layers.py 252.3 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
X
xzl 已提交
23
from .poolings import MaxPooling, AvgPooling, MaxWithMaskPooling, BasePoolingType, \
24
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
C
caoying03 已提交
54
    'l2_distance_layer',
55 56
    'hsigmoid',
    'conv_projection',
57
    'square_error_cost',
58
    'regression_cost',
Q
qijun 已提交
59
    'classification_cost',
60
    'LayerOutput',
Q
qijun 已提交
61 62 63 64 65 66
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
67
    'seq_concat_layer',
Q
qijun 已提交
68 69 70 71 72 73
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
74
    'scaling_projection',
Q
qijun 已提交
75 76 77 78
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
79
    'rotate_layer',
Q
qijun 已提交
80
    'sum_to_one_norm_layer',
G
guosheng 已提交
81
    'row_l2_norm_layer',
Q
qijun 已提交
82 83 84 85 86 87 88 89
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
90
    'gru_step_naive_layer',
Q
qijun 已提交
91 92 93 94 95 96 97 98 99 100 101 102
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
103
    'warp_ctc_layer',
Q
qijun 已提交
104 105 106 107 108
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
109
    'BeamInput',
C
caoying03 已提交
110
    'cross_entropy_over_beam',
Q
qijun 已提交
111 112 113 114
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
115
    'huber_regression_cost',
116
    'huber_classification_cost',
Q
qijun 已提交
117 118
    'block_expand_layer',
    'maxout_layer',
R
ranqiu 已提交
119
    'dot_prod_layer',
Q
qijun 已提交
120
    'out_prod_layer',
X
xuwei06 已提交
121
    'printer_layer',
Q
qijun 已提交
122
    'print_layer',
Y
yuan 已提交
123
    'priorbox_layer',
124
    'cross_channel_norm_layer',
125 126
    'multibox_loss_layer',
    'detection_output_layer',
G
guosheng 已提交
127
    'roi_pool_layer',
Q
qijun 已提交
128
    'spp_layer',
D
dangqingqing 已提交
129
    'pad_layer',
L
Luo Tao 已提交
130
    'eos_layer',
131
    'smooth_l1_cost',
132
    'layer_support',
W
wwhu 已提交
133
    'multiplex_layer',
D
dangqingqing 已提交
134
    'row_conv_layer',
135
    'dropout_layer',
136
    'prelu_layer',
137
    'switch_order_layer',
138
    'gated_unit_layer',
139
    'crop_layer',
140
    'sub_nested_seq_layer',
141
    'clip_layer',
142
    'slice_projection',
143
    'seq_slice_layer',
144
    'kmax_seq_score_layer',
C
chengduoZH 已提交
145
    'img_pool3d_layer',
G
guosheng 已提交
146
    'scale_shift_layer',
C
chengduoZH 已提交
147
    'img_conv3d_layer',
148
    'resize_layer',
Y
yangyaming 已提交
149
    'sub_seq_layer',
Y
yangyaming 已提交
150
    'scale_sub_region_layer',
Q
qijun 已提交
151
]
Z
zhangjinchao01 已提交
152 153 154 155 156 157 158


class LayerType(object):
    """
    Layer type enumerations.
    """

159 160 161 162 163 164 165 166
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
167
    POOLING_AVG = 'average'
168
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
169
    COST = 'cost'
170 171
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
C
caoying03 已提交
172
    L2_DISTANCE = 'l2_distance'
Z
zhangjinchao01 已提交
173
    HSIGMOID = 'hsigmoid'
174 175 176 177 178
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
179
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
180
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
181
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
182 183 184
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
185
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
186 187 188 189
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
190
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
191 192 193 194 195 196 197

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
198
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
199 200 201
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
202
    ROTATE_LAYER = 'rotate'
R
ranqiu 已提交
203
    DOT_PROD_LAYER = 'dot_prod'
H
Haonan 已提交
204
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
205
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
217
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
218
    BLOCK_EXPAND = "blockexpand"
219
    MAXOUT = "maxout"
Q
qijun 已提交
220
    SPP_LAYER = "spp"
D
dangqingqing 已提交
221
    PAD_LAYER = "pad"
W
wwhu 已提交
222
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
223
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
224 225 226

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
227 228
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
G
guosheng 已提交
229
    ROI_POOL_LAYER = 'roi_pool'
D
dangqingqing 已提交
230 231 232 233 234

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
235
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
236

237 238 239
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

240 241
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
242
    HUBER_REGRESSION = 'huber_regression'
243
    HUBER_CLASSIFICATION = 'huber_classification'
244 245
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
246
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
247 248 249 250 251 252
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
253
    SWITCH_ORDER_LAYER = 'switch_order'
254
    CROP_LAYER = 'crop'
C
caoying03 已提交
255
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
256
    CLIP_LAYER = 'clip'
257
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
258

259
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
260
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
261

262
    RESIZE = 'resize'
Y
yangyaming 已提交
263
    SUB_SEQ_LAYER = 'subseq'
264

Y
yangyaming 已提交
265
    SCALE_SUB_REGION_LAYER = 'scale_sub_region'
Z
zhangjinchao01 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
287
    """
L
Luo Tao 已提交
288
    PaddlePaddle supports three sequence types:
289 290 291

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
292 293
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
294

L
Luo Tao 已提交
295
    Accordingly, AggregateLevel supports two modes:
296

L
Luo Tao 已提交
297
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
298
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
299 300
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
301
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
302 303 304
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
305 306
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
307 308 309
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
332
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
333 334
    """

Q
qijun 已提交
335 336 337 338 339 340 341 342 343
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
344
                 reverse=None):
Z
zhangjinchao01 已提交
345 346
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
347
        assert size is not None
Z
zhangjinchao01 已提交
348 349
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
350
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
351
        self.layer_type = layer_type
352 353
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
354 355 356 357 358 359 360 361
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
362
        self.reverse = reverse
Z
zhangjinchao01 已提交
363

364 365 366 367 368 369 370 371
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

372 373 374 375
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

376 377 378 379 380 381 382 383
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
384 385 386

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
387
DEVICE = 'device'
Z
zhangjinchao01 已提交
388 389 390


def layer_support(*attrs):
391
    attrs_list = list(attrs)
392
    attrs_list.append(DEVICE)
Q
qijun 已提交
393

Z
zhangjinchao01 已提交
394 395 396
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
397
            for attr in attrs_list:
Z
zhangjinchao01 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
414 415 416 417 418
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
449
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
450 451 452 453 454 455 456 457
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
458 459
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
460 461 462 463
    proj.origin = input
    return proj


464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
485
    :param input: The input of this layer.
486 487 488 489 490 491 492 493
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
494 495
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
496 497 498 499
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
530
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
531 532 533 534 535 536 537 538
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
539 540
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
541 542 543 544
    proj.origin = input
    return proj


545
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
575
    :param input: The input of this layer.
576
    :type input: LayerOutput
Z
zhangjinchao01 已提交
577 578
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
579
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
580 581 582 583 584 585
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
586 587
        if size is None:
            size = input.size - offset
Q
qijun 已提交
588
        proj = IdentityOffsetProjection(
589
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
590 591 592 593
        proj.origin = input
    return proj


594 595
def slice_projection(input, slices):
    """
596 597
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
598 599

    .. math::
600
       output = [input.slices()]
601 602 603 604 605 606 607 608 609

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
610
    :param input: The input of this layer.
611 612 613 614
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
615
    :type slices: pair of int
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
648
    :param input: The input of this layer.
X
xuwei06 已提交
649 650 651 652 653 654
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
655
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
656 657 658 659
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
660
@wrap_param_attr_default()
661
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
662
    """
663
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
677
    :param input: The input of this layer.
678 679 680 681 682 683
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
684 685
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
686
    proj.origin = input
687
    return proj
Z
zhangjinchao01 已提交
688

689 690

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
691 692
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
693

Z
zhangjinchao01 已提交
694
    .. math::
L
Luo Tao 已提交
695
       out.row[i] += scale * (a.row[i] .* b.row[i])
696

Z
zhangjinchao01 已提交
697 698
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
699

Z
zhangjinchao01 已提交
700
    The example usage is:
701

Z
zhangjinchao01 已提交
702
    .. code-block:: python
703

L
Luo Tao 已提交
704
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
705

706 707 708 709
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
710 711
    :param scale: config scalar, default value is one.
    :type scale: float
712 713
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
714
    """
715 716 717
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
718
    a = kwargs.get('x', a)  # For Backward capacity.
719 720 721 722 723 724
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
725
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
726
    op.origin = [a, b]
727
    return op
Z
zhangjinchao01 已提交
728

729

Z
zhangjinchao01 已提交
730
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
731 732 733
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
748
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
749 750 751 752 753 754 755 756 757
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
758
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
759 760 761 762 763 764 765 766 767 768 769
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
770 771 772 773 774 775
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
789
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
790 791 792 793 794 795
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
R
ranqiu 已提交
796
        :param act: Activation type.
Z
zhangjinchao01 已提交
797
        :type act: BaseActivation
R
ranqiu 已提交
798 799 800
        :param bias_attr: The bias attribute. If the parameter is set to False or an object
                          whose type is not ParameterAttribute, no bias is defined. If the
                          parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
801
        :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
802 803 804
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
805 806 807 808 809 810 811
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
812 813 814 815 816
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

817
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
818 819 820 821 822 823 824 825
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
826
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
827
            self.inputs.append(other)
828 829 830 831
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
832 833 834 835 836 837 838 839
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

840
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
841 842
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
843
        assert len(self.inputs) != 0
844
        ml = MixedLayer(
Z
zhangjinchao01 已提交
845 846 847 848 849
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
850
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
851 852 853
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
854
        self.finalized = True
Z
zhangjinchao01 已提交
855 856 857 858 859 860


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
861 862 863 864 865
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
R
ranqiu 已提交
893
    :param input: The input of this layer. It is an optional parameter. If set,
Z
zhangjinchao01 已提交
894
                  then this function will just return layer's name.
895
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
896
    :type act: BaseActivation
R
ranqiu 已提交
897 898 899
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
900
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
901 902 903 904 905 906 907 908 909
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
910 911 912 913 914 915
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
916
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
917 918 919 920 921 922 923 924
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
925 926
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
927 928 929 930 931 932 933
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
934
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
935

R
ranqiu 已提交
936
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
937 938 939
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
940
    :param height: Height of this data layer, used for image
R
ranqiu 已提交
941
    :type height: int | None
L
Luo Tao 已提交
942
    :param width: Width of this data layer, used for image
R
ranqiu 已提交
943
    :type width: int | None
Z
zhangjinchao01 已提交
944 945
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
946
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
947 948
    :rtype: LayerOutput
    """
Q
qijun 已提交
949 950 951 952
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
953
        depth=depth,
L
Luo Tao 已提交
954 955
        height=height,
        width=width,
Q
qijun 已提交
956
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
957

C
chengduoZH 已提交
958 959
    if depth is None:
        depth = 1
960 961
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
962 963
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
964
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
965 966

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
967 968 969 970


@wrap_name_default("embedding")
@wrap_param_attr_default()
971
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
972 973 974 975
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

976
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
977
    :type name: basestring
R
ranqiu 已提交
978
    :param input: The input of this layer, which must be Index Data.
Z
zhangjinchao01 已提交
979 980 981 982 983
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
984
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
985
    :param layer_attr: Extra layer Config. Default is None.
R
ranqiu 已提交
986
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
987
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
988 989
    :rtype: LayerOutput
    """
Q
qijun 已提交
990 991 992 993 994 995
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
996 997 998 999 1000 1001 1002 1003 1004
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
1005 1006 1007 1008 1009 1010 1011
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1024
    which is equal to:
Z
zhangjinchao01 已提交
1025 1026 1027 1028 1029 1030

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1031
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1032
    :type name: basestring
R
ranqiu 已提交
1033 1034
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
1035 1036
    :param size: The layer dimension.
    :type size: int
1037
    :param act: Activation Type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1038 1039 1040
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1041 1042 1043
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1044
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1045
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
1046
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1047
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1048 1049 1050 1051
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1052
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1053 1054
        param_attr = [param_attr]
    else:
1055
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1056 1057
            assert len(input) == len(param_attr)
        else:
1058
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1059
                logger.fatal(
W
wangmeng28 已提交
1060 1061 1062 1063 1064
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1065 1066
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1067
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1068 1069

    Layer(
Q
qijun 已提交
1070 1071 1072
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1073 1074 1075 1076 1077
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1078 1079 1080
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1081

1082

1083
@wrap_name_default("print")
1084
def printer_layer(input, format=None, name=None):
1085 1086
    """
    Print the output value of input layers. This layer is useful for debugging.
1087

1088
    :param name: The name of this layer. It is optional.
1089
    :type name: basestring
R
ranqiu 已提交
1090 1091
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
1092
    :return: LayerOutput
1093
    """
1094 1095 1096 1097 1098
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1099 1100 1101

    Layer(
        name=name,
1102
        format=format,
1103
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1104
        inputs=[l.name for l in input], )
1105
    # this layer don't return anything, can not be input of other layer.
1106

X
xuwei06 已提交
1107 1108 1109 1110 1111 1112 1113
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1114

Y
yuan 已提交
1115
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1116
def priorbox_layer(input,
G
gaoyuan 已提交
1117
                   image,
G
gaoyuan 已提交
1118 1119 1120 1121 1122
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1123 1124 1125
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1126
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1127
    :type name: basestring
R
ranqiu 已提交
1128
    :param input: The input of this layer.
Y
yuan 已提交
1129
    :type input: LayerOutput
G
gaoyuan 已提交
1130 1131
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1143
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1144 1145 1146
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1147
        inputs=[input.name, image.name],
Y
yuan 已提交
1148 1149 1150 1151 1152 1153
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1154 1155
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1156
        parents=[input, image],
G
gaoyuan 已提交
1157 1158 1159
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1160

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1175
    :param name: The name of this layer. It is optional.
1176
    :type name: basestring
Y
yangyaming 已提交
1177 1178
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1179
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1180
    :type input_conf: LayerOutput | List of LayerOutput
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1202
    input_loc_num = len(input_loc)
1203 1204 1205 1206 1207 1208

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1209
    input_conf_num = len(input_conf)
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1247 1248
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1249

1250
    :param name: The name of this layer. It is optional.
1251
    :type name: basestring
Y
yangyaming 已提交
1252 1253
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1254
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1255
    :type input_conf: LayerOutput | List of LayerOutput.
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1277
    input_loc_num = len(input_loc)
1278 1279 1280 1281 1282 1283

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1284 1285
    input_conf_num = len(input_conf)

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


G
guosheng 已提交
1314 1315 1316 1317 1318 1319
@wrap_name_default("roi_pool")
def roi_pool_layer(input,
                   rois,
                   pooled_width,
                   pooled_height,
                   spatial_scale,
G
guosheng 已提交
1320
                   num_channels=None,
G
guosheng 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
                   name=None):
    """
    A layer used by Fast R-CNN to extract feature maps of ROIs from the last
    feature map.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param rois: The input ROIs' data.
    :type rois: LayerOutput.
    :param pooled_width: The width after pooling.
    :type pooled_width: int
    :param pooled_height: The height after pooling.
    :type pooled_height: int
    :param spatial_scale: The spatial scale between the image and feature map.
    :type spatial_scale: float
G
guosheng 已提交
1338 1339
    :param num_channels: number of input channel.
    :type num_channels: int
G
guosheng 已提交
1340 1341
    :return: LayerOutput
    """
G
guosheng 已提交
1342 1343 1344 1345
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    size = num_channels * pooled_width * pooled_height
G
guosheng 已提交
1346 1347 1348 1349 1350 1351
    Layer(
        name=name,
        type=LayerType.ROI_POOL_LAYER,
        inputs=[input.name, rois.name],
        pooled_width=pooled_width,
        pooled_height=pooled_height,
1352 1353
        spatial_scale=spatial_scale,
        num_channels=num_channels)
G
guosheng 已提交
1354 1355
    return LayerOutput(
        name, LayerType.ROI_POOL_LAYER, parents=[input, rois], size=size)
G
guosheng 已提交
1356 1357


1358 1359
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1360 1361 1362 1363 1364
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1365

1366
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1367
    :type name: basestring
R
ranqiu 已提交
1368
    :param input: The input of this layer.
G
gaoyuan 已提交
1369 1370 1371 1372 1373
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1374
    assert input.num_filters is not None
G
gaoyuan 已提交
1375 1376
    Layer(
        name=name,
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1390 1391
    return LayerOutput(
        name,
1392
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1393 1394 1395 1396 1397
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1398 1399 1400 1401
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1402 1403 1404 1405
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1406
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1407
                  stride=-1,
Z
zhangjinchao01 已提交
1408 1409 1410 1411
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1412 1413
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1414 1415 1416
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1417
    operation. Note that for sequence with sub-sequence, the default value
1418 1419
    of stride is -1.

Z
zhangjinchao01 已提交
1420 1421 1422 1423 1424 1425
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1426
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1427

L
Luo Tao 已提交
1428 1429
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1430
    :type agg_level: AggregateLevel
1431
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1432
    :type name: basestring
R
ranqiu 已提交
1433
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1434 1435 1436
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
R
ranqiu 已提交
1437
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1438
    :param stride: The step size between successive pooling regions.
1439
    :type stride: Int
R
ranqiu 已提交
1440 1441 1442
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1443
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1444
    :param layer_attr: The Extra Attributes for layer, such as dropout.
R
ranqiu 已提交
1445
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1446
    :return: LayerOutput object.
Y
Yu Yang 已提交
1447
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1448 1449
    """
    extra_dict = dict()
1450
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1451 1452
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1453 1454 1455 1456
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1457 1458
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1459 1460 1461
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1462 1463 1464 1465 1466 1467
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1468
        stride=stride,
Q
qijun 已提交
1469
        **extra_dict)
Z
zhangjinchao01 已提交
1470

Q
qijun 已提交
1471 1472
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1473

Q
qijun 已提交
1474

Z
zhangjinchao01 已提交
1475 1476
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1477
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1478 1479
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1480
@layer_support()
Q
qijun 已提交
1481 1482
def lstmemory(input,
              name=None,
1483
              size=None,
Q
qijun 已提交
1484 1485 1486 1487 1488 1489
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1490 1491 1492 1493 1494 1495 1496 1497
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1498
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1499

L
luotao02 已提交
1500
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1501

L
luotao02 已提交
1502
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1503

L
luotao02 已提交
1504
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1505

L
luotao02 已提交
1506
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1507 1508


C
caoying03 已提交
1509
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1510
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1511 1512 1513 1514
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1515

C
caoying03 已提交
1516
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1517 1518
    to config a simple plain lstm layer.

C
caoying03 已提交
1519 1520 1521 1522
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1523 1524 1525 1526 1527

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1528 1529
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
R
ranqiu 已提交
1530
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1531 1532 1533
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
1534
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1535 1536 1537 1538 1539
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
R
ranqiu 已提交
1540 1541 1542
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1543
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1544
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1545
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1546
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1547
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1548
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1549 1550 1551 1552 1553 1554
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1555
    assert input.size is not None and input.size % 4 == 0
1556

1557 1558 1559 1560 1561
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1562 1563 1564
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1565

Q
qijun 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1576

Q
qijun 已提交
1577 1578 1579 1580 1581
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1582

Z
zhangjinchao01 已提交
1583 1584 1585

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1586
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1587 1588
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1589
@layer_support()
Q
qijun 已提交
1590
def grumemory(input,
1591
              size=None,
Q
qijun 已提交
1592 1593 1594 1595 1596 1597
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1619 1620
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1621 1622 1623 1624 1625

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1626 1627 1628
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1629 1630 1631 1632 1633

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1634
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1635
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1636 1637 1638
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1639

C
caoying03 已提交
1640 1641 1642
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1643 1644 1645 1646 1647 1648 1649 1650

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
R
ranqiu 已提交
1651 1652
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1653
    :type input: LayerOutput.
1654 1655
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1656
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1657
    :type reverse: bool
R
ranqiu 已提交
1658
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1659 1660 1661 1662 1663 1664
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
R
ranqiu 已提交
1665 1666 1667
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1668
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1669
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1670
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1671
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1672
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1673
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1674 1675 1676 1677
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1678 1679 1680 1681 1682 1683
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1684 1685 1686
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1687

Q
qijun 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1697

Q
qijun 已提交
1698 1699 1700 1701 1702
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1703

Z
zhangjinchao01 已提交
1704 1705 1706

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1707 1708
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1709
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1710
             stride=-1,
Z
zhangjinchao01 已提交
1711 1712 1713 1714
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1715 1716 1717
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1718
    of stride is -1.
1719

L
Luo Tao 已提交
1720 1721 1722 1723 1724 1725
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1726
    :param agg_level: Aggregated level
1727
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1728
    :type name: basestring
R
ranqiu 已提交
1729
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1730
    :type input: LayerOutput
L
Luo Tao 已提交
1731
    :param stride: The step size between successive pooling regions.
1732
    :type stride: Int
Z
zhangjinchao01 已提交
1733 1734
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1735
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1736 1737
    :rtype: LayerOutput
    """
1738 1739 1740 1741 1742 1743
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1744
    if agg_level == AggregateLevel.TO_SEQUENCE:
1745 1746
        assert stride == -1

Z
zhangjinchao01 已提交
1747 1748 1749 1750 1751
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1752
        stride=stride,
Q
qijun 已提交
1753 1754 1755 1756 1757 1758
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1759 1760 1761 1762


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1763 1764
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1765
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1766
              stride=-1,
Z
zhangjinchao01 已提交
1767 1768 1769 1770
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1771 1772 1773
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1774
    of stride is -1.
1775

L
Luo Tao 已提交
1776 1777 1778 1779 1780 1781
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1782
    :param agg_level: aggregation level
1783
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1784
    :type name: basestring
R
ranqiu 已提交
1785
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1786
    :type input: LayerOutput
L
Luo Tao 已提交
1787
    :param stride: The step size between successive pooling regions.
1788
    :type stride: Int
Z
zhangjinchao01 已提交
1789 1790
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1791
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1792 1793
    :rtype: LayerOutput
    """
1794 1795 1796 1797 1798 1799 1800

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1801
    if agg_level == AggregateLevel.TO_SEQUENCE:
1802 1803
        assert stride == -1

Z
zhangjinchao01 已提交
1804 1805 1806 1807 1808
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1809
        stride=stride,
Q
qijun 已提交
1810 1811 1812 1813 1814 1815
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1816 1817 1818


class ExpandLevel(object):
1819 1820 1821 1822 1823
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1824 1825
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1826 1827
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1828 1829
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1830 1831
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1832 1833
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1834 1835
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1836

1837

Z
zhangjinchao01 已提交
1838 1839
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1840 1841
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1842 1843
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1844
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1856
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1857

R
ranqiu 已提交
1858
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1859 1860 1861
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1862
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1863
    :type name: basestring
R
ranqiu 已提交
1864 1865 1866
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1867
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1868 1869 1870 1871
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1872
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1882 1883 1884 1885 1886 1887
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1888 1889


X
xuwei06 已提交
1890
@wrap_name_default()
X
xuwei06 已提交
1891
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1892
@layer_support()
X
xuwei06 已提交
1893 1894 1895
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1896
                 act=None,
X
xuwei06 已提交
1897 1898
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1899
    """
X
xuwei06 已提交
1900
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1901

X
xuwei06 已提交
1902
    If as_row_vector:
R
ranqiu 已提交
1903

X
xuwei06 已提交
1904
    .. math::
X
xuwei06 已提交
1905
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
R
ranqiu 已提交
1906

X
xuwei06 已提交
1907
    If not as_row_vector:
R
ranqiu 已提交
1908

X
xuwei06 已提交
1909 1910 1911
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1912 1913 1914 1915 1916

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1917
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1918

R
ranqiu 已提交
1919
    :param input: The input of this layer.
X
xuwei06 已提交
1920
    :type input: LayerOutput
R
ranqiu 已提交
1921
    :param num_repeats: The times of repeating the input.
X
xuwei06 已提交
1922
    :type num_repeats: int
1923
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
1924 1925 1926 1927 1928
    :type name: basestring
    :param as_row_vector: Whether to treat the input as row vectors or not. If
                          the parameter is set to True, the repeating operation
                          will be performed in the column direction. Otherwise,
                          it will be performed in the row direction.
X
xuwei06 已提交
1929
    :type as_row_vector: bool
1930
    :param act: Activation type. IdentityActivation is the default activation.
X
xuwei06 已提交
1931
    :type act: BaseActivation
R
ranqiu 已提交
1932 1933
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
1934 1935 1936 1937 1938 1939 1940 1941
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1942
        active_type=act.name,
X
xuwei06 已提交
1943
        num_filters=num_repeats,
X
xuwei06 已提交
1944
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1945
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1946 1947 1948 1949 1950
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1951
        activation=act,
Q
qijun 已提交
1952 1953
        parents=[input])

X
xuwei06 已提交
1954

1955 1956 1957
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1958
@layer_support(ERROR_CLIPPING, DROPOUT)
1959 1960 1961 1962 1963 1964 1965 1966
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1967
    the dimension of each instance is M, and the input reshape_size is N, then the
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1978
    :param input: The input of this layer.
1979
    :type input: LayerOutput
R
ranqiu 已提交
1980
    :param reshape_size: The dimension of the reshaped sequence.
1981
    :type reshape_size: int
1982
    :param name: The name of this layer. It is optional.
1983
    :type name: basestring
1984
    :param act: Activation type. IdentityActivation is the default activation.
1985
    :type act: BaseActivation
R
ranqiu 已提交
1986 1987
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
1988
    :type layer_attr: ExtraLayerAttribute.
R
ranqiu 已提交
1989 1990 1991
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1992
    :type bias_attr: ParameterAttribute | None | bool | Any
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
2011 2012 2013 2014
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
R
ranqiu 已提交
2015
    This layer performs linear interpolation on two inputs,
Z
zhangjinchao01 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
2031 2032
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
2033 2034
    :param weight: Weight layer.
    :type weight: LayerOutput
2035
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2036
    :type name: basestring
R
ranqiu 已提交
2037 2038
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2039
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2040
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2041 2042
    :rtype: LayerOutput
    """
2043
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2044
    assert len(input) == 2
2045 2046 2047 2048 2049 2050 2051
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2052 2053 2054 2055
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2056 2057 2058 2059 2060 2061
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2062 2063


L
liaogang 已提交
2064 2065 2066 2067 2068 2069 2070 2071
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
R
ranqiu 已提交
2072
    This layer implements bilinear interpolation on convolutional layer's output.
L
liaogang 已提交
2073 2074 2075 2076 2077 2078 2079

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2080
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2081

R
ranqiu 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
    :param input: The input of this layer.
    :type input: LayerOutput.
    :param out_size_x: The width of the output.
    :type out_size_x: int
    :param out_size_y: The height of the output.
    :type out_size_y: int
    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
L
liaogang 已提交
2093
    :return: LayerOutput object.
R
ranqiu 已提交
2094
    :rtype: LayerOutput
L
liaogang 已提交
2095 2096 2097 2098
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2099
    assert input.num_filters is not None
L
liaogang 已提交
2100
    num_channels = input.num_filters
Q
qijun 已提交
2101 2102 2103 2104 2105 2106 2107
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2108
                channels=num_channels)),
Q
qijun 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2118

Z
zhangjinchao01 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

R
ranqiu 已提交
2129 2130
    where :math:`x` is an input vector, :math:`w` is a scalar exponent,
    and :math:`y` is an output vector.
Z
zhangjinchao01 已提交
2131 2132 2133 2134 2135 2136 2137

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2138
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2139
    :type input: LayerOutput
R
ranqiu 已提交
2140
    :param weight: The exponent of the power.
Z
zhangjinchao01 已提交
2141
    :type weight: LayerOutput
2142
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2143
    :type name: basestring
R
ranqiu 已提交
2144 2145
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2146
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2147
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2148 2149
    :rtype: LayerOutput
    """
2150 2151 2152
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2153 2154 2155
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2156
        inputs=[weight.name, input.name],
Q
qijun 已提交
2157 2158 2159
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2160 2161 2162 2163 2164 2165


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2166
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2167 2168

    .. math::
2169
       y  = w x
Z
zhangjinchao01 已提交
2170

2171 2172 2173 2174 2175
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2176 2177 2178 2179 2180 2181 2182

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2183
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2184
    :type input: LayerOutput
R
ranqiu 已提交
2185
    :param weight: The weight of each sample.
Z
zhangjinchao01 已提交
2186
    :type weight: LayerOutput
2187
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2188
    :type name: basestring
R
ranqiu 已提交
2189 2190
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2191
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2192
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2193 2194
    :rtype: LayerOutput
    """
2195 2196 2197
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2198 2199 2200 2201
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2202 2203 2204
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2205 2206 2207 2208 2209 2210


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2211
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2224
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2225
    :type input: LayerOutput
2226
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2227
    :type name: basestring
R
ranqiu 已提交
2228 2229
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2230
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2231
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2232 2233 2234 2235 2236 2237
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2238 2239 2240
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2241 2242


2243 2244
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2245
def rotate_layer(input, height, width, name=None, layer_attr=None):
2246
    """
H
Haonan 已提交
2247 2248
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2249 2250

    .. math::
H
Haonan 已提交
2251
       y(j,i,:) = x(M-i-1,j,:)
2252

H
Haonan 已提交
2253
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2254 2255 2256 2257 2258 2259

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2260 2261
                          height=100,
                          width=100)
2262

R
ranqiu 已提交
2263
    :param input: The input of this layer.
2264
    :type input: LayerOutput
R
ranqiu 已提交
2265
    :param height: The height of the sample matrix.
2266
    :type height: int
R
ranqiu 已提交
2267 2268
    :param width: The width of the sample matrix.
    :type width: int
2269
    :param name: The name of this layer. It is optional.
2270
    :type name: basestring
R
ranqiu 已提交
2271 2272
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
2273 2274 2275 2276 2277
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2278 2279 2280
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2281
        width=width,
H
Haonan 已提交
2282 2283 2284 2285 2286 2287 2288 2289
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2290 2291


Z
zhangjinchao01 已提交
2292 2293
@wrap_name_default()
@layer_support()
2294
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2295 2296 2297 2298
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2299
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2300 2301 2302 2303 2304
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2305

2306 2307
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2308

L
Luo Tao 已提交
2309 2310 2311 2312 2313 2314
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2315
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2316
    :type name: basestring
R
ranqiu 已提交
2317
    :param a: The first input of this layer.
Z
zhangjinchao01 已提交
2318
    :type a: LayerOutput
R
ranqiu 已提交
2319
    :param b: The second input of this layer.
Z
zhangjinchao01 已提交
2320
    :type b: LayerOutput
R
ranqiu 已提交
2321
    :param scale: The scale of the cosine similarity. 1 is the default value.
Z
zhangjinchao01 已提交
2322
    :type scale: float
R
ranqiu 已提交
2323
    :param size: The dimension of this layer. NOTE size_a * size should equal size_b.
Z
zhangjinchao01 已提交
2324
    :type size: int
R
ranqiu 已提交
2325
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
2326
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2327
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2328 2329
    :rtype: LayerOutput
    """
2330
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2331 2332 2333 2334 2335 2336
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2337
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2338
    else:
2339 2340
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2341 2342 2343 2344 2345 2346
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2347
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2348
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2349

2350

C
caoying03 已提交
2351 2352 2353 2354
@wrap_name_default()
@layer_support()
def l2_distance_layer(x, y, name=None, layer_attr=None):
    """
C
caoying03 已提交
2355
    This layer calculates and returns the Euclidean distance between two input
C
caoying03 已提交
2356
    vectors x and y. The equation is as follows:
C
caoying03 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386

    ..  math::
        l2_distance(\\mathbf{x}, \\mathbf{y}) = \\sqrt{\\sum_{i=1}^D(x_i - y_i)}

    The output size of this layer is fixed to be 1. Note that the above
    computation is for one sample. Multiple samples are processed in one batch.

    The example usage is:

    .. code-block:: python

       l2_sim = l2_distance(x=layer1, y=layer2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param x: The first input x for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of x's output.
    :type x: LayerOutput
    :param y: The second input y for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of y's output.
    :type y: LayerOutput
    :param layer_attr: The extra layer attributes, for example, drop rate.
                       See ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute
    :return: The returned LayerOutput object.
    :rtype: LayerOutput
    """

C
caoying03 已提交
2387
    assert isinstance(x, LayerOutput) and isinstance(y, LayerOutput)
C
caoying03 已提交
2388 2389 2390
    Layer(
        name=name,
        type=LayerType.L2_DISTANCE,
C
caoying03 已提交
2391
        inputs=[x.name, y.name],
C
caoying03 已提交
2392 2393 2394 2395
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(name, LayerType.L2_DISTANCE, parents=[x, y], size=1)


Z
zhangjinchao01 已提交
2396 2397
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2398
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2399
@layer_support()
Q
qijun 已提交
2400 2401
def hsigmoid(input,
             label,
2402
             num_classes=None,
Q
qijun 已提交
2403 2404 2405 2406
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2407 2408 2409
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
R
ranqiu 已提交
2410 2411 2412 2413

    Reference:
        `Hierarchical Probabilistic Neural Network Language Model
        <http://www.gatsby.ucl.ac.uk/aistats/fullpapers/208.pdf>`_
Z
zhangjinchao01 已提交
2414 2415 2416 2417 2418 2419

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2420
                        label=data_layer)
Z
zhangjinchao01 已提交
2421

R
ranqiu 已提交
2422 2423
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
2424
    :param label: The input label.
Z
zhangjinchao01 已提交
2425
    :type label: LayerOutput
R
ranqiu 已提交
2426 2427 2428 2429
    :param num_classes: The number of classes. And it should be larger than 2. If the parameter
                        is not set or set to None, its actual value will be automatically set to
                        the number of labels.
    :type num_classes: int
2430
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2431
    :type name: basestring
R
ranqiu 已提交
2432 2433 2434
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2435
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
2436 2437 2438
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
2439
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2440
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2441 2442 2443 2444
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2445 2446 2447 2448 2449 2450 2451 2452 2453
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2454 2455 2456
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2457 2458 2459 2460 2461
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2462 2463
    ipts_for_layer = []
    parents = []
2464
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2465
        assert isinstance(each_input, LayerOutput)
2466
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2467 2468 2469 2470
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2471
    l = Layer(
Z
zhangjinchao01 已提交
2472 2473 2474 2475 2476
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2477 2478 2479
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2480

2481

Z
zhangjinchao01 已提交
2482 2483 2484 2485 2486
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2487 2488 2489 2490 2491 2492 2493 2494 2495
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2496
                   dilation=1,
Q
qijun 已提交
2497 2498 2499 2500 2501 2502 2503
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2504
                   dilation_y=None,
2505 2506
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2507
    """
2508
    Convolution layer for image. Paddle can support both square and non-square
2509
    input currently.
Z
zhangjinchao01 已提交
2510 2511 2512 2513

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2514

2515
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2516
    and non-square input currently.
2517

X
xuwei06 已提交
2518
    The details of convolution transpose layer,
2519 2520 2521
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2522 2523 2524 2525
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

R
ranqiu 已提交
2526 2527
    There are several groups of filters in PaddlePaddle implementation.
    Each group will process some channels of the input. For example, if
C
caoying03 已提交
2528
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
R
ranqiu 已提交
2529 2530 2531
    32*4 = 128 filters to process the input. The channels will be split into 4
    pieces. First 256/4 = 64 channels will be processed by first 32 filters. The
    rest channels will be processed by the rest groups of filters.
Z
zhangjinchao01 已提交
2532

L
Luo Tao 已提交
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2543
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2544
    :type name: basestring
R
ranqiu 已提交
2545
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2546
    :type input: LayerOutput
R
ranqiu 已提交
2547 2548 2549 2550 2551 2552
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
                        on the y axis when filter_size_y is not provided.
R
ranqiu 已提交
2553
    :type filter_size: int | tuple | list
R
ranqiu 已提交
2554 2555 2556
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
    :type filter_size_y: int
Z
zhangjinchao01 已提交
2557
    :param num_filters: Each filter group's number of filter
2558
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
2559
    :type act: BaseActivation
R
ranqiu 已提交
2560
    :param groups: The group number. 1 is the default group number.
Z
zhangjinchao01 已提交
2561
    :type groups: int
R
ranqiu 已提交
2562 2563 2564 2565 2566
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided. 1 is the default value.
R
ranqiu 已提交
2567
    :type stride: int | tuple | list
R
ranqiu 已提交
2568
    :param stride_y: The stride on the y axis.
Z
zhangjinchao01 已提交
2569
    :type stride_y: int
R
ranqiu 已提交
2570 2571 2572 2573 2574
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided. 0 is the default padding size.
R
ranqiu 已提交
2575
    :type padding: int | tuple | list
R
ranqiu 已提交
2576
    :param padding_y: The padding size on the y axis.
Z
zhangjinchao01 已提交
2577
    :type padding_y: int
R
ranqiu 已提交
2578 2579 2580 2581 2582
    :param dilation: The dimensions of the dilation. If the parameter is set to one integer,
                     the two dimensions on x and y axises will be same when dilation_y is not
                     set. If it is set to a list, the first element indicates the dimension
                     on the x axis, and the second is used to specify the dimension on the y
                     axis when dilation_y is not provided. 1 is the default dimension.
R
ranqiu 已提交
2583
    :type dilation: int | tuple | list
R
ranqiu 已提交
2584
    :param dilation_y: The dimension of the dilation on the y axis.
W
wanghaoshuang 已提交
2585
    :type dilation_y: int
R
ranqiu 已提交
2586 2587 2588
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2589
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
2590 2591 2592
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channel number of the input.
Z
zhangjinchao01 已提交
2593
    :type num_channels: int
R
ranqiu 已提交
2594 2595
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
2596
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
2597
    :param shared_biases: Whether biases will be shared between filters or not.
Z
zhangjinchao01 已提交
2598
    :type shared_biases: bool
R
ranqiu 已提交
2599 2600
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2601
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2602
    :param trans: True if it is a convTransLayer, False if it is a convLayer
2603
    :type trans: bool
R
ranqiu 已提交
2604 2605 2606 2607 2608
    :param layer_type: Specify the layer type. If the dilation's dimension on one axis is
                       larger than 1, layer_type has to be "cudnn_conv" or "cudnn_convt".
                       If trans=True, layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or "cudnn_conv".
    :type layer_type: basestring
D
dangqingqing 已提交
2609
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2610 2611 2612 2613 2614
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2615

Z
zhangjinchao01 已提交
2616
    if filter_size_y is None:
2617 2618 2619 2620 2621 2622
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2623
    if stride_y is None:
2624 2625 2626 2627 2628 2629
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2630
    if padding_y is None:
2631 2632 2633 2634 2635 2636
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2637 2638 2639 2640 2641 2642 2643
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2644 2645
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2646
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2647 2648 2649 2650
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2651

2652
    if layer_type:
W
wanghaoshuang 已提交
2653
        if dilation > 1 or dilation_y > 1:
X
xzl 已提交
2654 2655 2656
            assert layer_type in [
                "cudnn_conv", "cudnn_convt", "exconv", "exconvt"
            ]
2657
        if trans:
2658
            assert layer_type in ["exconvt", "cudnn_convt"]
2659 2660 2661 2662 2663
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2664

X
xuwei06 已提交
2665
    l = Layer(
Z
zhangjinchao01 已提交
2666
        name=name,
Q
qijun 已提交
2667 2668 2669 2670 2671
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2672
                dilation=dilation,
Q
qijun 已提交
2673 2674 2675 2676 2677
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2678
                dilation_y=dilation_y,
Q
qijun 已提交
2679 2680
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2681 2682 2683 2684
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2685
        type=lt,
Q
qijun 已提交
2686 2687 2688 2689 2690 2691 2692 2693
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2694 2695 2696 2697


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2708 2709
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2710 2711 2712
    """
    Image pooling Layer.

R
ranqiu 已提交
2713
    The details of pooling layer, please refer to ufldl's pooling_ .
Z
zhangjinchao01 已提交
2714 2715 2716

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

R
ranqiu 已提交
2745
    :param padding: The padding size on the x axis. 0 is the default padding size.
Z
zhangjinchao01 已提交
2746
    :type padding: int
R
ranqiu 已提交
2747 2748 2749 2750
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
2751
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2752
    :type input: LayerOutput
R
ranqiu 已提交
2753
    :param pool_size: The pooling window length on the x axis.
Z
zhangjinchao01 已提交
2754
    :type pool_size: int
R
ranqiu 已提交
2755 2756 2757 2758 2759 2760 2761
    :param pool_size_y: The pooling window length on the y axis. If the parameter is
                        not set or set to None, its actual value will be automatically
                        set to pool_size.
    :type pool_size_y: int
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
2762
    :type num_channels: int
R
ranqiu 已提交
2763
    :param pool_type: Pooling type. MaxPooling is the default pooling.
Z
zhangjinchao01 已提交
2764
    :type pool_type: BasePoolingType
R
ranqiu 已提交
2765
    :param stride: The stride on the x axis. 1 is the default value.
Z
zhangjinchao01 已提交
2766
    :type stride: int
R
ranqiu 已提交
2767 2768 2769 2770 2771
    :param stride_y: The stride on the y axis. If the parameter is not set or set to
                     None, its actual value will be automatically set to 'stride'.
    :type stride_y: int
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2772
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2773 2774 2775
    :param ceil_mode: Wether to use the ceil function to calculate output height and width.
                      True is the default. If it is set to False, the floor function will
                      be used.
2776
    :type ceil_mode: bool
D
dangqingqing 已提交
2777 2778
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

X
xzl 已提交
2789
    assert type(pool_type) in [AvgPooling, MaxPooling, MaxWithMaskPooling, CudnnAvgPooling,
W
wanghaoshuang 已提交
2790
                               CudnnMaxPooling], \
X
xzl 已提交
2791
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling, MaxWithMaskPooling are supported"
W
wanghaoshuang 已提交
2792

2793
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2794
        if (
Y
Yu Yang 已提交
2795
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2796
        else pool_type.name
2797 2798 2799 2800
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2801
    l = Layer(
Z
zhangjinchao01 已提交
2802 2803
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2816
                    padding_y=padding_y))
Q
qijun 已提交
2817
        ],
2818
        ceil_mode=ceil_mode,
Q
qijun 已提交
2819 2820 2821 2822 2823 2824 2825
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2826 2827


C
chengduoZH 已提交
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2880
    :type padding: int | tuple | list
R
ranqiu 已提交
2881
    :param name: The name of this layer. It is optional.
C
chengduoZH 已提交
2882
    :type name: basestring.
R
ranqiu 已提交
2883
    :param input: The input of this layer.
C
chengduoZH 已提交
2884
    :type input: LayerOutput
R
ranqiu 已提交
2885 2886
    :param pool_size: The pooling window lengths along three axises. If the parameter
                      is set to one integer, the three lengths will be same.
R
ranqiu 已提交
2887
    :type pool_size: int | tuple | list
R
ranqiu 已提交
2888 2889 2890
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
C
chengduoZH 已提交
2891
    :type num_channels: int
R
ranqiu 已提交
2892
    :param pool_type: Pooling type. MaxPooling is the default pooling.
C
chengduoZH 已提交
2893
    :type pool_type: BasePoolingType
R
ranqiu 已提交
2894 2895 2896
    :param stride: The strides of the pooling along three axises. If the parameter
                   is set to one integer, the three strides will be same. 1 is the
                   default value.
R
ranqiu 已提交
2897
    :type stride: int | tuple | list
R
ranqiu 已提交
2898 2899 2900 2901 2902
    :param padding: The sizes of padding along three axises. If the parameter is set to
                    one integer, they will be same. 0 is the default padding size.
    :type padding: int | tuple | list
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
C
chengduoZH 已提交
2903
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2904 2905 2906
    :param ceil_mode: Wether to use the ceil function to calculate output height and width.
                      True is the default. If it is set to False, the floor function will
                      be used.
C
chengduoZH 已提交
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2976 2977
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2978 2979 2980 2981 2982 2983
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2984
    """
R
ranqiu 已提交
2985 2986 2987
    A layer performs spatial pyramid pooling.

    Reference:
R
ranqiu 已提交
2988 2989
        `Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
        https://arxiv.org/abs/1406.4729`_
Q
qijun 已提交
2990

L
Luo Tao 已提交
2991 2992 2993 2994
    The example usage is:

    ..  code-block:: python

2995 2996 2997
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2998 2999
                        pool_type=MaxPooling())

3000
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
3001
    :type name: basestring
R
ranqiu 已提交
3002
    :param input: The input of this layer.
Q
qijun 已提交
3003
    :type input: LayerOutput
R
ranqiu 已提交
3004 3005 3006
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Q
qijun 已提交
3007
    :type num_channels: int
R
ranqiu 已提交
3008
    :param pool_type: Pooling type. MaxPooling is the default pooling.
Q
qijun 已提交
3009
    :type scale: BasePoolingType
R
ranqiu 已提交
3010
    :param pyramid_height: The pyramid height of this pooling.
Q
qijun 已提交
3011
    :type pyramid_height: int
R
ranqiu 已提交
3012 3013
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Q
qijun 已提交
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
3031
    l = Layer(
Q
qijun 已提交
3032 3033
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
3034 3035 3036 3037 3038
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
3039
                pyramid_height=pyramid_height)),
Q
qijun 已提交
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
3051 3052 3053 3054
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
3055
    l = Layer(
Q
qijun 已提交
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
3075 3076 3077 3078


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
3079 3080 3081 3082 3083 3084
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
3085
                      layer_attr=None):
Z
zhangjinchao01 已提交
3086
    """
3087
    Response normalization across feature maps.
R
ranqiu 已提交
3088 3089

    Reference:
R
ranqiu 已提交
3090 3091
        `ImageNet Classification with Deep Convolutional Neural Networks
        http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf`_
Z
zhangjinchao01 已提交
3092

L
Luo Tao 已提交
3093 3094 3095
    The example usage is:

    ..  code-block:: python
3096

L
Luo Tao 已提交
3097 3098
        norm = img_cmrnorm_layer(input=net, size=5)

3099
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3100
    :type name: basestring
R
ranqiu 已提交
3101
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3102
    :type input: LayerOutput
3103
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
3104
    :type size: int
D
dangqingqing 已提交
3105
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
3106
    :type scale: float
D
dangqingqing 已提交
3107
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
3108
    :type power: float
R
ranqiu 已提交
3109 3110 3111 3112 3113
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3114
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3115
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3116 3117 3118
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
3119
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
3120 3121 3122


@wrap_bias_attr_default()
3123 3124
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
3125 3126
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
3127
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3128 3129 3130
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
3131
                     img3D=False,
Q
qijun 已提交
3132 3133 3134 3135
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
3136
                     batch_norm_type=None,
P
peterzhang2029 已提交
3137
                     epsilon=1e-5,
Z
zhangjinchao01 已提交
3138
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
3139 3140
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
3141
    """
R
ranqiu 已提交
3142
    Batch Normalization Layer. The notation of this layer is as follows.
Z
zhangjinchao01 已提交
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

R
ranqiu 已提交
3156
    Reference:
R
ranqiu 已提交
3157
        `Batch Normalization: Accelerating Deep Network Training by Reducing
R
ranqiu 已提交
3158
        Internal Covariate Shift
R
ranqiu 已提交
3159
        http://arxiv.org/abs/1502.03167`_
Z
zhangjinchao01 已提交
3160

L
Luo Tao 已提交
3161 3162 3163
    The example usage is:

    ..  code-block:: python
3164

L
Luo Tao 已提交
3165 3166
        norm = batch_norm_layer(input=net, act=ReluActivation())

3167
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3168
    :type name: basestring
R
ranqiu 已提交
3169
    :param input: This layer's input which is to be performed batch normalization on.
Z
zhangjinchao01 已提交
3170
    :type input: LayerOutput
3171 3172 3173 3174 3175
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
R
ranqiu 已提交
3176 3177
                            use_mkldnn is enabled. By default (None), we will
                            automatically select cudnn_batch_norm for GPU,
3178
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
R
ranqiu 已提交
3179 3180 3181
                            Users can specify the batch norm type. If you use
                            cudnn_batch_norm, we suggested you use latest version,
                            such as v5.1.
R
ranqiu 已提交
3182
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3183
                           or "mkldnn_batch_norm"
R
ranqiu 已提交
3184
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
3185
    :type act: BaseActivation
R
ranqiu 已提交
3186 3187 3188
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
3189
    :type num_channels: int
R
ranqiu 已提交
3190 3191 3192 3193
    :param bias_attr: :math:`\\beta`. The bias attribute. If the parameter is set to
                      False or an object whose type is not ParameterAttribute, no
                      bias is defined. If the parameter is set to True, the bias is
                      initialized to zero.
R
ranqiu 已提交
3194
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3195 3196
    :param param_attr: :math:`\\gamma`. The parameter attribute. See ParameterAttribute
                       for details.
Z
zhangjinchao01 已提交
3197
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
3198 3199
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3200
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3201 3202 3203 3204 3205 3206
    :param use_global_stats: Whether use moving mean/variance statistics during
                             testing peroid. If the parameter is set to None or
                             True, it will use moving mean/variance statistics
                             during testing. If the parameter is set to False, it
                             will use the mean and variance of the current batch
                             of test data.
R
ranqiu 已提交
3207
    :type use_global_stats: bool | None.
P
peterzhang2029 已提交
3208
    :param epsilon: The small constant added to the variance to improve numeric stability.
P
peterzhang2029 已提交
3209
    :type epsilon: float.
R
ranqiu 已提交
3210 3211
    :param moving_average_fraction: Factor used in the moving average computation.
                                   :math:`runningMean = newMean*(1-factor) + runningMean*factor`
Z
zhangjinchao01 已提交
3212
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3213 3214
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3215
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3216 3217 3218 3219 3220 3221 3222 3223 3224
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3225
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3226
           (batch_norm_type == "cudnn_batch_norm")
P
peterzhang2029 已提交
3227

X
xuwei06 已提交
3228
    l = Layer(
Z
zhangjinchao01 已提交
3229
        name=name,
C
chengduoZH 已提交
3230
        img3D=img3D,
Q
qijun 已提交
3231 3232
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3233 3234 3235 3236
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
P
peterzhang2029 已提交
3237
        epsilon=epsilon,
Z
zhangjinchao01 已提交
3238 3239
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3240
        mean_var_names=mean_var_names,
Q
qijun 已提交
3241
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3242

Q
qijun 已提交
3243 3244 3245 3246 3247 3248 3249
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3271
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3272
    :type input: LayerOutput
3273
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3274
    :type name: basestring
R
ranqiu 已提交
3275 3276 3277
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3278
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3279 3280 3281 3282 3283 3284
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3285 3286 3287
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3288 3289


G
guosheng 已提交
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3308
    :param input: The input of this layer.
G
guosheng 已提交
3309
    :type input: LayerOutput
3310
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3311
    :type name: basestring
R
ranqiu 已提交
3312 3313
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
G
guosheng 已提交
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3327 3328 3329
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3330
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3331
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

R
ranqiu 已提交
3350 3351 3352
    This layer just simply adds all input layers together, then activates the
    sum. All inputs should share the same dimension, which is also the dimension
    of this layer's output.
Z
zhangjinchao01 已提交
3353

C
caoying03 已提交
3354 3355 3356
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3357

3358
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3359
    :type name: basestring
R
ranqiu 已提交
3360
    :param input: The input layers. It could be a LayerOutput or list/tuple of
Z
zhangjinchao01 已提交
3361
                 LayerOutput.
R
ranqiu 已提交
3362
    :type input: LayerOutput | list | tuple
3363
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3364
    :type act: BaseActivation
R
ranqiu 已提交
3365 3366 3367
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3368
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3369 3370
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3371
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3372
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3373 3374 3375 3376 3377 3378
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3379
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3380 3381 3382 3383 3384 3385 3386
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3387
    l = Layer(
Q
qijun 已提交
3388 3389 3390
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3391 3392
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3393
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3394

Q
qijun 已提交
3395 3396 3397 3398 3399 3400 3401
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3402 3403 3404 3405


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3406
@layer_support(DROPOUT, ERROR_CLIPPING)
3407
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3408
    """
R
ranqiu 已提交
3409 3410
    Concatenate all input vectors to one vector.
    Inputs can be a list of LayerOutput or a list of projection.
Z
zhangjinchao01 已提交
3411

3412 3413 3414 3415 3416 3417
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3418
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3419
    :type name: basestring
R
ranqiu 已提交
3420
    :param input: The input layers or projections
R
ranqiu 已提交
3421
    :type input: list | tuple | collections.Sequence
3422
    :param act: Activation type. IdentityActivation is the default activation.
Z
zhangjinchao01 已提交
3423
    :type act: BaseActivation
R
ranqiu 已提交
3424 3425
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3426
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3427
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3428 3429 3430 3431 3432 3433 3434 3435
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3436
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3437 3438

    def __is_type__(o, tp):
3439
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3461 3462
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3463

Q
qijun 已提交
3464 3465
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3466

3467 3468
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3469

3470
    layer = Layer(
Q
qijun 已提交
3471 3472
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3473 3474
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3475
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3476
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3477

3478
    sz = layer.config.size
Z
zhangjinchao01 已提交
3479

Q
qijun 已提交
3480 3481 3482 3483 3484 3485 3486 3487
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3488 3489
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3490
@wrap_bias_attr_default(has_bias=False)
3491
@layer_support(DROPOUT, ERROR_CLIPPING)
3492 3493 3494
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
R
ranqiu 已提交
3495
    Concatenate sequence a and sequence b.
3496

3497
    Inputs:
X
xuwei06 已提交
3498
      - a = [a1, a2, ..., am]
3499
      - b = [b1, b2, ..., bn]
3500

X
xuwei06 已提交
3501 3502 3503 3504
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3505 3506 3507 3508 3509 3510 3511

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3512
    :param name: The name of this layer. It is optional.
3513
    :type name: basestring
R
ranqiu 已提交
3514
    :param a: The first input sequence layer
3515
    :type a: LayerOutput
R
ranqiu 已提交
3516
    :param b: The second input sequence layer
3517
    :type b: LayerOutput
3518
    :param act: Activation type. IdentityActivation is the default activation.
3519
    :type act: BaseActivation
R
ranqiu 已提交
3520 3521
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3522
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3523 3524 3525
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3526
    :type bias_attr: ParameterAttribute | None | bool | Any
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3548
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3549 3550
def memory(name,
           size,
3551
           memory_name=None,
Q
qijun 已提交
3552 3553 3554 3555
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3556 3557
           boot_with_const_id=None):
    """
R
ranqiu 已提交
3558
    The memory takes a layer's output at previous time step as its own output.
Z
zhangjinchao01 已提交
3559

R
ranqiu 已提交
3560
    If boot_bias, the activation of the bias is the initial value of the memory.
Z
zhangjinchao01 已提交
3561

R
ranqiu 已提交
3562 3563
    If boot_with_const_id is set, then the memory's output at the first time step
    is a IndexSlot, the Arguments.ids()[0] is this :code:`cost_id`.
Z
zhangjinchao01 已提交
3564

R
ranqiu 已提交
3565 3566
    If boot_layer is specified, the memory's output at the first time step will
    be the boot_layer's output.
Z
zhangjinchao01 已提交
3567

R
ranqiu 已提交
3568
    In other case, the default memory's output at the first time step is zero.
Z
zhangjinchao01 已提交
3569

3570 3571 3572 3573 3574
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

R
ranqiu 已提交
3575 3576
    If you do not want to specify the name, you can also use set_input()
    to specify the layer to be remembered as the following:
3577 3578

    .. code-block:: python
L
Liu Yiqun 已提交
3579

3580 3581 3582 3583
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

R
ranqiu 已提交
3584
    :param name: The name of the layer which this memory remembers.
3585 3586
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3587
    :type name: basestring
R
ranqiu 已提交
3588
    :param size: The dimensionality of memory.
Z
zhangjinchao01 已提交
3589
    :type size: int
R
ranqiu 已提交
3590
    :param memory_name: The name of the memory. It is ignored when name is provided.
3591
    :type memory_name: basestring
3592
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3593
    :type is_seq: bool
R
ranqiu 已提交
3594 3595
    :param boot_layer: This parameter specifies memory's output at the first time
                       step and the output is boot_layer's output.
R
ranqiu 已提交
3596
    :type boot_layer: LayerOutput | None
R
ranqiu 已提交
3597 3598 3599 3600
    :param boot_bias: The bias attribute of memory's output at the first time step.
                      If the parameter is set to False or an object whose type is not
                      ParameterAttribute, no bias is defined. If the parameter is set
                      to True, the bias is initialized to zero.
R
ranqiu 已提交
3601
    :type boot_bias: ParameterAttribute | None
R
ranqiu 已提交
3602 3603
    :param boot_bias_active_type: Activation type for memory's bias at the first time
                                  step. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3604
    :type boot_bias_active_type: BaseActivation
R
ranqiu 已提交
3605 3606
    :param boot_with_const_id: This parameter specifies memory's output at the first
                               time step and the output is an index.
Z
zhangjinchao01 已提交
3607
    :type boot_with_const_id: int
R
ranqiu 已提交
3608
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3619 3620
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3621

3622 3623 3624 3625 3626 3627 3628 3629
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3630 3631

    lout = LayerOutput(
3632
        name=memory_name,
Q
qijun 已提交
3633 3634 3635
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3636 3637 3638 3639
    return lout


@wrap_bias_attr_default()
3640 3641
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3642 3643 3644
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3645 3646
def lstm_step_layer(input,
                    state,
3647
                    size=None,
Q
qijun 已提交
3648 3649 3650 3651 3652 3653
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3654
    """
3655 3656
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3657 3658 3659

    ..  math::

3660
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3661

3662
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3663

3664
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3665

3666
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3667

L
luotao02 已提交
3668
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3669 3670


L
luotao02 已提交
3671
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3672
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3673
    input vectors.
Z
zhangjinchao01 已提交
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3684
    This layer has two outputs. The default output is :math:`h_t`. The other
R
ranqiu 已提交
3685
    output is :math:`o_t`, whose name is 'state' and users can use
Z
zhangjinchao01 已提交
3686 3687
    :code:`get_output_layer` to extract this output.

3688
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3689
    :type name: basestring
R
ranqiu 已提交
3690 3691
    :param size: The dimension of this layer's output, which must be
                 equal to the dimension of the state.
Z
zhangjinchao01 已提交
3692
    :type size: int
R
ranqiu 已提交
3693
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3694
    :type input: LayerOutput
3695
    :param state: The state of the LSTM unit.
Z
zhangjinchao01 已提交
3696
    :type state: LayerOutput
3697
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
3698
    :type act: BaseActivation
3699 3700
    :param gate_act: Activation type of the gate. SigmoidActivation is the
                     default activation.
Z
zhangjinchao01 已提交
3701
    :type gate_act: BaseActivation
3702 3703
    :param state_act: Activation type of the state. TanhActivation is the
                      default activation.
Z
zhangjinchao01 已提交
3704
    :type state_act: BaseActivation
R
ranqiu 已提交
3705 3706 3707
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3708
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3709
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
3710
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3711
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3712 3713
    :rtype: LayerOutput
    """
3714 3715 3716

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3717 3718 3719 3720 3721 3722 3723
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3724
        size=state.size,
Q
qijun 已提交
3725 3726
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3727

Q
qijun 已提交
3728 3729 3730 3731 3732 3733 3734
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3735 3736 3737


@wrap_bias_attr_default()
W
wangyang59 已提交
3738
@wrap_param_attr_default()
Q
qijun 已提交
3739
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3740 3741 3742
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3743 3744 3745 3746 3747 3748 3749
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3750
                   param_attr=None,
Q
qijun 已提交
3751
                   layer_attr=None):
Z
zhangjinchao01 已提交
3752 3753
    """

R
ranqiu 已提交
3754
    :param input: The input of this layer, whose dimension can be divided by 3.
Z
zhangjinchao01 已提交
3755
    :type input: LayerOutput
R
ranqiu 已提交
3756 3757 3758 3759 3760 3761
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3762 3763
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3764
    :type act: BaseActivation
3765
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3766
    :type name: basestring
3767 3768
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation is
                     the default activation.
R
ranqiu 已提交
3769
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3770 3771 3772 3773
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3774
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3775 3776 3777 3778
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3779
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3780 3781 3782 3783 3784 3785 3786 3787
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3788 3789 3790 3791
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3792
        # backward model compatibility.
3793
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3794 3795 3796 3797
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3798
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3799
    return LayerOutput(
Q
qijun 已提交
3800 3801
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3802
        parents=[input, output_mem],
Q
qijun 已提交
3803 3804
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3805 3806


Y
Yu Yang 已提交
3807 3808 3809 3810
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3811
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
3823
    GRU Step Layer, which is realized using PaddlePaddle API. It supports ERROR_CLIPPING
Y
Yu Yang 已提交
3824 3825
    and DROPOUT.

3826
    :param input: The input of this layer, whose dimensionality can be divided by 3.
R
ranqiu 已提交
3827 3828 3829 3830 3831 3832
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3833
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3834
    :type name: basestring
3835 3836
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3837
    :type act: BaseActivation
3838 3839
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation
                     is the default activation.
R
ranqiu 已提交
3840
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3841 3842 3843 3844
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3845
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3846 3847 3848 3849 3850
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
R
ranqiu 已提交
3851
    :rtype: LayerOutput
Y
Yu Yang 已提交
3852 3853 3854 3855 3856 3857
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3858
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3859 3860 3861 3862
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3863

Y
Yu Yang 已提交
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3901 3902 3903 3904
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3905 3906 3907 3908
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3909

3910
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3911
    :type name: basestring
R
ranqiu 已提交
3912
    :param input: The input layer. And this layer should contain
Z
zhangjinchao01 已提交
3913 3914
                   multiple outputs.
    :type input: LayerOutput
3915
    :param arg_name: The name of the output to be extracted from the input layer.
Z
zhangjinchao01 已提交
3916
    :type arg_name: basestring
R
ranqiu 已提交
3917 3918
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
3919
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3920 3921 3922 3923 3924 3925 3926
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3927 3928 3929 3930 3931 3932 3933
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3934

Q
qijun 已提交
3935 3936 3937 3938 3939
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3940 3941 3942 3943 3944 3945 3946


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3947 3948 3949 3950 3951 3952 3953
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3954
    """
3955 3956
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3957

3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3973
    :param input: The input of this layer.
3974
    :type input: LayerOutput
3975
    :param act: Activation type. TanhActivation is the default activation.
3976
    :type act: BaseActivation
C
caoying03 已提交
3977
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
P
peterzhang2029 已提交
3978 3979 3980
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If the parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3981
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3982 3983
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
3984
    :type param_attr: ParameterAttribute
3985
    :param name: The name of this layer. It is optional.
3986
    :type name: basestring
R
ranqiu 已提交
3987 3988
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3989
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3990
    :return: LayerOutput object.
3991
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3992
    """
Q
qijun 已提交
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
4008 4009 4010 4011 4012


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
R
ranqiu 已提交
4013
    and can be a sequence or non-sequence.
4014 4015
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
4016
    """
4017

Z
zhangjinchao01 已提交
4018 4019 4020
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
4021
        assert input.size is not None
Z
zhangjinchao01 已提交
4022
        if size is not None:
4023
            assert input.size == size
Z
zhangjinchao01 已提交
4024 4025


4026
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
4027
    """
4028
    DEPRECATED.
Z
zhangjinchao01 已提交
4029 4030 4031 4032 4033 4034 4035 4036
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
4037
    return input
Z
zhangjinchao01 已提交
4038 4039 4040


@wrap_name_default("recurrent_group")
4041
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
4042
    """
C
caoying03 已提交
4043 4044 4045
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
4046 4047
    sequence input. This is useful for attention-based models, or Neural
    Turning Machine like models.
Z
zhangjinchao01 已提交
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

4069 4070
    :param step: A step function which takes the input of recurrent_group as its own
                 input and returns values as recurrent_group's output every time step.
Z
zhangjinchao01 已提交
4071

R
ranqiu 已提交
4072 4073 4074
                 The recurrent group scatters a sequence into time steps. And
                 for each time step, it will invoke step function, and return
                 a time step result. Then gather outputs of each time step into
Z
zhangjinchao01 已提交
4075 4076 4077 4078
                 layer group's output.

    :type step: callable

R
ranqiu 已提交
4079
    :param name: The recurrent_group's name. It is optional.
Z
zhangjinchao01 已提交
4080 4081 4082 4083 4084 4085 4086
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
R
ranqiu 已提交
4087
                  over time. It's a mechanism to access layer outside step function.
Z
zhangjinchao01 已提交
4088

R
ranqiu 已提交
4089
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
4090

R
ranqiu 已提交
4091
    :param reverse: If reverse is set to True, the recurrent unit will process the
4092
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
4093
    :type reverse: bool
4094

4095 4096
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
4097 4098 4099 4100 4101 4102 4103

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
4104
    :type targetInlink: LayerOutput | SubsequenceInput
4105

D
dangqingqing 已提交
4106
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4107 4108 4109 4110
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

4111
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
4112
        input = [input]
4113
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
4114 4115

    def is_in_links(x):
4116
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
4117 4118 4119 4120

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
4121
        name=name,
4122 4123
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
4124 4125
    in_args = []
    for each_input in input:
4126
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
4127
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
4128
            mem = memory(
4129
                name=None,
Q
qijun 已提交
4130 4131
                size=each_input.input.size,
                boot_layer=each_input.input)
4132
            mem.set_input(mem)
Z
zhangjinchao01 已提交
4133
            in_args.append(mem)
4134 4135
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
4136

Z
zhangjinchao01 已提交
4137 4138 4139 4140 4141
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

4142 4143 4144 4145 4146 4147
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
4148 4149 4150

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
4151
    for layer_out in layer_outs:
4152 4153
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
4154 4155
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
4156 4157 4158 4159 4160
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

4161

Z
zhangjinchao01 已提交
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4190 4191

    def before_real_step(self):
Q
qijun 已提交
4192 4193 4194 4195 4196 4197 4198 4199 4200
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4201 4202 4203
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4204
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4222
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4223
    :type input: LayerOutput
4224
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4225
    :type name: basestring
R
ranqiu 已提交
4226 4227
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4228
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4229
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4230 4231 4232 4233
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4244

4245

R
ranqiu 已提交
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
@wrap_name_default()
def dot_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the dot product of two vectors.

    The example usage is:

    .. code-block:: python

        dot_prod = dot_prod_layer(input1=vec1, input2=vec2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input1: The first input layer.
R
ranqiu 已提交
4260
    :type input1: LayerOutput
R
ranqiu 已提交
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
    :param input2: The second input layer.
    :type input2: LayerOutput
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
    assert input1.size == input2.size, ("Two inputs should have the same size.")

    l = Layer(
        name=name,
        type=LayerType.DOT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.DOT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)


H
Haonan 已提交
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4297
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4298
    :type name: basestring
R
ranqiu 已提交
4299
    :param input1: The first input layer.
H
Haonan 已提交
4300
    :type input: LayerOutput
R
ranqiu 已提交
4301
    :param input2: The second input layer.
H
Haonan 已提交
4302
    :type input2: LayerOutput
R
ranqiu 已提交
4303 4304
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
H
Haonan 已提交
4305 4306 4307 4308 4309 4310 4311
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4322

Z
zhangjinchao01 已提交
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4339
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4340
    :type name: basestring
R
ranqiu 已提交
4341
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4342
    :type input: LayerOutput
R
ranqiu 已提交
4343
    :param eos_id: End id of sequence
Z
zhangjinchao01 已提交
4344
    :type eos_id: int
R
ranqiu 已提交
4345 4346
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4347
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4348
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4349 4350
    :rtype: LayerOutput
    """
Q
qijun 已提交
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4362 4363 4364


@wrap_name_default()
Q
qijun 已提交
4365 4366 4367 4368 4369 4370 4371
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4372
                num_results_per_sample=None):
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4384
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4385 4386 4387 4388
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4389 4390 4391 4392 4393
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4394 4395
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4396 4397
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4398 4399
                               bos_id=0,
                               eos_id=1,
4400
                               beam_size=5)
4401 4402 4403 4404 4405 4406

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

4407 4408
    :param name: The name of the recurrent unit that is responsible for
                 generating sequences. It is optional.
R
ranqiu 已提交
4409
    :type name: basestring
4410
    :param step: A callable function that defines the calculation in a time
4411
                 step, and it is applied to sequences with arbitrary length by
4412 4413 4414 4415 4416
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4417 4418
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4419
                  In beam_search, none of the input's type should be LayerOutput.
4420
    :type input: list
4421 4422 4423
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4424
                   symbol is essential, since it is used to initialize the RNN
4425 4426 4427 4428 4429 4430 4431 4432
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4433 4434
    :param max_length: Max generated sequence length.
    :type max_length: int
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4445 4446
    :return: The generated word index.
    :rtype: LayerOutput
4447 4448
    """

Z
zhangjinchao01 已提交
4449 4450 4451 4452 4453
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4454
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4455 4456 4457 4458 4459 4460
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4461 4462 4463
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4464
        if isinstance(each_input, BaseGeneratedInput):
4465 4466
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4467
            generated_input_index = i
4468

Z
zhangjinchao01 已提交
4469 4470 4471
        else:
            real_input.append(each_input)

4472
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4473 4474 4475 4476 4477 4478 4479 4480

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4481 4482 4483 4484 4485 4486
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4487 4488 4489 4490 4491 4492

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4493
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4494 4495
        return predict

4496 4497
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4498

Q
qijun 已提交
4499

4500 4501
def __cost_input__(input, label, weight=None):
    """
4502
    inputs and parents for cost layers.
4503
    """
C
caoying03 已提交
4504 4505 4506 4507 4508 4509
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4510
    if weight is not None:
4511
        assert weight.size == 1
4512 4513 4514
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4515

Z
zhangjinchao01 已提交
4516 4517

@wrap_name_default()
L
luotao1 已提交
4518
@layer_support()
4519 4520 4521 4522 4523 4524
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4525
    """
4526
    sum of square error cost:
L
Luo Tao 已提交
4527 4528 4529

    ..  math::

4530
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4531

4532
    :param name: The name of this layer. It is optional.
4533
    :type name: basestring
R
ranqiu 已提交
4534
    :param input: The first input layer.
4535
    :type input: LayerOutput
R
ranqiu 已提交
4536
    :param label: The input label.
4537
    :type label: LayerOutput
R
ranqiu 已提交
4538 4539
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4540
    :type weight: LayerOutput
R
ranqiu 已提交
4541
    :param coeff: The weight of the gradient in the back propagation.
4542
                  1.0 is the default value.
4543
    :type coeff: float
R
ranqiu 已提交
4544 4545
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4546
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4547
    :return: LayerOutput object.
4548
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4549
    """
4550 4551
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4552 4553 4554 4555
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4556
        coeff=coeff,
Q
qijun 已提交
4557
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4558
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4559 4560


4561
regression_cost = square_error_cost
L
Luo Tao 已提交
4562 4563


Z
zhangjinchao01 已提交
4564
@wrap_name_default("cost")
4565
@layer_support()
Q
qijun 已提交
4566 4567 4568 4569
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4570
                        evaluator=classification_error_evaluator,
4571 4572
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4573 4574 4575
    """
    classification cost Layer.

4576
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4577
    :type name: basestring
R
ranqiu 已提交
4578
    :param input: The first input layer.
Z
zhangjinchao01 已提交
4579
    :type input: LayerOutput
R
ranqiu 已提交
4580
    :param label: The input label.
Z
zhangjinchao01 已提交
4581
    :type label: LayerOutput
R
ranqiu 已提交
4582 4583
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4584
    :type weight: LayerOutput
R
ranqiu 已提交
4585 4586 4587 4588
    :param evaluator: Evaluator method. classification_error_evaluator is the default.
    :type evaluator: Evaluator method
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
4589
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
4590
    :param coeff: The weight of the gradient in the back propagation.
4591
                  1.0 is the default value.
4592
    :type coeff: float
D
dangqingqing 已提交
4593
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4594 4595 4596 4597 4598
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4599 4600 4601

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4602 4603 4604 4605
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4606
        coeff=coeff,
Q
qijun 已提交
4607
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4618
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4619

4620
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4621 4622 4623 4624 4625
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4626
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4627

4628

Q
qijun 已提交
4629 4630 4631 4632 4633 4634 4635 4636 4637
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4638 4639
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4640 4641 4642 4643
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
R
ranqiu 已提交
4644
    supports GPU mode.
Z
zhangjinchao01 已提交
4645 4646 4647 4648 4649

    The example usage is:

    .. code-block:: python

4650 4651
       op = conv_operator(img=input1,
                          filter=input2,
4652
                          filter_size=3,
Z
zhangjinchao01 已提交
4653 4654 4655
                          num_filters=64,
                          num_channels=64)

R
ranqiu 已提交
4656
    :param img: The input image.
4657
    :type img: LayerOutput
R
ranqiu 已提交
4658
    :param filter: The input filter.
4659
    :type filter: LayerOutput
R
ranqiu 已提交
4660
    :param filter_size: The dimension of the filter kernel on the x axis.
Z
zhangjinchao01 已提交
4661
    :type filter_size: int
R
ranqiu 已提交
4662 4663 4664
    :param filter_size_y: The dimension of the filter kernel on the y axis.
                          If the parameter is not set or set to None, it will
                          set to 'filter_size' automatically.
Z
zhangjinchao01 已提交
4665
    :type filter_size_y: int
R
ranqiu 已提交
4666
    :param num_filters: The number of the output channels.
4667
    :type num_filters: int
R
ranqiu 已提交
4668 4669 4670
    :param num_channels: The number of the input channels. If the parameter is not set
                         or set to None, it will be automatically set to the channel
                         number of the 'img'.
4671
    :type num_channels: int
R
ranqiu 已提交
4672
    :param stride: The stride on the x axis.
L
luotao02 已提交
4673
    :type stride: int
R
ranqiu 已提交
4674 4675
    :param stride_y: The stride on the y axis. If the parameter is not set or
                     set to None, it will be set to 'stride' automatically.
L
luotao02 已提交
4676
    :type stride_y: int
R
ranqiu 已提交
4677
    :param padding: The padding size on the x axis.
Z
zhangjinchao01 已提交
4678
    :type padding: int
R
ranqiu 已提交
4679 4680
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
Z
zhangjinchao01 已提交
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4691

4692 4693
    if num_channels is None:
        num_channels = img.num_filters
4694 4695

    assert isinstance(filter, LayerOutput)
4696
    assert filter.size is not None
4697

4698 4699 4700
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4712

4713
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4714 4715
    return op

Q
qijun 已提交
4716

4717
@wrap_param_attr_default()
Q
qijun 已提交
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4728 4729
                    param_attr=None,
                    trans=False):
4730
    """
R
ranqiu 已提交
4731 4732 4733
    Different from img_conv_layer and conv_op, conv_projection is a Projection,
    which can be used in mixed_layer and concat_layer. It uses cudnn to implement
    convolution and only supports GPU mode.
4734 4735 4736 4737 4738

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4739
       proj = conv_projection(input=input1,
4740 4741 4742 4743
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4744
    :param input: The input of this layer.
4745
    :type input: LayerOutput
R
ranqiu 已提交
4746 4747 4748 4749 4750
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
R
ranqiu 已提交
4751
                        on the y axis when filter_size_y is not provided.
R
ranqiu 已提交
4752 4753 4754
    :type filter_size: int | tuple | list
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
4755
    :type filter_size_y: int
R
ranqiu 已提交
4756
    :param num_filters: The number of filters.
4757
    :type num_filters: int
R
ranqiu 已提交
4758
    :param num_channels: The number of the input channels.
4759
    :type num_channels: int
R
ranqiu 已提交
4760 4761 4762 4763 4764 4765 4766
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided.
    :type stride: int | tuple | list
    :param stride_y: The stride on the y axis.
4767
    :type stride_y: int
R
ranqiu 已提交
4768 4769 4770 4771 4772 4773 4774
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided.
    :type padding: int | tuple | list
    :param padding_y: The padding size on the y axis.
4775 4776 4777
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
R
ranqiu 已提交
4778 4779
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
4780
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4781
    :param trans: Whether it is ConvTransProjection or ConvProjection
R
ranqiu 已提交
4782
    :type trans: bool
R
ranqiu 已提交
4783 4784
    :return: A Projection Object.
    :rtype: ConvTransProjection | ConvProjection
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4813
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4814 4815 4816 4817 4818
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4819 4820 4821
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4834 4835 4836 4837

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4838

D
dangqingqing 已提交
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
R
ranqiu 已提交
4849 4850
    and pad_w. pad_c, pad_h, pad_w specify the size in the corresponding
    dimension. And the input data shape is NCHW.
D
dangqingqing 已提交
4851

R
ranqiu 已提交
4852 4853 4854 4855
    For example, pad_c=[2,3] means padding 2 zeros before the input data
    and 3 zeros after the input data in the channel dimension. pad_h means
    padding zeros in the height dimension. pad_w means padding zeros in the
    width dimension.
4856

D
dangqingqing 已提交
4857
    For example,
4858

4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4880 4881

    The simply usage is:
D
dangqingqing 已提交
4882 4883 4884 4885 4886 4887 4888 4889

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4890
    :param input: The input of this layer.
D
dangqingqing 已提交
4891
    :type input: LayerOutput
R
ranqiu 已提交
4892
    :param pad_c: The padding size in the channel dimension.
R
ranqiu 已提交
4893
    :type pad_c: list | None
R
ranqiu 已提交
4894
    :param pad_h: The padding size in the height dimension.
R
ranqiu 已提交
4895
    :type pad_h: list | None
R
ranqiu 已提交
4896
    :param pad_w: The padding size in the width dimension.
R
ranqiu 已提交
4897
    :type pad_w: list | None
R
ranqiu 已提交
4898 4899
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
4900
    :type layer_attr: ExtraLayerAttribute
4901
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4944
@wrap_name_default()
L
luotao1 已提交
4945 4946
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4947
    """
R
ranqiu 已提交
4948
    This layer performs cyclic convolution on two inputs. For example:
Z
zhangjinchao01 已提交
4949 4950 4951 4952 4953 4954 4955 4956
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

R
ranqiu 已提交
4957
    In this formula:
4958 4959 4960 4961
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4962 4963 4964 4965 4966

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4967
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4968

4969
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4970
    :type name: basestring
R
ranqiu 已提交
4971
    :param a: The first input of this layer.
4972
    :type a: LayerOutput
R
ranqiu 已提交
4973
    :param b: The second input of this layer.
4974
    :type b: LayerOutput
R
ranqiu 已提交
4975 4976
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4977
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4978
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4979 4980
    :rtype: LayerOutput
    """
4981 4982
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4983 4984 4985
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4986
        inputs=[a.name, b.name],
Q
qijun 已提交
4987
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4988

Q
qijun 已提交
4989 4990
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4991 4992 4993 4994 4995


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4996
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4997
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4998 4999 5000 5001 5002 5003 5004 5005
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
5006
    """
R
ranqiu 已提交
5007 5008
    This layer performs tensor operation on two inputs.
    For example:
Z
zhangjinchao01 已提交
5009 5010

    .. math::
5011
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
5012 5013

    In this formular:
5014 5015
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
5016 5017
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
5018
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
5019 5020 5021 5022 5023

    The simple usage is:

    .. code-block:: python

5024
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
5025

5026
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5027
    :type name: basestring
R
ranqiu 已提交
5028
    :param a: The first input of this layer.
5029
    :type a: LayerOutput
R
ranqiu 已提交
5030
    :param b: The second input of this layer.
5031
    :type b: LayerOutput
R
ranqiu 已提交
5032 5033
    :param size: The dimension of this layer.
    :type size: int
5034
    :param act: Activation type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
5035
    :type act: BaseActivation
R
ranqiu 已提交
5036 5037
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5038
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5039 5040 5041 5042
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5043
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5044 5045
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5046
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5047
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5048 5049
    :rtype: LayerOutput
    """
5050
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
5051 5052 5053 5054 5055 5056
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5057 5058 5059 5060
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
5061 5062 5063 5064 5065 5066


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
5067
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
5068 5069
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
5070
                       select=None,
Q
qijun 已提交
5071 5072
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
5073 5074 5075
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
5076 5077 5078
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5079 5080
    """
    Selectived fully connected layer. Different from fc_layer, the output
R
ranqiu 已提交
5081
    of this layer can be sparse. It requires an additional input to indicate
Z
zhangjinchao01 已提交
5082 5083 5084 5085 5086 5087 5088
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

5089
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
5090

5091
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5092
    :type name: basestring
R
ranqiu 已提交
5093 5094
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
5095 5096 5097 5098
    :param select: The layer to select columns to output. It should be a sparse
                   binary matrix, and is treated as the mask of selective fc. If
                   it is not set or set to None, selective_fc_layer acts exactly
                   like fc_layer.
5099
    :type select: LayerOutput
R
ranqiu 已提交
5100 5101
    :param size: The dimension of this layer, which should be equal to that of
                 the layer 'select'.
Z
zhangjinchao01 已提交
5102
    :type size: int
5103
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
5104
    :type act: BaseActivation
R
ranqiu 已提交
5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
    :param pass_generation: The flag which indicates whether it is during generation.
    :type pass_generation: bool
    :param has_selected_colums: The flag which indicates whether the parameter 'select'
                                has been set. True is the default.
    :type has_selected_colums: bool
    :param mul_ratio: A ratio helps to judge how sparse the output is and determine
                      the computation method for speed consideration.
    :type mul_ratio: float
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5115
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5116 5117 5118 5119
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5120
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5121 5122
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5123
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5124
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5125 5126 5127 5128
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5129
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
5130 5131
        param_attr = [param_attr]
    else:
5132
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
5133 5134
            assert len(input) == len(param_attr)
        else:
5135
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
5136
                logger.fatal(
W
wangmeng28 已提交
5137 5138 5139 5140 5141
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
5142 5143
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5144 5145 5146 5147
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
5148
    Layer(
Q
qijun 已提交
5149 5150 5151
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
5152 5153 5154
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
5155
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
5156 5157 5158 5159
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
5160 5161 5162 5163 5164 5165 5166
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
5167 5168 5169


@wrap_name_default()
L
luotao1 已提交
5170 5171
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5172
    """
R
ranqiu 已提交
5173
    A layer for sampling id from a multinomial distribution from the input layer.
Z
zhangjinchao01 已提交
5174 5175 5176 5177 5178 5179 5180 5181
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
5182
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5183
    :type input: LayerOutput
5184
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5185
    :type name: basestring
R
ranqiu 已提交
5186 5187 5188
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5189
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5190 5191
    :rtype: LayerOutput
    """
X
xuwei06 已提交
5192
    l = Layer(
Z
zhangjinchao01 已提交
5193 5194 5195
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
5196 5197 5198
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
5199 5200 5201


@wrap_name_default()
L
luotao1 已提交
5202
@layer_support()
Q
qijun 已提交
5203 5204 5205 5206
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
5207
                          layer_attr=None):
Z
zhangjinchao01 已提交
5208
    """
R
ranqiu 已提交
5209
    This layer for applying a slope and an intercept to the input.
Z
zhangjinchao01 已提交
5210 5211 5212 5213 5214 5215 5216 5217 5218 5219

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
5220
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5221
    :type input: LayerOutput
5222
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5223
    :type name: basestring
R
ranqiu 已提交
5224 5225 5226 5227 5228 5229 5230
    :param slope: The scale factor.
    :type slope: float
    :param intercept: The offset.
    :type intercept: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5231
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5232 5233 5234 5235 5236 5237 5238 5239
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
5240 5241 5242
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
5243 5244 5245


@wrap_name_default()
L
luotao1 已提交
5246
@layer_support()
Q
qijun 已提交
5247
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5248
    """
5249 5250 5251 5252
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
5253 5254 5255

    .. math::

5256
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
5257

5258 5259 5260 5261 5262
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
5263

5264
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5265 5266

    In this formular:
5267 5268 5269 5270 5271 5272
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5273 5274 5275 5276 5277

    The simple usage is:

    .. code-block:: python

5278
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5279 5280
                                       size=elem_dim)

5281 5282 5283 5284
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
R
ranqiu 已提交
5285
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5286
    :type size: int
5287
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5288
    :type name: basestring
R
ranqiu 已提交
5289 5290 5291
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5292
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5293 5294
    :rtype: LayerOutput
    """
5295 5296 5297 5298
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5299
            size = vectors.size / weights.size
5300 5301
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5302 5303
    Layer(
        name=name,
5304
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5305
        size=size,
5306
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5307 5308 5309
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5310

5311

5312
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5313

5314

Z
zhangjinchao01 已提交
5315
@wrap_name_default()
L
luotao1 已提交
5316
@layer_support()
Z
zhangjinchao01 已提交
5317 5318 5319 5320 5321 5322 5323
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5324
                       num_channels=None,
L
luotao1 已提交
5325 5326
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5327 5328
    """
    Expand feature map to minibatch matrix.
5329
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5330
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5331 5332 5333 5334 5335 5336 5337

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

R
ranqiu 已提交
5338
    The expanding method is the same with ExpandConvLayer, but saved the transposed
Z
zhangjinchao01 已提交
5339
    value. After expanding, output.sequenceStartPositions will store timeline.
R
ranqiu 已提交
5340
    The number of time steps is outputH * outputW and the dimension of each
5341
    time step is block_y * block_x * num_channels. This layer can be used after
R
ranqiu 已提交
5342
    convolutional neural network, and before recurrent neural network.
Z
zhangjinchao01 已提交
5343

5344 5345 5346 5347
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5348
       block_expand = block_expand_layer(input=layer,
5349
                                         num_channels=128,
5350 5351 5352 5353 5354
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5355
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5356
    :type input: LayerOutput
R
ranqiu 已提交
5357 5358 5359 5360
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
Z
zhangjinchao01 已提交
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5373
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5374 5375 5376 5377
    :type name: basestring.
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5378
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5379 5380
    :rtype: LayerOutput
    """
5381 5382 5383
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5401 5402


5403 5404
@wrap_name_default()
@layer_support()
5405
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5406
    """
R
ranqiu 已提交
5407 5408 5409 5410
    A layer to do max out on convolutional layer output.
      - Input: the output of a convolutional layer.
      - Output: feature map size same as the input's, and its channel number is
        (input channel) / groups.
5411

5412
    So groups should be larger than 1, and the num of channels should be able
R
ranqiu 已提交
5413 5414 5415
    to be devided by groups.

    Reference:
R
ranqiu 已提交
5416 5417 5418 5419
        `Maxout Networks
        http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf`_
        `Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
        https://arxiv.org/pdf/1312.6082v4.pdf`_
5420

X
xuwei06 已提交
5421 5422 5423 5424 5425 5426 5427 5428
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5429 5430 5431 5432 5433 5434 5435 5436
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5437
    :param input: The input of this layer.
5438
    :type input: LayerOutput
R
ranqiu 已提交
5439 5440 5441 5442
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
5443 5444
    :param groups: The group number of input layer.
    :type groups: int
5445
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5446 5447 5448
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5459 5460 5461 5462 5463 5464 5465 5466 5467
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5468 5469


Z
zhangjinchao01 已提交
5470
@wrap_name_default()
L
luotao1 已提交
5471
@layer_support()
Q
qijun 已提交
5472 5473 5474 5475 5476
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5477
              layer_attr=None):
Z
zhangjinchao01 已提交
5478 5479
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
R
ranqiu 已提交
5480
    classication task. e.g. sequence labeling problems where the
Z
zhangjinchao01 已提交
5481 5482
    alignment between the inputs and the target labels is unknown.

R
ranqiu 已提交
5483
    Reference:
R
ranqiu 已提交
5484
        `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
R
ranqiu 已提交
5485
        with Recurrent Neural Networks
R
ranqiu 已提交
5486
        http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf`_
5487 5488

    Note:
R
ranqiu 已提交
5489 5490 5491 5492 5493
        Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
        as the size of the input, where num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer (e.g.
        fc_layer with softmax activation) should be (num_classes + 1). The size of
        ctc_layer should also be (num_classes + 1).
5494

C
caoying03 已提交
5495
    The example usage is:
Z
zhangjinchao01 已提交
5496 5497 5498 5499 5500 5501 5502 5503

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5504
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5505
    :type input: LayerOutput
R
ranqiu 已提交
5506
    :param label: The input label.
Z
zhangjinchao01 已提交
5507
    :type label: LayerOutput
R
ranqiu 已提交
5508
    :param size: The dimension of this layer, which must be equal to (category number + 1).
Z
zhangjinchao01 已提交
5509
    :type size: int
5510
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5511 5512
    :type name: basestring
    :param norm_by_times: Whether to do normalization by times. False is the default.
Z
zhangjinchao01 已提交
5513
    :type norm_by_times: bool
R
ranqiu 已提交
5514 5515 5516
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5517
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5518 5519 5520 5521
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5522 5523 5524 5525 5526
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5527
    Layer(
5528 5529 5530 5531
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5532
        inputs=[input.name, label.name],
Q
qijun 已提交
5533
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5534 5535
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5536

5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5548
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5549
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5550 5551 5552 5553 5554 5555 5556
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

R
ranqiu 已提交
5557
    Reference:
R
ranqiu 已提交
5558
        `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
R
ranqiu 已提交
5559
        with Recurrent Neural Networks
R
ranqiu 已提交
5560
        http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf`_
5561 5562

    Note:
R
ranqiu 已提交
5563 5564 5565
        - Let num_classes represents the category number. Considering the 'blank'
          label needed by CTC, you need to use (num_classes + 1) as the size of
          warp_ctc layer.
5566
        - You can set 'blank' to any value ranged in [0, num_classes], which
R
ranqiu 已提交
5567
          should be consistent with those used in your labels.
5568
        - As a native 'softmax' activation is interated to the warp-ctc library,
R
ranqiu 已提交
5569
          'linear' activation is expected to be used instead in the 'input' layer.
5570

C
caoying03 已提交
5571
    The example usage is:
5572 5573 5574 5575 5576 5577 5578 5579 5580

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5581
    :param input: The input of this layer.
5582
    :type input: LayerOutput
R
ranqiu 已提交
5583
    :param label: The input label.
5584
    :type label: LayerOutput
R
ranqiu 已提交
5585
    :param size: The dimension of this layer, which must be equal to (category number + 1).
5586
    :type size: int
5587
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5588 5589
    :type name: basestring
    :param blank: The 'blank' label used in ctc.
5590
    :type blank: int
R
ranqiu 已提交
5591
    :param norm_by_times: Whether to do normalization by times. False is the default.
5592
    :type norm_by_times: bool
R
ranqiu 已提交
5593 5594 5595
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5618
@wrap_name_default()
5619
@wrap_param_attr_default()
L
luotao1 已提交
5620
@layer_support()
Q
qijun 已提交
5621 5622 5623 5624 5625 5626
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5627
              coeff=1.0,
L
luotao1 已提交
5628
              layer_attr=None):
Z
zhangjinchao01 已提交
5629 5630 5631 5632
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5633
    The example usage is:
Z
zhangjinchao01 已提交
5634 5635 5636 5637 5638 5639 5640

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

R
ranqiu 已提交
5641
    :param input: The first input layer.
Z
zhangjinchao01 已提交
5642
    :type input: LayerOutput
R
ranqiu 已提交
5643
    :param label: The input label.
5644
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5645 5646
    :param size: The category number.
    :type size: int
R
ranqiu 已提交
5647 5648
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5649
    :type weight: LayerOutput
R
ranqiu 已提交
5650 5651
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5652
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5653
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5654 5655
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5656
                  1.0 is the default value.
5657
    :type coeff: float
R
ranqiu 已提交
5658 5659 5660
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5661
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5662 5663 5664 5665 5666
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5667 5668 5669 5670 5671 5672
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5673

Q
qijun 已提交
5674
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5675 5676 5677 5678
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5679 5680 5681 5682
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5683
        coeff=coeff,
Q
qijun 已提交
5684
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5685 5686 5687
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5688 5689 5690 5691
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5692

5693

Z
zhangjinchao01 已提交
5694
@wrap_name_default()
5695
@wrap_param_attr_default()
L
luotao1 已提交
5696
@layer_support()
Q
qijun 已提交
5697 5698 5699 5700 5701
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5702
                       layer_attr=None):
Z
zhangjinchao01 已提交
5703 5704 5705
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
R
ranqiu 已提交
5706 5707 5708
    If the input 'label' is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for an incorrect
    decoding and 0 for the correct.
Z
zhangjinchao01 已提交
5709

C
caoying03 已提交
5710
    The example usage is:
L
Luo Tao 已提交
5711 5712 5713 5714 5715 5716

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5717 5718
    :param input: The first input layer.
    :type input: LayerOutput
R
ranqiu 已提交
5719
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5720
    :type size: int
R
ranqiu 已提交
5721 5722 5723 5724
    :param label: The input label.
    :type label: LayerOutput | None
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5725
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5726
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5727 5728 5729 5730
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5731
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5732 5733 5734 5735 5736 5737
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5738
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5739 5740 5741 5742
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5743 5744 5745 5746
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5747
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5748 5749 5750
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5751 5752 5753 5754
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5755

Q
qijun 已提交
5756

C
caoying03 已提交
5757 5758 5759 5760 5761
"""
Following are cost Layers.
"""


5762
@wrap_bias_attr_default(has_bias=True)
5763
@wrap_param_attr_default()
5764 5765
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5766 5767
def nce_layer(input,
              label,
C
caoying03 已提交
5768
              num_classes=None,
5769
              param_attr=None,
Q
qijun 已提交
5770 5771 5772 5773 5774 5775
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5776 5777
    """
    Noise-contrastive estimation.
C
caoying03 已提交
5778 5779

    Reference:
R
ranqiu 已提交
5780 5781
        `A fast and simple algorithm for training neural probabilistic language
        models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf`_
5782 5783 5784 5785 5786

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5787 5788
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5789 5790
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5791
    :param name: The name of this layer. It is optional.
5792
    :type name: basestring
R
ranqiu 已提交
5793
    :param input: The first input of this layer.
R
ranqiu 已提交
5794
    :type input: LayerOutput | list | tuple | collections.Sequence
R
ranqiu 已提交
5795
    :param label: The input label.
5796
    :type label: LayerOutput
C
caoying03 已提交
5797
    :param weight: The weight layer defines a weight for each sample in the
R
ranqiu 已提交
5798
                   mini-batch. It is optional.
5799
    :type weight: LayerOutput
R
ranqiu 已提交
5800
    :param num_classes: The number of classes.
5801
    :type num_classes: int
5802
    :param act: Activation type. SigmoidActivation is the default activation.
Y
Yu Yang 已提交
5803
    :type act: BaseActivation
R
ranqiu 已提交
5804 5805
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5806
    :type param_attr: ParameterAttribute
5807 5808
    :param num_neg_samples: The number of sampled negative labels. 10 is the
                            default value.
5809
    :type num_neg_samples: int
C
caoying03 已提交
5810 5811 5812
    :param neg_distribution: The discrete noisy distribution over the output
                             space from which num_neg_samples negative labels
                             are sampled. If this parameter is not set, a
R
ranqiu92 已提交
5813
                             uniform distribution will be used. A user-defined
C
caoying03 已提交
5814 5815 5816
                             distribution is a list whose length must be equal
                             to the num_classes. Each member of the list defines
                             the probability of a class given input x.
R
ranqiu 已提交
5817
    :type neg_distribution: list | tuple | collections.Sequence | None
P
peterzhang2029 已提交
5818 5819 5820 5821
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5822
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5823 5824
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5825
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
5826
    :return: LayerOutput object.
5827 5828 5829 5830
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5831 5832 5833 5834 5835 5836 5837 5838
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5839
    assert isinstance(input, collections.Sequence)
5840

5841 5842
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5843 5844
    if num_classes is None:
        num_classes = label.size
5845 5846 5847
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5848
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
5849

5850 5851
    ipts_for_layer = []
    parents = []
5852
    for each_input, attr in zip(input, param_attr):
5853
        assert isinstance(each_input, LayerOutput)
5854
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5865
    l = Layer(
5866 5867 5868 5869
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
C
caoying03 已提交
5870
        active_type=SigmoidActivation().name,
5871 5872 5873
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5874 5875
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5876 5877 5878 5879
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
C
caoying03 已提交
5880
        activation=SigmoidActivation())
5881 5882


Z
zhangjinchao01 已提交
5883
@wrap_name_default()
L
luotao1 已提交
5884
@layer_support()
Q
qijun 已提交
5885 5886 5887 5888 5889 5890 5891
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5892
    """
R
ranqiu 已提交
5893 5894 5895
    A cost Layer for learning to rank using gradient descent.

    Reference:
R
ranqiu 已提交
5896 5897
        `Learning to Rank using Gradient Descent
        http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf`_
Z
zhangjinchao01 已提交
5898 5899 5900

    .. math::

L
luotao02 已提交
5901
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5902

L
luotao02 已提交
5903
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5904

L
luotao02 已提交
5905
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5906 5907 5908 5909 5910 5911 5912 5913

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5914
    The example usage is:
Z
zhangjinchao01 已提交
5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
R
ranqiu 已提交
5928 5929
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5930
    :type weight: LayerOutput
R
ranqiu 已提交
5931
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5932 5933
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5934
                  1.0 is the default value.
Z
zhangjinchao01 已提交
5935
    :type coeff: float
R
ranqiu 已提交
5936 5937
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5938
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5939
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5952 5953 5954 5955 5956 5957
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5958

X
xuwei06 已提交
5959
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5960

5961

Z
zhangjinchao01 已提交
5962
@wrap_name_default()
L
luotao1 已提交
5963
@layer_support()
Q
qijun 已提交
5964 5965 5966 5967 5968 5969
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5970 5971 5972
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5973
    The example usage is:
Z
zhangjinchao01 已提交
5974 5975 5976 5977 5978 5979 5980 5981

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

R
ranqiu 已提交
5982 5983
    :param input: The first input of this layer, which is often a document
                  samples list of the same query and whose type must be sequence.
Z
zhangjinchao01 已提交
5984
    :type input: LayerOutput
R
ranqiu 已提交
5985
    :param score: The scores of the samples.
Z
zhangjinchao01 已提交
5986 5987
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5988
                     e.g., 5 for NDCG@5. It must be less than or equal to the
R
ranqiu 已提交
5989
                     minimum size of the list.
Z
zhangjinchao01 已提交
5990
    :type NDCG_num: int
R
ranqiu 已提交
5991 5992 5993 5994 5995
    :param max_sort_size: The size of partial sorting in calculating gradient. If
                          max_sort_size is equal to -1 or greater than the number
                          of the samples in the list, then the algorithm will sort
                          the entire list to compute the gradient. In other cases,
                          max_sort_size must be greater than or equal to NDCG_num.
Z
zhangjinchao01 已提交
5996
    :type max_sort_size: int
R
ranqiu 已提交
5997
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5998 5999 6000
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6001
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6002
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6003 6004
    :rtype: LayerOutput
    """
6005 6006 6007
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
6008 6009 6010 6011 6012 6013 6014
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6015

Q
qijun 已提交
6016 6017
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
6018

6019

Z
zhangjinchao01 已提交
6020
@wrap_name_default()
L
luotao1 已提交
6021
@layer_support()
6022 6023 6024 6025 6026 6027
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
6028 6029 6030
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
6031 6032
    The example usage is:

Z
zhangjinchao01 已提交
6033 6034
    .. code-block:: python

X
xuwei06 已提交
6035
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
6036
                            label=label_layer)
Z
zhangjinchao01 已提交
6037 6038 6039 6040

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
R
ranqiu 已提交
6041
    :type input: LayerOutput
R
ranqiu 已提交
6042
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6043 6044
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6045
                  1.0 is the default value.
R
ranqiu 已提交
6046
    :type coeff: float
R
ranqiu 已提交
6047 6048
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
6049
    :type weight: LayerOutout
R
ranqiu 已提交
6050 6051
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6052
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6053
    :return: LayerOutput object.
R
ranqiu 已提交
6054
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6055 6056
    """

6057
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
6058 6059 6060
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
6061
        inputs=ipts,
Q
qijun 已提交
6062 6063
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6064
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
6065

6066

Z
zhangjinchao01 已提交
6067
@wrap_name_default()
L
luotao1 已提交
6068
@layer_support()
Q
qijun 已提交
6069 6070 6071 6072
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
6073 6074
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
6075 6076
    """
    A loss layer for multi class entropy with selfnorm.
6077
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
6078

C
caoying03 已提交
6079 6080
    The example usage is:

Z
zhangjinchao01 已提交
6081 6082
    .. code-block:: python

X
xuwei06 已提交
6083
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
6084
                                          label=label_layer)
Z
zhangjinchao01 已提交
6085 6086

    :param input: The first input layer.
R
ranqiu 已提交
6087
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6088
    :param label: The input label.
R
ranqiu 已提交
6089
    :type input: LayerOutput
R
ranqiu 已提交
6090
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6091 6092
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6093
                  1.0 is the default value.
R
ranqiu 已提交
6094
    :type coeff: float
Z
zhangjinchao01 已提交
6095
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
R
ranqiu 已提交
6096 6097 6098
    :type softmax_selfnorm_alpha: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6099
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6100
    :return: LayerOutput object.
R
ranqiu 已提交
6101
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6102
    """
Q
qijun 已提交
6103 6104 6105 6106 6107 6108 6109
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6110

Q
qijun 已提交
6111 6112 6113 6114 6115
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
6116

6117

X
xuwei06 已提交
6118 6119 6120 6121
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6122
    A loss layer which calculates the sum of the input as loss.
X
xuwei06 已提交
6123

C
caoying03 已提交
6124 6125
    The example usage is:

X
xuwei06 已提交
6126 6127
    .. code-block:: python

L
Luo Tao 已提交
6128
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
6129

R
ranqiu 已提交
6130
    :param input: The input of this layer.
R
ranqiu 已提交
6131
    :type input: LayerOutput
R
ranqiu 已提交
6132
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6133 6134 6135
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
6136 6137 6138 6139
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
6140
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
6141 6142 6143 6144 6145
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
6146

Q
qijun 已提交
6147
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
6148 6149


Z
zhangjinchao01 已提交
6150
@wrap_name_default()
L
luotao1 已提交
6151
@layer_support()
L
Luo Tao 已提交
6152 6153 6154 6155 6156 6157
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
6158
    """
6159 6160 6161
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
6162 6163 6164 6165 6166
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
6167

C
caoying03 已提交
6168 6169
    The example usage is:

Z
zhangjinchao01 已提交
6170 6171
    .. code-block:: python

L
Luo Tao 已提交
6172
       cost = huber_regression_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6173 6174

    :param input: The first input layer.
R
ranqiu 已提交
6175
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6176
    :param label: The input label.
R
ranqiu 已提交
6177
    :type input: LayerOutput
R
ranqiu 已提交
6178
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6179
    :type name: basestring
L
Luo Tao 已提交
6180
    :param delta: The difference between the observed and predicted values.
R
ranqiu 已提交
6181 6182
    :type delta: float
    :param coeff: The weight of the gradient in the back propagation.
6183
                  1.0 is the default value.
R
ranqiu 已提交
6184 6185 6186
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6187
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6188
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6189 6190
    :rtype: LayerOutput.
    """
6191
    assert isinstance(input, LayerOutput)
L
Luo Tao 已提交
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
6203
@wrap_name_default()
L
luotao1 已提交
6204
@layer_support()
6205 6206 6207 6208 6209
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
6210
    """
6211 6212 6213
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
6214 6215 6216
    loss is defined as:

    .. math:
6217
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
6218
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
6219

C
caoying03 已提交
6220 6221
    The example usage is:

Z
zhangjinchao01 已提交
6222 6223
    .. code-block:: python

6224
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6225 6226

    :param input: The first input layer.
R
ranqiu 已提交
6227
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6228
    :param label: The input label.
R
ranqiu 已提交
6229
    :type input: LayerOutput
R
ranqiu 已提交
6230
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6231 6232
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6233
                  1.0 is the default value.
R
ranqiu 已提交
6234 6235 6236
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6237
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6238
    :return: LayerOutput object.
R
ranqiu 已提交
6239
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6240
    """
6241 6242 6243
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
6244 6245
    Layer(
        name=name,
6246
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
6247 6248 6249
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6250 6251
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
6252

6253

Z
zhangjinchao01 已提交
6254
@wrap_name_default()
L
luotao1 已提交
6255
@layer_support()
Q
qijun 已提交
6256 6257 6258 6259
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
6260
                                     layer_attr=None):
Z
zhangjinchao01 已提交
6261 6262 6263
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
6264 6265
    The example usage is:

Z
zhangjinchao01 已提交
6266 6267
    .. code-block:: python

X
xuwei06 已提交
6268
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
6269
                                               label=label_layer)
Z
zhangjinchao01 已提交
6270 6271 6272 6273 6274

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6275
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6276 6277
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6278
                  1.0 is the default value.
Z
zhangjinchao01 已提交
6279
    :type coeff: float
R
ranqiu 已提交
6280 6281
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6282
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6283
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6284 6285 6286
    :rtype: LayerOutput
    """

6287 6288
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6289 6290 6291 6292
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6305 6306


C
caoying03 已提交
6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


D
dangqingqing 已提交
6329 6330
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6331
def cross_entropy_over_beam(input, name=None):
D
dangqingqing 已提交
6332
    """
C
caoying03 已提交
6333 6334 6335
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
D
dangqingqing 已提交
6336

C
caoying03 已提交
6337 6338 6339 6340 6341
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
D
dangqingqing 已提交
6342

C
caoying03 已提交
6343 6344 6345 6346 6347
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.
D
dangqingqing 已提交
6348

C
caoying03 已提交
6349 6350 6351
    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.
D
dangqingqing 已提交
6352

C
caoying03 已提交
6353 6354 6355 6356
    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.
D
dangqingqing 已提交
6357

C
caoying03 已提交
6358 6359 6360
    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6361
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6362 6363
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.
D
dangqingqing 已提交
6364

D
dangqingqing 已提交
6365

C
caoying03 已提交
6366 6367
    The example usage is:

D
dangqingqing 已提交
6368 6369
    .. code-block:: python

C
caoying03 已提交
6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381
       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6382
    :param input: Input beams for this layer.
C
caoying03 已提交
6383
    :type input: BeamInput
R
ranqiu 已提交
6384
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6411 6412 6413
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6414 6415
@wrap_name_default()
@layer_support()
6416
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6417 6418
    """
    This is a L1 loss but more smooth. It requires that the
R
ranqiu 已提交
6419
    sizes of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6420 6421 6422 6423 6424 6425 6426 6427 6428

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6429
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6430

R
ranqiu 已提交
6431
    Reference:
R
ranqiu 已提交
6432 6433
        `Fast R-CNN
        https://arxiv.org/pdf/1504.08083v2.pdf`_
D
dangqingqing 已提交
6434

C
caoying03 已提交
6435 6436
    The example usage is:

D
dangqingqing 已提交
6437 6438
    .. code-block:: python

6439 6440
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6441 6442 6443 6444 6445

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6446
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6447
    :type name: basestring
R
ranqiu 已提交
6448
    :param coeff: The weight of the gradient in the back propagation.
6449
                  1.0 is the default value.
6450
    :type coeff: float
R
ranqiu 已提交
6451 6452
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6465
        coeff=coeff,
D
dangqingqing 已提交
6466 6467 6468
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6469 6470 6471 6472 6473


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6474 6475 6476
    This layer multiplex multiple layers according to the indexes,
    which are provided by the first input layer.
    inputs[0]: the indexes of the layers to form the output of size batchSize.
W
wwhu 已提交
6477
    inputs[1:N]; the candidate output data.
R
ranqiu 已提交
6478 6479
    For each index i from 0 to batchSize - 1, the i-th row of the output is the
    the same to the i-th row of the (index[i] + 1)-th layer.
W
wwhu 已提交
6480 6481 6482 6483 6484 6485 6486 6487

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6488 6489
    The example usage is:

W
wwhu 已提交
6490 6491 6492 6493 6494 6495
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6496
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6497
    :type name: basestring
R
ranqiu 已提交
6498 6499
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
W
wwhu 已提交
6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6523 6524


6525 6526 6527 6528
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6529 6530 6531 6532 6533 6534
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6535
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6536
    :type name: basestring
R
ranqiu 已提交
6537
    :param input: The input of this layer.
R
ranqiu 已提交
6538 6539 6540 6541 6542
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6543 6544 6545 6546 6547 6548 6549
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6550 6551


D
dangqingqing 已提交
6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6565
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6566 6567 6568 6569 6570 6571 6572
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6573
    efficient manner to improve unidirectional RNNs.
6574

R
ranqiu 已提交
6575
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6576 6577 6578 6579
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6580

D
dangqingqing 已提交
6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6596
    :param input: The input of this layer.
D
dangqingqing 已提交
6597 6598 6599 6600
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
6601
    :param act: Activation Type. LinearActivation is the default activation.
D
dangqingqing 已提交
6602
    :type act: BaseActivation
R
ranqiu 已提交
6603 6604
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
D
dangqingqing 已提交
6605
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6606 6607
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6608
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6624 6625


6626 6627 6628 6629 6630
@layer_support()
@wrap_name_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
6631 6632
                channel_shared=None,
                num_channels=None,
6633 6634 6635
                param_attr=None,
                layer_attr=None):
    """
R
ranqiu 已提交
6636
    The Parametric Relu activation that actives outputs with a learnable weight.
6637 6638

    Reference:
R
ranqiu 已提交
6639 6640
        `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf`_
6641 6642 6643 6644 6645

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6646 6647 6648 6649 6650 6651
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6652
    :param name: The name of this layer. It is optional.
6653
    :type name: basestring
R
ranqiu 已提交
6654
    :param input: The input of this layer.
6655
    :type input: LayerOutput
R
ranqiu 已提交
6656
    :param partial_sum: this parameter makes a group of inputs share the same weight.
C
caoying03 已提交
6657 6658

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
R
ranqiu 已提交
6659 6660
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share the same weight.
        - partial_sum = number of outputs, indicates all elements share the same weight.
C
caoying03 已提交
6661 6662

    :type partial_sum: int
6663
    :param channel_shared: whether or not the parameter are shared across channels.
Z
Zhaolong Xing 已提交
6664

6665 6666
        - channel_shared = True, we set the partial_sum to the number of outputs.
        - channel_shared = False, we set the partial_sum to the number of elements in one channel.
Z
Zhaolong Xing 已提交
6667

6668
    :type channel_shared: bool
6669 6670
    :param num_channels: number of input channel.
    :type num_channels: int
6671
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6672 6673 6674
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6675
    :type layer_attr: ExtraLayerAttribute | None
6676 6677 6678 6679
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6680
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
X
xzl 已提交
6681

6682
    if not param_attr:
X
xzl 已提交
6683
        param_attr = ParamAttr(initial_mean=0.25, initial_std=0.0)
6684 6685 6686 6687
    else:
        assert isinstance(param_attr, ParameterAttribute)

    if num_channels is None:
6688 6689
        assert input.num_filters is not None, \
                'the input channel cannot be detected, please specify the num_channels parameter'
6690 6691 6692 6693
        num_channels = input.num_filters

    if channel_shared is not None:
        assert isinstance(channel_shared, bool)
6694 6695
        assert (input.height != 0 and input.width != 0), \
            'input height and widht must be setted'
6696 6697 6698 6699
        if channel_shared:
            partial_sum = input.height * input.width * num_channels
        else:
            partial_sum = input.height * input.width
6700 6701 6702

    l = Layer(
        name=name,
C
caoying03 已提交
6703
        type=LayerType.PRELU,
C
caoying03 已提交
6704
        inputs=Input(input.name, **param_attr.attr),
6705 6706 6707 6708 6709 6710
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
X
xzl 已提交
6711
        num_filters=num_channels,
6712
        size=l.config.size)
6713 6714


6715
@wrap_name_default()
C
caoying03 已提交
6716
@layer_support(ERROR_CLIPPING, DROPOUT)
6717 6718 6719 6720 6721 6722 6723
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6724 6725
                     gate_bias_attr=True,
                     inproj_attr=None,
6726 6727 6728 6729 6730 6731 6732
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6733
    product between :match:`X'` and :math:`\sigma` is finally returned.
6734 6735

    Reference:
R
ranqiu 已提交
6736 6737
        `Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083`_
6738 6739 6740 6741 6742 6743 6744 6745 6746

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6747
    :param input: The input of this layer.
6748
    :type input: LayerOutput
R
ranqiu 已提交
6749
    :param size: The dimension of this layer's output.
6750
    :type size: int
6751 6752
    :param act: Activation type of the projection. LinearActivation is the default
                activation.
6753
    :type act: BaseActivation
6754
    :param name: The name of this layer. It is optional.
6755
    :type name: basestring
R
ranqiu 已提交
6756 6757
    :param gate_attr: The extra layer attribute of the gate. See ExtraLayerAttribute for
                      details.
R
ranqiu 已提交
6758
    :type gate_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6759 6760 6761
    :param gate_param_attr: The parameter attribute of the gate. See ParameterAttribute
                            for details.
    :type gate_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6762
    :param gate_bias_attr: The bias attribute of the gate. If this parameter is set to False or
R
ranqiu 已提交
6763
                           an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6764
                           If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6765 6766 6767
    :type gate_bias_attr: ParameterAttribute | bool | None | Any
    :param inproj_attr: Extra layer attributes of the projection. See ExtraLayerAttribute for
                        details.
R
ranqiu 已提交
6768
    :type inproj_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6769 6770 6771
    :param inproj_param_attr: The parameter attribute of the projection. See ParameterAttribute
                              for details.
    :type inproj_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6772
    :param inproj_bias_attr: The bias attribute of the projection. If this parameter is set to False
R
ranqiu 已提交
6773
                             or an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6774
                             If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6775 6776 6777
    :type inproj_bias_attr: ParameterAttribute | bool | None | Any
    :param layer_attr: Extra layer attribute of the product. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6778
    :type layer_attr: ExtraLayerAttribute | None
6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6791
        layer_attr=inproj_attr,
6792 6793 6794 6795 6796 6797 6798 6799 6800
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6801
        param_attr=gate_param_attr,
6802 6803 6804 6805 6806
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6807 6808


6809
@layer_support()
6810
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6811 6812
def switch_order_layer(input,
                       name=None,
6813
                       reshape_axis=None,
W
wanghaoshuang 已提交
6814 6815
                       act=None,
                       layer_attr=None):
6816
    """
6817
    This layer switch dimension order of image input.
6818 6819
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6820 6821 6822 6823

    The example usage is:

    .. code-block:: python
6824 6825
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6826
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6827

R
ranqiu 已提交
6828
    :param input: The input of this layer.
6829
    :type input: LayerOutput
6830
    :param name: The name of this layer. It is optional.
6831
    :type name: basestring
R
ranqiu 已提交
6832 6833
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6834 6835 6836
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6837
    assert isinstance(input, LayerOutput)
6838 6839 6840 6841 6842
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6843 6844
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6845
        inputs=input.name,
6846 6847
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6848
        active_type=act.name,
6849 6850 6851
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6852
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6853
        activation=act,
6854 6855
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6856 6857


6858 6859
@wrap_name_default()
@layer_support()
6860
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6861
    """
R
ranqiu 已提交
6862 6863 6864
    This layer crops images according to the offset and shape. Users can set
    the crop shape through the argument 'shape' explicitly or by specifying a
    reference input layer.
6865

6866 6867 6868
    The example usage is:

    .. code-block:: python
W
whs 已提交
6869
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6870

R
ranqiu 已提交
6871 6872
    :param input: The input of this layer. If two inputs are given, the second one
                  will be regarded as the reference.
R
ranqiu 已提交
6873 6874
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6875
    :type offset: Sequence
R
ranqiu 已提交
6876
    :param axis: The start axis to be cropped. For image input layer:
6877 6878 6879 6880
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
R
ranqiu 已提交
6881 6882
    :type axis: int
    :param shape: The shape to be cropped to. Default is None.
6883
    :type shape: Sequence | None
6884
    :param name: The name of this layer. It is optional.
6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6906 6907


C
caoying03 已提交
6908 6909
@wrap_name_default()
@layer_support()
6910
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6911
    """
6912
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6913
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6914

C
caoying03 已提交
6915 6916 6917
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6918 6919 6920 6921

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6922

R
ranqiu 已提交
6923
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6924

C
caoying03 已提交
6925

R
ranqiu 已提交
6926
    :param input: The input of this layer. It is a nested sequence.
6927
    :type input: LayerOutput
R
ranqiu 已提交
6928
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6929
    :type input: LayerOutput
6930
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6931 6932 6933 6934
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6935

6936 6937 6938 6939 6940 6941 6942
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6943
    l = Layer(
6944 6945
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6946 6947 6948 6949 6950 6951 6952
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6953 6954


G
guosheng 已提交
6955
@wrap_name_default("clip")
6956
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6957 6958 6959 6960 6961 6962 6963 6964 6965
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6966
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6967

6968
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6969
    :type name: basestring
R
ranqiu 已提交
6970
    :param input: The input of this layer.
G
guosheng 已提交
6971
    :type input: LayerOutput.
6972
    :param min: The lower threshold for clipping.
R
ranqiu 已提交
6973
    :type min: float
6974
    :param max: The upper threshold for clipping.
R
ranqiu 已提交
6975
    :type max: float
6976 6977
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6978 6979 6980 6981 6982
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6983 6984
        min=min,
        max=max)
G
guosheng 已提交
6985 6986
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6987 6988


6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

7013
    :param name: The name of this layer. It is optional.
7014
    :type name: basestring
R
ranqiu 已提交
7015
    :param input: The input of this layer, which should be a sequence.
7016
    :type input: LayerOutput
R
ranqiu 已提交
7017
    :param starts: The start indices to slice the input sequence.
R
ranqiu 已提交
7018
    :type starts: LayerOutput | None
R
ranqiu 已提交
7019
    :param ends: The end indices to slice the input sequence.
R
ranqiu 已提交
7020
    :type ends: LayerOutput | None
7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
7052 7053


7054 7055
@wrap_name_default()
@layer_support()
7056
def kmax_seq_score_layer(input, name=None, beam_size=1):
7057
    """
R
ranqiu 已提交
7058
    This layer accepts one input which is scores over a sequence or a nested
7059 7060 7061 7062
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

7063
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
7064 7065


7066
    :param name: The name of this layer. It is optional.
7067
    :type name: basestring
R
ranqiu 已提交
7068 7069
    :param input: The input of this layer. It stores scores over a sequence or
                  a nested sequence and its size must be 1.
R
ranqiu 已提交
7070
    :type input: LayerOutput
R
ranqiu 已提交
7071 7072
    :param beam_size: The indices of the sequences with top beam_size scores are returned.
    :type beam_size: int
7073 7074 7075
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
7076
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
7077
                                            "accepts only one input.")
7078
    assert input.size == 1, (
7079
        "input of kmax_seq_score_layer is a score "
7080 7081 7082 7083 7084 7085 7086 7087 7088 7089
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
7090 7091


7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
7118
        conv = img_conv3d_layer(input=data, filter_size=1,
7119 7120 7121 7122 7123
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

7124
    :param name: The name of this layer. It is optional.
7125
    :type name: basestring
R
ranqiu 已提交
7126
    :param input: The input of this layer.
7127
    :type input: LayerOutput
R
ranqiu 已提交
7128 7129
    :param filter_size: The dimensions of the filter kernel along three axises. If the parameter
                        is set to one integer, the three dimensions will be same.
R
ranqiu 已提交
7130
    :type filter_size: int | tuple | list
R
ranqiu 已提交
7131 7132
    :param num_filters: The number of filters in each group.
    :type num_filters: int
7133
    :param act: Activation type. ReluActivation is the default activation.
7134
    :type act: BaseActivation
R
ranqiu 已提交
7135
    :param groups: The number of the filter groups.
7136
    :type groups: int
R
ranqiu 已提交
7137 7138
    :param stride: The strides of the convolution along three axises. If the parameter
                   is set to one integer, the three strides will be same.
R
ranqiu 已提交
7139
    :type stride: int | tuple | list
R
ranqiu 已提交
7140 7141
    :param padding: The numbers of padding along three axises. If the parameter is set to
                    one integer, they will be same.
R
ranqiu 已提交
7142
    :type padding: int | tuple | list
R
ranqiu 已提交
7143 7144 7145
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7146
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
7147
    :param num_channels: The number of input channels. If the parameter is not set or
R
ranqiu 已提交
7148 7149
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
7150
    :type num_channels: int
R
ranqiu 已提交
7151 7152
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
7153
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7154
    :param shared_biases: Whether biases will be shared between filters or not.
7155
    :type shared_biases: bool
R
ranqiu 已提交
7156 7157
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
7158
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
7159
    :param trans: True if it is a convTransLayer, False if it is a convLayer
7160
    :type trans: bool
R
ranqiu 已提交
7161
    :param layer_type: Specify the layer type. If the parameter is set, it must be "deconv3d"
R
ranqiu 已提交
7162 7163 7164
                       when trans=True. If not set, it will be automatically set to "deconv3d"
                       when trans=True and "conv3d" when trans=False.
    :type layer_type: basestring
7165 7166 7167 7168 7169 7170 7171
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
7172 7173 7174 7175 7176 7177
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
7178

C
chengduoZH 已提交
7179 7180 7181 7182 7183 7184
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
7185

C
chengduoZH 已提交
7186 7187 7188 7189 7190 7191
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
7238 7239


G
guosheng 已提交
7240 7241 7242 7243 7244
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
7245
    A layer applies a linear transformation to each element in each row of
R
ranqiu 已提交
7246
    the input matrix. For each element, the layer first re-scales it and then
7247 7248
    adds a bias to it.

X
xuwei06 已提交
7249
    This layer is very like the SlopeInterceptLayer, except the scale and
7250 7251
    bias are trainable.

G
guosheng 已提交
7252 7253 7254 7255 7256 7257 7258 7259
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

7260
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
7261
    :type name: basestring
R
ranqiu 已提交
7262 7263
    :param input: The input of this layer.
    :type input: LayerOutput
R
ranqiu 已提交
7264 7265
    :param param_attr: The parameter attribute of scaling. See ParameterAttribute for
                      details.
G
guosheng 已提交
7266
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7267 7268 7269
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7270
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
7271 7272 7273 7274 7275 7276 7277 7278 7279 7280
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
7281 7282 7283 7284 7285 7286 7287 7288 7289


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
7290
    :param input: The input of this layer.
7291 7292 7293
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
7294
    :param size: The resized output dimension of this layer.
7295 7296 7297 7298 7299 7300
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
Y
yangyaming 已提交
7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319


@wrap_act_default(act=LinearActivation())
@wrap_name_default('sub_seq')
def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
    """
    sub_seq_layer will return sub-sequences from the input sequences. For each
    sequence in the input sequence layer, sub_seq_layer will slice it by given
    offset and size. Please notice that, number of offset value and size value
    both are equal to the number of sequence in the input layer.

    .. code-block:: python

        sub_seq = sub_seq_layer(input=input_seq, offsets=offsets, sizes=sizes)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer, which should be sequence.
    :type input: LayerOutput
R
ranqiu 已提交
7320 7321
    :param offsets: The offset indices to slice the input sequence, which should
                    be sequence type.
Y
yangyaming 已提交
7322
    :type offsets: LayerOutput
R
ranqiu 已提交
7323
    :param sizes: The sizes of the sub-sequences, which should be sequence type.
Y
yangyaming 已提交
7324
    :type sizes: LayerOutput
7325
    :param act: Activation type, LinearActivation is the default activation.
Y
yangyaming 已提交
7326
    :type act: BaseActivation.
R
ranqiu 已提交
7327 7328 7329
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
Y
yangyaming 已提交
7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354
    :type bias_attr: ParameterAttribute | None | bool | Any
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of sub_seq_layer layer must be a PaddlePaddle layer.')
    assert isinstance(offsets, LayerOutput), (
        'The offset indices for sub_seq_layer, '
        'must be a PaddlePaddle layer.')
    assert isinstance(sizes, LayerOutput), (
        'The sizes of sub-sequences, must be a PaddlePaddle layer.')

    Layer(
        name=name,
        type=LayerType.SUB_SEQ_LAYER,
        inputs=[input.name, offsets.name, sizes.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr))

    return LayerOutput(
        name,
        LayerType.SUB_SEQ_LAYER,
        parents=[input, offsets, sizes],
        size=input.size)
Y
yangyaming 已提交
7355 7356


Y
yangyaming 已提交
7357 7358
@wrap_name_default('scale_sub_region')
def scale_sub_region_layer(input, indices, value, name=None):
Y
yangyaming 已提交
7359
    """
Y
yangyaming 已提交
7360 7361 7362 7363 7364 7365
    Given an image or feature map with CHW information, scale_sub_region_layer
    can be used to multiply a real value to values of a sub continuous region.
    You can provide start and end indices of CHW for each instance.
    Please notice that all start indices are counting from 1.
    The shape of indices should be [batch_size, 6] and the layout for each row
    is [C_Start, C_End, H_Start, H_End, W_Start, W_End].
Y
yangyaming 已提交
7366 7367 7368

    .. code-block:: python

Y
yangyaming 已提交
7369 7370 7371
        scale_sub_region = scale_sub_region_layer(input=input,
                                                  indices=indices,
                                                  value=value)
Y
yangyaming 已提交
7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer which should contains CHW information.
    :type input: LayerOutput
    :param indices: Start index and end index for C H W, the input value should
                    be a 2-D matrix with shape [batch_size, 6].
    :type indices: LayerOutput.
    :param value: value to multiply.
    :type value: float
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
Y
yangyaming 已提交
7387 7388
        'The first input of scale_sub_region_layer, '
        'must be a PaddlePaddle layer.')
Y
yangyaming 已提交
7389 7390 7391 7392 7393 7394 7395
    assert isinstance(indices, LayerOutput), (
        'The start and end indices for CHW, must be a PaddlePaddle layer.')
    assert isinstance(value, float), (
        'The value to multiply, must be a real value.')

    Layer(
        name=name,
Y
yangyaming 已提交
7396
        type=LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7397 7398 7399 7400 7401
        inputs=[input.name, indices.name],
        value=value)

    return LayerOutput(
        name,
Y
yangyaming 已提交
7402
        LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7403
        parents=[input, indices],
Y
yangyaming 已提交
7404
        num_filters=input.num_filters,
Y
yangyaming 已提交
7405
        size=input.size)