 4, 5], dtype='float32')
        y = fluid.data(name="y", shape=[4, 5], dtype='float32')
        z = paddle.add(x, y, name='z')
        # z = x + y

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value[0])
        print(z_value[0].shape) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }

        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
        z = paddle.add(x, y)
        # z = x / y

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value[0])
        print(z_value[0].shape) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        x = fluid.data(name="x", shape=[3], dtype="float32")
        y = fluid.data(name='y', shape=[3], dtype='float32')

        output = fluid.data(name="output", shape=[3], dtype="float32")
        z = paddle.add(x, y, out=output)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        data1 = np.array([2, 3, 4], dtype='float32')
        data2 = np.array([1, 5, 2], dtype='float32')
        z_value = exe.run(feed={'x': data1,
                                'y': data2},
                                fetch_list=[z])
        print(z_value[0]) # [3. 8. 6.]


    ..  code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = fluid.dygraph.to_variable(np_x)
            y = fluid.dygraph.to_variable(np_y)
            z = paddle.add(x, y, alpha=-0.5)
            np_z = z.numpy()
            print(np_z)  # [1.5, 0.5, 3. ]

    """
    op_type = 'elementwise_add'
    axis = -1
    act = None
    if alpha != 1:
        y = scale(y, scale=alpha)
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

    original_op_type = 'add'
    if name and out:
        warnings.warn(
            "Both name and out parameters have been set in paddle.tensor.%s, only out will take effect to specify the result storage. "
            "You can discard either one to solve this warning." %
            original_op_type,
            category=UserWarning,
            stacklevel=2)
    return _elementwise_op(LayerHelper(op_type, **locals()))


def div(x, y, out=None, name=None):
    """
S
swtkiwi 已提交
554 555 556
	:alias_main: paddle.div
	:alias: paddle.div,paddle.tensor.div,paddle.tensor.math.div

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
Examples:

    .. code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
            }

        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
        z = paddle.div(x, y)
        # z = x / y

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # [2., 0.6, 2.]


    .. code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((4, 5)).astype('float32')
            }

        x = fluid.data(name="x", shape=[2, 3, 4, 5], dtype='float32')
        y = fluid.data(name="y", shape=[4, 5], dtype='float32')
        z = paddle.div(x, y, name='z')
        # z = x / y

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value[0])
        print(z_value[0].shape) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }

        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
        output = fluid.data(name="output", shape=[2,3,4,5], dtype="float32")
        z = paddle.div(x, y, out=output)
        # z = x / y

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value[0])
        print(z_value[0].shape) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        with fluid.dygraph.guard(fluid.CPUPlace()):
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = fluid.dygraph.to_variable(np_x)
            y = fluid.dygraph.to_variable(np_y)
            z = paddle.div(x, y)
            np_z = z.numpy()
            print(np_z)  # [2., 0.6, 2.]

    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

    original_op_type = 'div'
    if name and out:
        warnings.warn(
            "Both name and out parameters have been set in paddle.tensor.%s, only out will take effect to specify the result storage. "
            "You can discard either one to solve this warning." %
            original_op_type,
            category=UserWarning,
            stacklevel=2)
    return _elementwise_op(LayerHelper(op_type, **locals()))


for func in [
        add,
        div,
]:
    proto_dict = {'add': 'elementwise_add', 'div': 'elementwise_div'}
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])
    if func.__name__ in ['add']:
        additional_args_lines = [
            "alpha (int|float, optional): The alpha factor of the input. Default is 1. If alpha is not 1, the equation becomes Out = X + alpha * Y.",
            "out (Variable, optinal): The Variable that stores results of the operation. Default is None. If out is None, \
            a new Variable will be created to store the results."
                                                                 ,
            "name (string, optional): Name of the output. \
            Default is None. It's used to print debug info for developers. Details: \
            :ref:`api_guide_Name` "
        ]
    else:
        additional_args_lines = [
            "out (Variable, optinal): The Variable that stores results of the operation. If out is None, \
            a new Variable will be created to store the results."
                                                                 ,
            "name (string, optional): Name of the output. \
            Default is None. It's used to print debug info for developers. Details: \
            :ref:`api_guide_Name` "
        ]

    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=additional_args_lines,
        skip_attrs_set={"x_data_format", "y_data_format", "axis"
                        }) + """\n""" + str(func.__doc__)
703

704

705 706
def sum(input, dim=None, dtype=None, keep_dim=False, name=None):
    """
S
swtkiwi 已提交
707 708 709
	:alias_main: paddle.sum
	:alias: paddle.sum,paddle.tensor.sum,paddle.tensor.math.sum

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
    Computes the sum of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
        dtype(str, optional): The dtype of output tensor. The default value is None, the dtype 
            of output is the same as input tensor.
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.

    Raises:
        ValueError, the :attr:`dtype` must be float64 or int64.
    
    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
            out1 = paddle.sum(x)  # [3.5]
            out2 = paddle.sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, dim=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]

            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
            out5 = paddle.sum(y, dim=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, dim=[0, 1]) # [16, 20]

    """
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    attrs = {
        'dim': dim if dim != None and dim != [] else [0],
        'keep_dim': keep_dim,
        'reduce_all': True if dim == None or dim == [] else False,
    }
    dtype_flag = False
    if dtype is not None:
        if dtype in ['float64', 'int64']:
            if (convert_dtype(input.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(input.dtype) == "int32" and dtype == "int64"):
                attrs.update({
                    'in_dtype': input.dtype,
                    'out_dtype': convert_np_dtype_to_dtype_(dtype)
                })
                dtype_flag = True
        else:
            raise ValueError(
                "The value of 'dtype' in sum op must be float64, int64, but received of {}".
                format(dtype))

    if in_dygraph_mode():
        reduce_all = True if dim == None or dim == [] else False
        dim = dim if dim != None and dim != [] else [0]
        if dtype_flag:
            return core.ops.reduce_sum(input, 'dim', dim, 'keep_dim', keep_dim,
                                       'reduce_all', reduce_all, 'in_dtype',
                                       input.dtype, 'out_dtype',
                                       convert_np_dtype_to_dtype_(dtype))
        else:
            return core.ops.reduce_sum(input, 'dim', dim, 'keep_dim', keep_dim,
                                       'reduce_all', reduce_all)
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'reduce_sum')
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs=attrs)
    return out
807

808

809 810 811
@templatedoc(op_type="sum")
def elementwise_sum(inputs, name=None):
    """
S
swtkiwi 已提交
812 813 814
	:alias_main: paddle.elementwise_sum
	:alias: paddle.elementwise_sum,paddle.tensor.elementwise_sum,paddle.tensor.math.elementwise_sum

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
    ${comment}
    
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]

    Args:
        inputs (Variable|list(Variable)):  A Varaible list. The shape and data type of the list elementsshould be consistent. 
            Variable can be multi-dimensional Tensoror LoDTensor, and data types can be: float32, float64, int32, int64. 
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: the sum of input :math:`inputs` . its shape and data types are consistent with :math:`inputs` . 

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = paddle.elementwise_sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[elementwise_sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
    """

    helper = LayerHelper('elementwise_sum', **locals())
886 887 888 889 890 891 892 893 894 895 896
    check_type(inputs, 'inputs', (Variable, tuple, list), 'elementwise_sum')
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
                   ['float32', 'float64', 'int32', 'int64'], 'elementwise_sum')
    else:
        check_variable_and_dtype(inputs, "inputs", \
                ['float32', 'float64', 'int32', 'int64'], 'elementwise_sum')


897 898 899 900 901 902 903 904 905 906 907 908 909
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


def mm(input, mat2, out=None, name=None):
    """
S
swtkiwi 已提交
910 911 912
	:alias_main: paddle.mm
	:alias: paddle.mm,paddle.tensor.mm,paddle.tensor.math.mm

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        mat2 (Variable): The input variable which is a Tensor or LoDTensor.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: The product Tensor (or LoDTensor) variable.

    Examples:
        .. code-block:: python

            # Examples to clarify shapes of the inputs and output
            # x: [B, ..., M, K], mat2: [B, ..., K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, ..., M, N]

            # x: [B, M, K], mat2: [B, K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [B, M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [M, N]

            # x: [B, M, K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [B, M]

            # x: [K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [1]

            import paddle
            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[2, 3], dtype='float32')
            mat2 = fluid.data(name='mat2', shape=[3, 2], dtype='float32')
            out = paddle.mm(x, mat2) # out shape is [2, 2]
    """
    if in_dygraph_mode():
964 965 966 967
        if out is None:
            out = _varbase_creator(dtype=input.dtype)
        core.ops.matmul(input, mat2, out)
        return out
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='matmul', inputs={'X': input,
                               'Y': mat2}, outputs={'Out': out})
    return out
1011

1012

1013 1014
def addmm(input, x, y, alpha=1.0, beta=1.0, name=None):
    """
S
swtkiwi 已提交
1015 1016 1017
	:alias_main: paddle.addmm
	:alias: paddle.addmm,paddle.tensor.addmm,paddle.tensor.math.addmm

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
        input (Variable): The input Tensor/LoDTensor to be added to the final result.
        x (Variable): The first input Tensor/LoDTensor for matrix multiplication.
        y (Variable): The second input Tensor/LoDTensor for matrix multiplication.
        alpha (float): Coefficient of $x*y$.
        beta (float): Coefficient of $input$.
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of addmm op.

    Examples:
        ..  code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid

            input = fluid.data(name='input', shape=[2, 2], dtype='float32')
            x = fluid.data(name='x', shape=[2, 2], dtype='float32')
            y = fluid.data(name='y', shape=[2, 2], dtype='float32')
            out = paddle.addmm( input=input, x=x, y=y, alpha=5.0, beta=0.5 )

            data_x = np.ones((2, 2)).astype(np.float32)
            data_y = np.ones((2, 2)).astype(np.float32)
            data_input = np.ones((2, 2)).astype(np.float32)

            place =  fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
            exe = fluid.Executor(place)
            results = exe.run(fluid.default_main_program(), 
                              fetch_list=[out], feed={"input": data_input, 'x': data_x, "y": data_y})
            print( np.array(results[0]) )
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
1064 1065 1066 1067
    if in_dygraph_mode():
        out = core.ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
        return out

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
    check_variable_and_dtype(x, 'Input', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
1080 1081 1082 1083


def logsumexp(x, dim=None, keepdim=False, out=None, name=None):
    """
S
swtkiwi 已提交
1084 1085 1086
	:alias_main: paddle.logsumexp
	:alias: paddle.logsumexp,paddle.tensor.logsumexp,paddle.tensor.math.logsumexp

1087
    This operator calculates the log of the sum of exponentials of the input Tensor.
1088

1089 1090
    .. math::
       logsumexp(x) = \log\sum exp(x)
1091 1092


1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
    Parameters:
       x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
       dim (list|int, optional): The dimensions along which the sum is performed. If :attr:`None`,
         sum all elements of :attr:`input` and return a Tensor variable with a single element,
         otherwise must be in the range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
         the dimension to reduce is :math:`rank + dim[i]`.
       keep_dim (bool, optional): Whether to reserve the reduced dimension in the output Tensor.
         The result tensor will have one fewer dimension than the :attr:`input` unless :attr:`keep_dim`
         is true, default value is False.
       out (Variable), optional):  Enable user to explicitly specify an output variable to save result.
       name (str, optional): The default value is None.  Normally there is no need for user to
         set this property.  For more information, please refer to :ref:`api_guide_Name`
1105

1106 1107
    Returns:
       Variable: The calcuated result Tensor/LoDTensor.
1108

1109
    Examples:
1110

1111
    .. code-block:: python
1112

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
        import paddle
        import paddle.fluid as fluid
        import numpy as np

        with fluid.dygraph.guard():
          np_x = np.random.uniform(0.1, 1, [10]).astype(np.float32)
          x = fluid.dygraph.to_variable(np_x)
          print(paddle.logsumexp(x).numpy())

    ..  code-block:: python
1123

1124 1125 1126 1127 1128 1129 1130 1131 1132
        import paddle
        import paddle.fluid as fluid
        import numpy as np

        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [2, 3, 4]).astype(np.float32)
            x = fluid.dygraph.to_variable(np_x)
            print(paddle.logsumexp(x, dim=1).numpy())
            print(paddle.logsumexp(x, dim=[0, 2]).numpy())
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

    """
    op_type = 'logsumexp'
    assert x is not None, 'x cannot be None in {}'.format(op_type)

    # reduce_sum does not support float16
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], op_type)

    exp_out = layers.exp(x)
    sum_out = layers.reduce_sum(exp_out, dim, keepdim)

    if out is not None:
        check_variable_and_dtype(out, 'out', [x.dtype], op_type)
        helper = LayerHelper(op_type, **locals())
        helper.append_op(type="log", inputs={"X": sum_out}, outputs={"Out": out})
        return out

    return layers.log(sum_out, name)
1151 1152


1153 1154
def inverse(input, out=None, name=None):
    """
S
swtkiwi 已提交
1155 1156 1157
	:alias_main: paddle.inverse
	:alias: paddle.inverse,paddle.tensor.inverse,paddle.tensor.math.inverse

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
        input (Variable): The input Variable which holds a Tensor. The last two
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        out (Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            If out is None, a new Varibale will be create to store the result.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
        Variable: A Tensor holds the inverse of input. The shape and data type
            is the same as input.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid

            mat_np = np.array([[2, 0], [0, 2]]).astype("float32")

            # example for static graph
            input = fluid.data("input", shape=[2, 2], dtype="float32")
            out = paddle.inverse(input)
        
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            results = exe.run(feed={"input": mat_np },
                              fetch_list=[out.name])
            print(results[0]) # [[0.5, 0], [0, 0.5]]

            # example for dynamic graph
            with fluid.dygraph.guard():
                mat = fluid.dygraph.to_variable(mat_np)
                inv = paddle.inverse(mat)
                print(inv) # [[0.5, 0], [0, 0.5]]
    """
    if in_dygraph_mode():
        return core.ops.inverse(input)

    def _check_input(input):
        check_variable_and_dtype(input, 'input',
                                 ['float32', 'float64'], 'inverse')
        if len(input.shape) < 2:
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
                "input's shape: %s." % (len(input.shape), input.shape))

        if out is not None:
            check_variable_and_dtype(out, 'out', input.dtype, 'inverse')

    _check_input(input)

    helper = LayerHelper('inverse', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='inverse', inputs={'Input': [input] }, outputs={'Output': [out]})
    return out


1228 1229
def max(input, dim=None, keep_dim=False, out=None, name=None):
    """
S
swtkiwi 已提交
1230 1231 1232
	:alias_main: paddle.max
	:alias: paddle.max,paddle.tensor.max,paddle.tensor.math.max

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    Computes the maximum of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the maximum is computed.
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: Tensor, results of maximum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
1261

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
            paddle.max(x)  # [0.9]
            paddle.max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            paddle.max(x, dim=-1)  # [0.9, 0.7]
            paddle.max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the corresponding output tensor.
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
            paddle.max(y, dim=[1, 2]) # [4.0, 8.0]
            paddle.max(y, dim=[0, 1]) # [7.0, 8.0]
    """

    helper = LayerHelper('max', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]

    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'max')

    reduce_all = True if dim == None or dim == [] else False
    dim = dim if dim != None and dim != [] else [0]

    if in_dygraph_mode():
        return core.ops.reduce_max(input, 'dim', dim, 'keep_dim', keep_dim,
                                   'reduce_all', reduce_all)
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim,
            'keep_dim': keep_dim,
            'reduce_all': reduce_all
        })
    return out


def min(input, dim=None, keep_dim=False, out=None, name=None):
    """
S
swtkiwi 已提交
1310 1311 1312
	:alias_main: paddle.min
	:alias: paddle.min,paddle.tensor.min,paddle.tensor.math.min

1313
    Computes the minimum of tensor elements over the given dimension.
1314

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
    Args:
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the minimum is computed.
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1332

1333 1334 1335
    Returns:
        Variable: Tensor, result of minimum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
            paddle.min(x)  # [0.1]
            paddle.min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            paddle.min(x, dim=-1)  # [0.2, 0.1]
            paddle.min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the corresponding output tensor.
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
            paddle.min(y, dim=[1, 2]) # [1.0, 5.0]
            paddle.min(y, dim=[0, 1]) # [1.0, 2.0]
    """

    helper = LayerHelper('min', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]

    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'max')

    reduce_all = True if dim == None or dim == [] else False
    dim = dim if dim != None and dim != [] else [0]

    if in_dygraph_mode():
        return core.ops.reduce_min(input, 'dim', dim, 'keep_dim', keep_dim,
                                   'reduce_all', reduce_all)
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim,
            'keep_dim': keep_dim,
            'reduce_all': reduce_all
        })
    return out


def log1p(x, out=None, name=None):
    """
S
swtkiwi 已提交
1389 1390 1391
	:alias_main: paddle.log1p
	:alias: paddle.log1p,paddle.tensor.log1p,paddle.tensor.math.log1p

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
    Calculates the natural log of the given input tensor, element-wise.
    .. math::
        Out = \\ln(x+1)
    Args:
        x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
        Variable: The natural log of the input LoDTensor or Tensor computed element-wise.
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            import numpy as np
            # Graph Organizing
            x = fluid.data(name="x", shape=[2,1], dtype="float32")
            res = paddle.log1p(x)
            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())
            # Execute
            x_i = np.array([[0], [1]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[0.], [0.6931472]]
    """

    if in_dygraph_mode():
        return core.ops.log1p(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    if out is None:
        out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1432 1433 1434

def addcmul(input, tensor1, tensor2, value=1.0, out=None, name=None):
    """
S
swtkiwi 已提交
1435 1436 1437
	:alias_main: paddle.addcmul
	:alias: paddle.addcmul,paddle.tensor.addcmul,paddle.tensor.math.addcmul

B
Bai Yifan 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
    Calculate the element-wise multiplication of tensor1 and tensor2,
    then multiply the result by value, and add it to input. The shape of input,
    tensor1, tensor2 should be broadcastable.
    The equation is:
    ..  math::
        out = input + value * tensor1 * tensor2
    Args:
        input(Variable): The input to be added. A Tensor with type float32, float64, int32, int64.
        tensor1(Variable): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        tensor2(Variable): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        value(int|float): The multiplier for tensor1*tensor2. For float32 and float64 type input, value must be float, otherwise an integer.
        out(Variable, Optional): The variable that specifies the output of the
            operator, which can be Variable that has been created in the
            program. The default value is None, and a new Variable will be
            created to save the output. Default: None.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
        out(Variable): The output result. A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
          import paddle
          import paddle.fluid as fluid
          input = fluid.data(name='input', dtype='float32', shape=[3, 4])
          tensor1 = fluid.data(name='tenosr1', dtype='float32', shape=[1, 4])
          tensor2 = fluid.data(name='tensor2', dtype='float32', shape=[3, 4])
          data = paddle.addcmul(input, tensor1, tensor2, value=1.0)
    """

    check_variable_and_dtype(input, 'input', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor1, 'tensor1', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor2, 'tensor2', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    if convert_dtype(input.dtype) in ['float32', 'float64']:
        check_type(value, 'value', float, 'addcmul')
    if convert_dtype(input.dtype) in ['int32', 'int64']:
        check_type(value, 'value', int, 'addcmul')

    if out is not None:
        layers.assign(layers.elementwise_add(input, layers.elementwise_mul(tensor1, tensor2) * value), out)
    else:
        out = layers.elementwise_add(input, layers.elementwise_mul(tensor1, tensor2) * value)
    return out
1480 1481 1482 1483


def clamp(input, min=None, max=None, output=None, name=None):
    """
S
swtkiwi 已提交
1484 1485 1486
	:alias_main: paddle.clamp
	:alias: paddle.clamp,paddle.tensor.clamp,paddle.tensor.math.clamp

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
    **clampe layer**

    This operator clamps all elements in input into the range [ min, max ] and return
    a resulting tensor as the following equation:

    .. math::

        Out = MIN(MAX(x, min), max) 

    Args:
        input (Variable): An input N-D Tensor or LoDTensor 
            with data type float32, float64.   
        min (float32|Variable): The lower bound with type ``float32`` or a ``Tensor``
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        max (float32|Variable): The upper bound with type ``float32`` or a ``Tensor``
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        output (Variable, optional): A tensor or LoDTensor. If :attr:`output` is None, 
            a new tensor will be created as :attr:`output`. Default: None. 
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Variable: A Tensor or LodTensor with the same data type and data shape as input's.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

            in1 = np.array([[1.2,3.5],
                            [4.5,6.4]]).astype('float32')
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = paddle.tensor.clamp(x1, min=3.5, max=5.0)
                out2 = paddle.tensor.clamp(x1, min=2.5)
                print(out1.numpy())
                # [[3.5, 3.5]
                # [4.5, 5.0]]
                print(out2.numpy())
                # [[2.5, 3.5]
                # [[4.5, 6.4]
    """

    assert min is not None or max is not None, "either min or max should be defined."

    if min is not None:
        check_type(min, 'min', (float, Variable), 'clamp')
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
                        'clamp', '(When the type of min in clamp is Variable.)')
    if max is not None:
        check_type(max, 'max', (float, Variable), 'clamp')
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
                        'clamp', '(When the type of max in clamp is Variable.)')

    inputs = {'X': input}
    attrs = {'min': sys.float_info.min, 'max': sys.float_info.max}

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

    helper = LayerHelper('clamp', **locals())
    if output is None:
        output = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1569

L
Li Fuchen 已提交
1570 1571
def trace(input, offset=0, dim1=0, dim2=1, out=None, name=None):
    """
S
swtkiwi 已提交
1572 1573 1574
	:alias_main: paddle.trace
	:alias: paddle.trace,paddle.tensor.trace,paddle.tensor.math.trace

L
Li Fuchen 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
    This OP computes the sum along diagonals of the input tensor.
    
    If ``input`` is 2D, returns the sum of diagonal. 

    If ``input`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
    the 2D planes specified by dim1 and dim2. By default, the 2D planes formed by the first and second dimensions 
    of the input tensor.

    The argument ``offset`` determines where diagonals are taken from input tensor:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
    
    Args:
        input(Variable): The input tensor. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset(int, optional): Which diagonals in input tensor will be taken. Default: 0 (main diagonals).
        dim1(int, optional): The first dimension with respect to take diagonal. Default: 0.
        dim2(int, optional): The second dimension with respect to take diagonal. Default: 1.
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Variable: the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid.dygraph as dg
            import numpy as np
            
            case1 = np.random.randn(2, 3).astype('float32')
            case2 = np.random.randn(3, 10, 10).astype('float32')
            case3 = np.random.randn(3, 10, 5, 10).astype('float32')
            
            with dg.guard():
                case1 = dg.to_variable(case1)
                case2 = dg.to_variable(case2)
                case3 = dg.to_variable(case3)
                data1 = paddle.trace(case1) # data1.shape = [1]
                data2 = paddle.trace(case2, offset=1, dim1=1, dim2=2) # data2.shape = [3]
                data3 = paddle.trace(case3, offset=-3, dim1=1, dim2=-1) # data2.shape = [3, 5]
    """
    inputs = {'Input': [input]}
    attrs = {'offset': offset, 'dim1': dim1, 'dim2': dim2}

    def __check_input(input, offset, dim1, dim2):
        check_dtype(input.dtype, 'Input',
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

        input_shape = list(input.shape)
        assert len(input_shape) >= 2,                     \
                "The input must be at least 2-dimensional, "   \
                "But received Input's dimensional: %s.\n" %  \
                len(input_shape)

        dim1_ = dim1 if dim1 >= 0 else len(input_shape) + dim1
        dim2_ = dim2 if dim2 >= 0 else len(input_shape) + dim2

        assert dim1_ < len(input_shape),     \
            "The argument dim1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, dim1)

        assert dim2_ < len(input_shape),   \
            "The argument dim2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, dim2)


        assert  dim1_ != dim2_,   \
               "dim1 and dim2 cannot be the same dimension." \
                "But received dim1 = %d, dim2 = %d\n"%(dim1, dim2)

    if not in_dygraph_mode():
        __check_input(input, offset, dim1, dim2)
    helper = LayerHelper('trace', **locals())

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        check_variable_and_dtype(out, 'out', ['float16', 'float32', 'float64', 'int32', 'int64'], 'trace')

    helper.append_op(
        type='trace',
        inputs={'Input': [input]},
        attrs={'offset': offset,
               'dim1': dim1,
               'dim2': dim2},
        outputs={'Out': [out]})
    return out

F
Feiyu Chan 已提交
1666 1667
@templatedoc(op_type="kron")
def kron(x, y, out=None, name=None):
S
swtkiwi 已提交
1668 1669 1670 1671 1672
    """
	:alias_main: paddle.kron
	:alias: paddle.kron,paddle.tensor.kron,paddle.tensor.math.kron

${comment}
F
Feiyu Chan 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729

    Args:
        x (Variable): the fist operand of kron op, data type: float16, float32, 
            float64, int32 or int64.
        y (Variable): the second operand of kron op, data type: float16, 
            float32, float64, int32 or int64. Its data type should be the same 
            with x.
        out (Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of 
            operation. If out is None, a new Varibale will be create to store 
            the result. Defaults to None.
        name(str, optional): The default value is None.  Normally there is no 
            need for user to set this property.  For more information, please 
            refer to :ref:`api_guide_Name`.

    Returns:
        Variable: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.

    Examples:
        .. code-block:: python
        
          import paddle
          from paddle import fluid
          import paddle.fluid.dygraph as dg
          import numpy as np

          a = np.arange(1, 5).reshape(2, 2).astype(np.float32)
          b = np.arange(1, 10).reshape(3, 3).astype(np.float32)

          place = fluid.CPUPlace()
          with dg.guard(place):
              a_var = dg.to_variable(a)
              b_var = dg.to_variable(b)
              c_var = paddle.kron(a_var, b_var)
              c_np = c_var.numpy()
          print(c_np)

          #[[ 1.  2.  3.  2.  4.  6.]
          # [ 4.  5.  6.  8. 10. 12.]
          # [ 7.  8.  9. 14. 16. 18.]
          # [ 3.  6.  9.  4.  8. 12.]
          # [12. 15. 18. 16. 20. 24.]
          # [21. 24. 27. 28. 32. 36.]]
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        check_variable_and_dtype(out, 'out', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out