operator.cc 110.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
15

P
peizhilin 已提交
16 17
#include <sstream>
#include <string>
18

19
#include "gflags/gflags.h"
20
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/data_transform.h"
22
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
23
#include "paddle/fluid/framework/details/nan_inf_utils.h"
24
#include "paddle/fluid/framework/op_call_stack.h"
25
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/shape_inference.h"
27
#include "paddle/fluid/framework/transfer_scope_cache.h"
28
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/var_type.h"
30
#include "paddle/fluid/operators/isfinite_op.h"
31
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
32
#include "paddle/fluid/platform/enforce.h"
33
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
34
#include "paddle/fluid/platform/profiler/event_tracing.h"
35
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
36
#include "paddle/phi/common/int_array.h"
37
#include "paddle/phi/common/scalar.h"
38
#include "paddle/phi/core/kernel_context.h"
39 40
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
41

42
namespace phi {
43
class DenseTensor;
44
}  // namespace phi
45

46
#ifdef PADDLE_WITH_XPU
47 48
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
49
#endif
Q
Qiao Longfei 已提交
50

51 52 53 54
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
55 56 57 58
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
59
DECLARE_bool(benchmark);
60
DECLARE_bool(check_nan_inf);
61
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
62
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
63
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
64

Q
Qiao Longfei 已提交
65 66 67
namespace paddle {
namespace framework {

68 69 70 71 72 73
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
74

75 76
static DDim GetDimsDebug(const ScopeBase& scope,
                         const std::string& name,
77
                         bool get_actual_dim = false) {
78
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
79 80
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
81 82
  }

M
minqiyang 已提交
83 84 85
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
86
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
87
    if (get_actual_dim) {
88
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
89
    } else {
90
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
91
    }
S
Steffy-zxf 已提交
92 93
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
94 95 96 97 98
  } else {
    return DDim({-1});
  }
}

99
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
100 101 102 103 104
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

105
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
106 107 108 109
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
110

M
minqiyang 已提交
111 112 113
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
114 115
      return "";
    }
116
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
117 118
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
119 120 121
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
122
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
123
    }
S
Steffy-zxf 已提交
124 125
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
126 127 128 129 130
  } else {
    return "";
  }
}

131
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
148 149
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
150 151 152 153 154 155 156 157 158 159
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

160
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
161 162 163 164 165
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

166 167
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
168 169 170 171 172
  }

  return -1;
}

173
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
174 175 176 177 178 179 180
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
181 182 183
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
184 185 186 187 188
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
189 190 191 192 193
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
194
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
195 196 197 198 199 200
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
201
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
202 203 204 205 206 207
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

208
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
209 210 211
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
212
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
213 214 215 216
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
217
#else
218
      auto dev_id = place.device;
P
peizhilin 已提交
219
      platform::SetDeviceId(dev_id);
220 221 222
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
223 224 225 226
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
227
#else
228
      auto dev_id = place.device;
229
      platform::SetXPUDeviceId(dev_id);
230 231 232 233 234 235 236 237
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
238
      auto dev_id = place.device;
239
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
240 241 242 243 244 245 246 247
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
248
      auto dev_id = place.device;
F
fwenguang 已提交
249
      platform::SetMLUDeviceId(dev_id);
250 251 252 253 254 255 256 257
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
258
      phi::DeviceManager::SetDevice(place);
259
#endif
P
peizhilin 已提交
260
    }
P
peizhilin 已提交
261

262
    {
263 264 265
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
266
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
267
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
268 269
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
270 271
          op_name,
          platform::TracerEventType::Operator,
C
chenjian 已提交
272
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
273
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
274 275
      RunImpl(scope, place);
    }
276

Z
Zhang Ting 已提交
277
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
278
  } catch (platform::EnforceNotMet& exception) {
279
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
280
    throw std::move(exception);
281 282 283 284 285 286
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
287
  } catch (...) {
288
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
289
    std::rethrow_exception(std::current_exception());
290
  }
291 292
}

293
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
294
  return inputs_.find(name) != inputs_.end();
295 296
}

297
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
298
  auto& ins = Inputs(name);
299
  PADDLE_ENFORCE_LE(
300 301
      ins.size(),
      1UL,
302
      platform::errors::InvalidArgument(
303 304
          "Operator %s's input %s should contain only one variable.",
          type_,
305
          name));
Y
Yu Yang 已提交
306
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
307 308
}

Y
Yu Yang 已提交
309 310
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
311
  auto it = inputs_.find(name);
312
  PADDLE_ENFORCE_NE(
313 314 315 316
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have the input %s.", type_, name));
Y
Yu Yang 已提交
317
  return it->second;
Y
Yan Chunwei 已提交
318 319
}

320
bool OperatorBase::HasOutputs(const std::string& name) const {
321
  if (outputs_.find(name) != outputs_.end()) {
322 323 324 325 326 327
    return true;
  } else {
    return false;
  }
}

328
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
329
  auto& outs = Outputs(name);
330
  PADDLE_ENFORCE_LE(
331 332
      outs.size(),
      1UL,
333
      platform::errors::InvalidArgument(
334 335
          "Operator %s's output %s should contain only one variable.",
          type_,
336
          name));
Y
Yu Yang 已提交
337
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
338 339
}

Y
Yu Yang 已提交
340 341
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
342
  auto it = outputs_.find(name);
343
  PADDLE_ENFORCE_NE(
344 345
      it,
      outputs_.end(),
346 347
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
348
  return it->second;
Y
Yan Chunwei 已提交
349 350
}

351
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
352
  std::stringstream ss;
Y
Yu Yang 已提交
353
  ss << "Op(" << type_ << "), inputs:{";
354

355
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
356 357
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
358 359
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
360 361
  }

Y
Yu Yang 已提交
362 363
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
364 365
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
366 367
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
368 369
      auto var_name = input.second[i];
      ss << var_name;
370
      if (scope) {
Q
Qiao Longfei 已提交
371 372 373 374 375 376 377
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
378 379 380
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
381
          ss << ":" << dtype;
382 383
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
384
          ss << "(" << GetPlace(*scope, var_name) << ")";
385
        }
386
      }
Y
Yu Yang 已提交
387 388 389
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
390
    }
Y
Yu Yang 已提交
391
    ss << "]";
Y
Yu Yang 已提交
392 393
    ++it;
    if (it != inputs_.end()) {
394 395
      ss << ", ";
    }
Q
Qiao Longfei 已提交
396
  }
Y
Yu Yang 已提交
397
  ss << "}, outputs:{";
Y
Yu Yang 已提交
398 399
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
400 401
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
402 403
      auto var_name = output.second[i];
      ss << var_name;
404
      if (scope) {
Q
Qiao Longfei 已提交
405 406 407 408 409 410 411
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
412 413
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
414 415
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
416
          ss << "(" << GetPlace(*scope, var_name) << ")";
417
        }
418
      }
Y
Yu Yang 已提交
419 420 421
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
422
    }
Y
Yu Yang 已提交
423
    ss << "]";
Y
Yu Yang 已提交
424 425
    ++it;
    if (it != outputs_.end()) {
426 427
      ss << ", ";
    }
Q
Qiao Longfei 已提交
428
  }
Y
Yu Yang 已提交
429
  ss << "}.";
Q
Qiao Longfei 已提交
430 431 432
  return ss.str();
}

Y
Yu Yang 已提交
433
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
434 435
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
436
                           const AttributeMap& attrs)
S
sneaxiy 已提交
437 438 439 440 441 442
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
443 444 445 446 447 448 449 450
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
451
  // In OperatorBase level, all attributes with VarDesc type will be considered
452 453 454 455 456 457
  // as Input.
  for (auto& attr : FilterAttrVar(attrs)) {
    VLOG(3) << "found Attribute with Variable type: " << attr.first;
    inputs_[attr.first] = std::move(AttrVarNames(attr.second));
    attrs_.erase(attr.first);
  }
Y
Yu Yang 已提交
458
}
459

Q
qijun 已提交
460 461
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
462
  for (auto& o : inputs_) {
Q
qijun 已提交
463 464 465 466 467 468
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
469 470 471 472 473 474 475 476 477 478
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
479
  auto& info = Info();
Y
Yu Yang 已提交
480 481

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
482
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
483 484 485 486 487 488 489 490 491
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
492 493
}

494
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
495
  if (info_ == nullptr || info_->proto_ == nullptr) return;
496

S
sneaxiy 已提交
497
  for (auto& in : info_->Proto().inputs()) {
498
    if (!in.dispensable() && !in.extra()) {
499
      PADDLE_ENFORCE_NE(
500 501 502 503
          inputs_.find(in.name()),
          inputs_.end(),
          platform::errors::NotFound(
              "Operator %s's input (%s) is not set.", Type(), in.name()));
504
    }
505 506
  }

S
sneaxiy 已提交
507
  for (auto& out : info_->Proto().outputs()) {
508
    if (!out.dispensable() && !out.extra()) {
509
      PADDLE_ENFORCE_NE(
510 511 512 513
          outputs_.find(out.name()),
          outputs_.end(),
          platform::errors::NotFound(
              "Operator %s's output (%s) is not set.", Type(), out.name()));
514
    }
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
530

C
chengduo 已提交
531
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
532 533
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
534 535
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
536
  } else {
537 538 539
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
540 541 542
  }
}

C
chengduo 已提交
543
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
544
  if (var->IsType<LoDTensor>()) {
545
    return var->GetMutable<LoDTensor>();
546 547
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
548
  } else {
549 550 551
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
552 553 554
  }
}

555
bool ExecutionContext::HasInput(const std::string& name) const {
556
  auto* var = InputVar(name);
557 558 559
  return var != nullptr;
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

574
bool ExecutionContext::HasOutput(const std::string& name) const {
575
  auto* var = OutputVar(name);
576 577 578
  return var != nullptr;
}

X
Xin Pan 已提交
579
const Variable* ExecutionContext::InputVar(const std::string& name) const {
580 581
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
582 583 584
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

585
  PADDLE_ENFORCE_LE(
586 587
      it->second.size(),
      1UL,
588
      platform::errors::InvalidArgument(
589
          "Operator %s's input %s should contain only one variable.",
590 591
          op_.Type(),
          name));
X
Xin Pan 已提交
592 593 594
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
595
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
596 597 598
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

599
  PADDLE_ENFORCE_LE(
600 601
      it->second.size(),
      1UL,
602 603
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
604 605
          op_.Type(),
          name));
X
Xin Pan 已提交
606 607 608
  return it->second.empty() ? nullptr : it->second[0];
}

609
template <>
610
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
611
    const std::string& name) const {
612 613
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
614 615
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
616 617 618 619
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
620 621 622
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
H
hong 已提交
623
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
624
                   if (var == nullptr) return nullptr;
625 626
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(),
                                     true,
627 628 629 630
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
631 632 633 634 635
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

636
template <>
637
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
638
    const std::string& name) const {
H
hong 已提交
639 640 641
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
642 643
    return {};
  }
644
  std::vector<Tensor*> res;
645
  res.reserve(vars.size());
646 647 648
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
649 650 651
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
652
                 });
653 654 655
  return res;
}

Y
Yu Yang 已提交
656
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
657
  // check in new Function kernel first
658
  bool has_phi_kernel = false;
659
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
660
  auto kernel_key_map =
661
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
662
  for (auto& kernel : kernel_key_map) {
663
    has_phi_kernel = true;
664
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
665 666 667 668
      return true;
    }
  }

Y
Yu Yang 已提交
669 670
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
671 672 673 674 675 676 677 678 679 680 681 682 683
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
684 685 686
      return true;
    }
  }
H
hong 已提交
687

Y
Yu Yang 已提交
688 689 690
  return false;
}

691 692
class RuntimeInferShapeContext : public InferShapeContext {
 public:
693
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
694
      : op_(op), ctx_(ctx) {}
695 696

  bool HasInput(const std::string& name) const override {
697
    // has only one input
X
Xin Pan 已提交
698
    const auto& ins = ctx_.inputs;
699 700
    auto it = ins.find(name);
    if (it == ins.end()) {
701 702
      return false;
    }
703
    const auto& in = it->second;
X
Xin Pan 已提交
704
    if (in.size() == 0) return false;
705
    PADDLE_ENFORCE_EQ(
706 707
        in.size(),
        1UL,
708 709
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
710
    return in[0] != nullptr;
711 712 713
  }

  bool HasOutput(const std::string& name) const override {
714
    // has only one output
X
Xin Pan 已提交
715
    const auto& outs = ctx_.outputs;
716 717
    auto it = outs.find(name);
    if (it == outs.end()) {
718 719
      return false;
    }
720
    const auto& out = it->second;
X
Xin Pan 已提交
721
    if (out.size() == 0) {
722 723
      return false;
    }
724
    PADDLE_ENFORCE_EQ(
725 726
        out.size(),
        1UL,
727 728
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
729
    return out[0] != nullptr;
730 731
  }

732 733 734 735
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

736
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
737 738
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
739
    if (it == ins.end() || it->second.empty()) {
740 741
      return false;
    }
X
Xin Pan 已提交
742 743
    for (auto& input : it->second) {
      if (input == nullptr) {
744 745 746 747 748 749
        return false;
      }
    }
    return true;
  }

750 751
  bool HasOutputs(const std::string& name,
                  bool allow_null = false) const override {
X
Xin Pan 已提交
752 753
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
754
    if (it == outs.end() || it->second.empty()) {
755 756
      return false;
    }
757 758 759 760 761 762 763 764
    if (allow_null) {
      for (auto& output : it->second) {
        if (output != nullptr) return true;
      }
      return false;
    } else {
      for (auto& output : it->second) {
        if (output == nullptr) return false;
765
      }
766
      return true;
767 768 769
    }
  }

770 771 772
  AttrReader Attrs() const override {
    return AttrReader(op_.Attrs(), op_.RuntimeAttrs());
  }
773

H
hong 已提交
774
  std::vector<std::string> Inputs(const std::string& name) const override {
775 776 777
    return op_.Inputs(name);
  }

H
hong 已提交
778
  std::vector<std::string> Outputs(const std::string& name) const override {
779 780 781
    return op_.Outputs(name);
  }

782 783 784
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
785 786
    PADDLE_ENFORCE_LT(idx,
                      op_proto->inputs().size(),
787 788 789
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
790 791 792
                          op_.Type(),
                          idx,
                          op_proto->inputs().size()));
793 794 795 796 797 798 799
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
800 801
        idx,
        op_proto->outputs().size(),
802 803 804
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
805 806 807
            op_.Type(),
            idx,
            op_proto->outputs().size()));
808 809 810
    return op_proto->outputs()[idx].name();
  }

811 812 813
  void ShareDim(const std::string& in,
                const std::string& out,
                size_t i = 0,
814
                size_t j = 0) override {
X
Xin Pan 已提交
815 816
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
817
    PADDLE_ENFORCE_NE(
818 819
        in_it,
        ctx_.inputs.end(),
820 821
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
822 823
        out_it,
        ctx_.outputs.end(),
824
        platform::errors::NotFound("Output %s does not exist.", out));
825 826
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
827 828 829
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
830 831 832 833
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
834 835 836
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
837 838
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
839 840 841

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
842

843
    PADDLE_ENFORCE_EQ(
844 845
        in_var->Type(),
        out_var->Type(),
846
        platform::errors::InvalidArgument(
847 848
            "The type of input (%s) and output (%s) are inconsistent.",
            in,
849
            out));
850

851 852 853
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
854 855 856 857 858 859 860 861
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
862
      PADDLE_THROW(platform::errors::Unimplemented(
863
          "Currently, the input type of ShareDim only can be LoDTensor "
864
          "or SelectedRows."));
865 866 867
    }
  }

H
hong 已提交
868 869 870 871
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
872 873
    PADDLE_ENFORCE_NE(in_it,
                      ctx_.inputs.end(),
H
hong 已提交
874 875 876
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
877 878 879 880
        out_it,
        ctx_.outputs.end(),
        platform::errors::NotFound(
            "Output [%s] found error in Op [%s]", out, op_.Type()));
H
hong 已提交
881 882 883 884 885

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
886 887
        in_var_list.size(),
        out_var_list.size(),
H
hong 已提交
888
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
889
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
890 891 892 893 894 895 896 897 898 899 900 901
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
902 903
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(),
                        true,
H
hong 已提交
904 905
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
906 907
                            i,
                            out_var_names[i]));
H
hong 已提交
908 909 910 911 912 913 914 915 916 917
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

918 919 920
  void ShareLoD(const std::string& in,
                const std::string& out,
                size_t i = 0,
Q
Qiao Longfei 已提交
921
                size_t j = 0) const override {
X
Xin Pan 已提交
922 923
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
924
    PADDLE_ENFORCE_NE(
925 926
        in_it,
        ctx_.inputs.end(),
927 928
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
929 930
        out_it,
        ctx_.outputs.end(),
931
        platform::errors::NotFound("Output %s does not exist.", out));
932 933
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
934 935 936
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
937 938 939 940
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
941 942 943
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
944 945
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
946 947

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
948
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
949
    Variable* out_var = out_it->second.at(j);
950
    PADDLE_ENFORCE_EQ(
951 952
        out_var->IsType<LoDTensor>(),
        true,
953 954
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
955
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
956 957
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
958

M
mozga-intel 已提交
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
978 979
  }

980
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
981
    PADDLE_THROW(platform::errors::PreconditionNotMet(
982
        "GetLoDLevel is only used in compile time. The calculation of "
983
        "output's actual lod is different among operators so that should be "
984
        "set in the runtime kernel."));
985 986
  }

987 988
  void SetLoDLevel(const std::string& out,
                   int32_t lod_level,
989
                   size_t j = 0) const override {
990
    PADDLE_THROW(platform::errors::PreconditionNotMet(
991
        "SetLoDLevel is only used in compile time. The calculation of "
992
        "output's actual lod is different among operators so that should be "
993
        "set in the runtime kernel."));
C
chengduo 已提交
994 995
  }

996 997
  bool IsRuntime() const override { return true; }

998 999 1000 1001 1002 1003
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
1004
    } catch (const std::bad_cast& exp) {
1005 1006 1007 1008
      return false;
    }
  }

1009
  // TODO(paddle-dev): Can this be template?
C
Chen Weihang 已提交
1010
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
1011
  GetInputVarPtrs(const std::string& name) const override {
1012
    const std::vector<Variable*>& vars = InputVars(name);
C
Chen Weihang 已提交
1013
    paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
1014 1015 1016 1017 1018
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

C
Chen Weihang 已提交
1019
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
1020
  GetOutputVarPtrs(const std::string& name) const override {
1021
    const std::vector<Variable*>& vars = OutputVars(name);
C
Chen Weihang 已提交
1022
    paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
1023 1024 1025 1026 1027
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
1028 1029
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
1030
    PADDLE_ENFORCE_EQ(
1031 1032
        vars.size(),
        1UL,
1033 1034
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
1035 1036
            name,
            vars.size()));
X
Xin Pan 已提交
1037 1038 1039 1040 1041 1042 1043 1044
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

1045 1046 1047 1048
  proto::VarType::Type GetInputVarType(const std::string& name) const override {
    return GetVarType(InputVars(name).at(0));
  }

X
Xin Pan 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
1059 1060
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
1061
    PADDLE_ENFORCE_EQ(
1062 1063
        vars.size(),
        1UL,
1064 1065
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
1066 1067
                                          name,
                                          vars.size()));
X
Xin Pan 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

1077 1078 1079 1080 1081 1082 1083 1084
  const phi::ArgumentMappingFn* GetPhiArgumentMappingFn() const override {
    return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
  }

  const phi::KernelSignature* GetPhiDefaultKernelSignature() const override {
    return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
  }

1085
 protected:
X
Xin Pan 已提交
1086
  DDim GetDim(Variable* var) const {
1087 1088
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
1089 1090
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
1091 1092
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1093
    } else {
1094 1095 1096 1097
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1098 1099 1100
    }
  }

X
Xin Pan 已提交
1101 1102 1103
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
1104 1105 1106
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(ret),
X
Xin Pan 已提交
1107 1108 1109 1110
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1111
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1112 1113
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1114 1115
  }

X
Xin Pan 已提交
1116
  void SetDim(Variable* var, const DDim& dim) {
1117 1118
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
1119 1120
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1121
    } else {
1122 1123 1124 1125
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1126 1127 1128 1129 1130 1131
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1132 1133
    PADDLE_ENFORCE_EQ(length,
                      dims.size(),
1134 1135 1136 1137
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
1138 1139
                          length,
                          dims.size()));
X
Xin Pan 已提交
1140 1141 1142 1143 1144
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1145 1146 1147
    }
  }

F
fengjiayi 已提交
1148 1149
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1150 1151
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1152 1153
  }

X
Xin Pan 已提交
1154 1155 1156 1157
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
1158 1159 1160
    std::transform(vars.begin(),
                   vars.end(),
                   retv.begin(),
X
Xin Pan 已提交
1161
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
1162 1163
                             this,
                             std::placeholders::_1));
X
Xin Pan 已提交
1164 1165 1166 1167
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1168 1169 1170
    return ToVarType(var->Type());
  }

1171 1172 1173
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1174
    PADDLE_ENFORCE_NE(
1175 1176
        it,
        ctx_.inputs.end(),
1177 1178
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1179 1180 1181 1182 1183
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1184
    PADDLE_ENFORCE_NE(
1185 1186
        it,
        ctx_.outputs.end(),
1187 1188
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1189
    return it->second;
F
fengjiayi 已提交
1190 1191
  }

1192
  const OperatorBase& op_;
X
Xin Pan 已提交
1193
  const RuntimeContext& ctx_;
1194 1195
};

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
struct OperatorWithKernel::CacheImpl {
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
                     RuntimeInferShapeContext* infer_shape_ctx)
      : kernel_ctx_(kernel_ctx), infer_shape_ctx_(infer_shape_ctx) {}

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

 private:
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
};

1211 1212
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1213 1214 1215 1216
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
1217 1218
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1219 1220
    return;
  }
1221
  PADDLE_ENFORCE_NE(
1222 1223 1224 1225
      framework::TensorContainsInf(tensor),
      true,
      platform::errors::Fatal(
          "Operator %s output Tensor %s contains Inf.", op_type, name));
1226
  PADDLE_ENFORCE_NE(
1227 1228 1229 1230
      framework::TensorContainsNAN(tensor),
      true,
      platform::errors::Fatal(
          "Operator %s output Tensor %s contains NAN.", op_type, name));
C
chengduoZH 已提交
1231 1232
}

1233 1234 1235 1236
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1237 1238
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1251 1252
          op_kernels.begin(),
          op_kernels.end(),
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1264 1265
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1278 1279
          op_kernels.begin(),
          op_kernels.end(),
1280 1281 1282 1283 1284 1285 1286
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
bool OperatorWithKernel::SupportXPU() const {
#ifdef PADDLE_WITH_XPU
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::XPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_xpu_place(kern_pair.first.place_) &&
                   paddle::platform::is_xpu_support_op(type_,
                                                       kern_pair.first) &&
                   !paddle::platform::is_in_xpu_black_list(type_);
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportXPU() when not compiled with "
      "XPU support."));
  return false;
#endif
}

1324 1325
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::ONEDNN;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [data_type](OpKernelMap::const_reference kern_pair) {
            return platform::is_cpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kMKLDNN &&
                   kern_pair.first.data_type_ == data_type;
          });
    }
1351
  }
1352 1353
}

1354 1355 1356 1357
bool OperatorWithKernel::SupportsKernelType(
    const OpKernelType& kernel_type) const {
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1358 1359 1360 1361 1362
  if (kernels_iter == all_op_kernels.end()) return false;
  OpKernelMap& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(kernel_type);

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1363
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
1364 1365 1366
    return kernel_iter != kernels.end() &&
           paddle::platform::is_xpu_support_op(type_, kernel_type) &&
           !paddle::platform::is_in_xpu_black_list(type_);
1367 1368
  }
#endif
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389

#ifdef PADDLE_WITH_XPU_KP
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, kernel_type);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
      auto tmp_kernel_type = kernel_type;
      tmp_kernel_type.library_type_ = LibraryType::kKP;
      return kernels.find(tmp_kernel_type) != kernels.end();
    }
    return kernel_iter != kernels.end() &&
           paddle::platform::is_xpu_support_op(type_, kernel_type) &&
           !paddle::platform::is_in_xpu_black_list(type_);
  }
#endif

  return kernel_iter != kernels.end();
1390 1391
}

1392 1393
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1394 1395 1396
  const std::string use_mkldnn_attr = "use_mkldnn";
  bool use_mkldnn_ctx = ctx.HasAttr(use_mkldnn_attr) &&
                        ctx.Attr<bool>(use_mkldnn_attr) &&
1397
                        platform::is_cpu_place(ctx.GetPlace());
1398
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1399 1400
}

1401 1402 1403 1404 1405 1406 1407
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1408
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1409 1410
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1411
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1412
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1413 1414
}

L
luotao1 已提交
1415 1416
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1417 1418
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1419 1420 1421
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1422
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1423
    all_kernels_must_compute_runtime_shape_ = true;
1424
  const Scope* cur_scope = &scope;
1425
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1426 1427
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1428
    pre_scope_ = cur_scope;
1429 1430 1431 1432 1433
  } else if (run_phi_kernel_ && impl_ != nullptr && !need_prepare_data_ &&
             !need_prepare_phi_data_) {
    if (!all_kernels_must_compute_runtime_shape_)
      this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
    (*phi_kernel_)(impl_->getKernelContext());
L
luotao1 已提交
1434
  } else {
1435 1436 1437 1438 1439 1440
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1441
    }
1442
    RunImpl(scope, place, runtime_ctx_.get());
L
luotao1 已提交
1443 1444 1445 1446 1447 1448
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1449
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1450
  auto* dev_ctx = pool.Get(place);
1451

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1462
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1463 1464 1465 1466
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1467

1468 1469 1470 1471 1472 1473
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1474 1475 1476 1477 1478
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1479 1480
  phi::KernelKey phi_kernel_key;
  std::string phi_kernel_name;
1481
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1482
    if (kernel_signature_ == nullptr || phi_kernel_ == nullptr) {
1483 1484 1485
      kernel_signature_.reset(new phi::KernelSignature(
          std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      VLOG(6) << *kernel_signature_.get();
1486 1487 1488 1489 1490

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

1491
      phi_kernel_name = kernel_signature_->name;
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1514
                  << phi_kernel_name
1515
                  << ", using_kernel_key:" << *kernel_type_.get();
1516
          auto try_phi_kernel_key =
1517
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1518 1519
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1520 1521
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1522
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1523 1524 1525
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1526
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1527 1528 1529 1530
          }
        }
      }
#endif
1531 1532
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
      phi_kernel_.reset(
1533
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1534
              phi_kernel_name, phi_kernel_key)));
1535

1536
      if (phi_kernel_->IsValid()) {
1537
        VLOG(6) << "Static mode ChoosePhiKernel - kernel name: "
1538 1539
                << phi_kernel_name << " | kernel key: " << phi_kernel_key
                << " | kernel: " << *phi_kernel_;
1540
      } else {
1541
        VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << phi_kernel_name
1542 1543
                << "` not found.";
      }
1544
    } else {
1545
      phi_kernel_name = kernel_signature_->name;
1546 1547 1548
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1567
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1568
                  << phi_kernel_name
1569
                  << ", using_kernel_key:" << *kernel_type_.get();
1570
          auto try_phi_kernel_key =
1571
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1572 1573
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1574
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1575
            VLOG(3) << "modify XPU KP kernel in static graph: "
1576
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1577 1578 1579
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1580
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1581 1582 1583 1584
          }
        }
      }
#endif
1585
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1586
    }
1587 1588 1589 1590

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1591
#if defined(PADDLE_WITH_XPU)
1592 1593 1594 1595 1596
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
            !paddle::platform::is_xpu_support_op(type_, *kernel_type_.get()) ||
        paddle::platform::is_in_xpu_black_list(type_);
#endif
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1608
    if (phi_kernel_->IsValid()
1609
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1610 1611
        && !is_xpu_unsupport
#endif
1612 1613 1614
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
1615
    ) {
1616
      run_phi_kernel_ = true;
1617 1618 1619
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif

1630 1631 1632
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1633
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1634
          || is_xpu_unsupport
1635
#endif
1636 1637 1638
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
#endif
1639
      ) {
1640 1641 1642
        auto phi_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), phi_kernel_key, *this);
        phi_kernel_.reset(
1643
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1644
                phi_kernel_name, phi_cpu_kernel_key)));
1645 1646

        dev_ctx = pool.Get(platform::CPUPlace());
1647 1648 1649 1650
        if (phi_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: "
                  << phi_kernel_name << " | kernel key: " << phi_cpu_kernel_key
                  << " | kernel: " << *phi_kernel_;
1651
          run_phi_kernel_ = true;
1652 1653
        }
      }
1654 1655
    }
  }
1656
  if (!run_phi_kernel_) {
1657 1658
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1659
      dev_ctx = pool.Get(kernel_type_->place_);
1660
    }
1661 1662
  }

Y
yuyang18 已提交
1663 1664
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1665 1666
  Scope* transfer_scope = nullptr;
  {
1667
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1668
                                       platform::TracerEventType::OperatorInner,
1669 1670
                                       1,
                                       platform::EventRole::kInnerOp);
1671
    if (need_prepare_data_) {
1672 1673
      transfer_scope = PrepareData(
          scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
1674
    }
1675
  }
Y
yuyang18 已提交
1676 1677 1678 1679
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1680
  if (!all_kernels_must_compute_runtime_shape_) {
1681
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1682
                                       platform::TracerEventType::OperatorInner,
1683 1684
                                       1,
                                       platform::EventRole::kInnerOp);
1685
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1686
    this->Info().infer_shape_(&infer_shape_ctx);
1687 1688 1689
    record_event.End();
    platform::RecordOpInfoSupplement(
        Type(), Attrs(), infer_shape_ctx, *runtime_ctx);
1690
  }
1691 1692 1693 1694 1695

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1696 1697
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1698
  {
1699
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1700
                                       platform::TracerEventType::OperatorInner,
1701 1702
                                       1,
                                       platform::EventRole::kInnerOp);
1703
    if (run_phi_kernel_) {
1704
      phi::KernelContext phi_kernel_context;
1705 1706
      if (enable_cache_runtime_context_ && !need_prepare_phi_data_ &&
          !need_prepare_data_) {
1707 1708 1709
        impl_ =
            new CacheImpl(new phi::KernelContext(),
                          new RuntimeInferShapeContext(*this, *runtime_ctx));
1710
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, impl_->getKernelContext());
1711
        (*phi_kernel_)(impl_->getKernelContext());
1712
      } else {
1713
        phi::KernelContext phi_kernel_context;
1714 1715
        // Do data transform before building KernelContext
        // TODO(zhiqiu): support TransferInplaceVarsBack
1716 1717
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, &phi_kernel_context);
        (*phi_kernel_)(&phi_kernel_context);
1718
      }
1719 1720 1721 1722
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1723
  }
D
dzhwinter 已提交
1724

Y
yuyang18 已提交
1725
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1726
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1727
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1728
  }
1729 1730 1731 1732 1733 1734 1735

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1736 1737 1738 1739 1740 1741 1742 1743
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1744

D
dzhwinter 已提交
1745
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1746
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1747
    dev_ctx->Wait();
1748 1749
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1750 1751
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1752
  }
C
chengduoZH 已提交
1753 1754

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1755
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1756
  }
1757 1758 1759 1760 1761 1762 1763

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1764
}
X
Xin Pan 已提交
1765

1766 1767 1768
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1769 1770 1771
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1782 1783 1784
      // when the Op that does not have GPUKernel is assigned to GPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
1785 1786
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1787
      if (SupportGPU()) {
1788
        auto& dev_ctx = ctx.device_context();
1789
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1790 1791
      }
#endif
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("npu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have NPUKernel is assigned to NPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
1811 1812 1813
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
1814
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1815 1816 1817
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
1818 1819
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
            << ") has no NPU implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("xpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have XPUKernel is assigned to XPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
#ifdef PADDLE_WITH_XPU
      if (SupportXPU()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no XPU implementation. It will be assigned to CPUPlace.";
1846 1847 1848
      }
    }
  }
C
cc 已提交
1849 1850
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1851 1852 1853
  return expected_kernel_key;
}

1854
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
1855
    const ExecutionContext& ctx) const {
1856 1857 1858
  kernel_signature_.reset(
      new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  VLOG(6) << *kernel_signature_.get();
1859 1860 1861 1862

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

1863 1864 1865 1866
  auto phi_kernel_name = kernel_signature_->name;
  auto phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
  phi_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      phi_kernel_name, phi_kernel_key)));
1867

1868 1869 1870 1871
  if (phi_kernel_->IsValid()) {
    VLOG(6) << "Static mode ChoosePhiKernel - kernel name: " << phi_kernel_name
            << " | kernel key: " << phi_kernel_key
            << " | kernel: " << *phi_kernel_;
1872
  } else {
1873
    VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << phi_kernel_name
1874 1875
            << "` not found.";
  }
1876
  return phi_kernel_key;
1877 1878 1879 1880 1881 1882 1883
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
1884 1885
      kernels_iter,
      all_op_kernels.end(),
1886 1887 1888 1889 1890 1891 1892
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1893 1894

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
1895

L
Liu Yiqun 已提交
1896 1897 1898 1899 1900 1901 1902 1903 1904
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1905
#endif
1906 1907

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1908
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1909 1910 1911
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1912
    VLOG(3) << "fluid missing XPU kernel: " << type_
1913 1914 1915 1916 1917
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1918
#endif
L
Liu-xiandong 已提交
1919 1920

#ifdef PADDLE_WITH_XPU_KP
1921 1922 1923 1924 1925 1926 1927
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
1928
      VLOG(3) << "fluid xpu_kp using rt mode ";
1929 1930
    }
    if (use_xpu_kp_kernel_debug) {
1931
      VLOG(3) << "fluid xpu_kp using debug mode ";
1932 1933 1934
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
1935 1936
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
1937 1938
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
1939 1940 1941 1942 1943 1944 1945 1946 1947
      // if can't find corresponding kernel when is_xpu_kp_support is on
      // if the fluid do not register related kernel, it can't work and hava
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
1948
        VLOG(3) << "fluid using XPU KP kernel: " << type_
1949 1950
                << ", using_kernel_key:" << expected_kernel_key;
      }
1951 1952 1953 1954 1955 1956
    }
    bool is_xpu_unsupport =
        (!paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
         paddle::platform::is_in_xpu_black_list(type_));
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
1957
      VLOG(3) << "fluid missing XPU kernel: " << type_
1958 1959 1960 1961 1962
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
1963 1964 1965
  }
#endif

A
Allen Guo 已提交
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
1976 1977
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
1978
      platform::is_npu_place(expected_kernel_key.place_)) {
1979 1980 1981 1982 1983 1984
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1985 1986 1987
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
1988
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
1989 1990 1991
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
2003 2004 2005
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
2006
#endif
2007 2008 2009 2010 2011 2012
  PADDLE_ENFORCE_NE(
      kernel_iter,
      kernels.end(),
      platform::errors::NotFound("Operator (%s) does not have kernel for %s.",
                                 type_,
                                 KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
2013

2014 2015 2016 2017 2018
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
2019 2020
}

Y
yuyang18 已提交
2021
void OperatorWithKernel::TransferInplaceVarsBack(
2022 2023
    const Scope& scope,
    const std::vector<std::string>& inplace_vars,
Y
yuyang18 已提交
2024 2025
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
2026
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
2027
    auto* origin_var = scope.FindVar(var_name);
2028 2029 2030
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2031
    auto* original_tensor =
C
chengduo 已提交
2032
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
2033
    auto* var = transfer_scope.FindVar(var_name);
2034 2035 2036
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2037
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2038
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
2039
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
2040 2041 2042 2043 2044
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
2045 2046 2047
  }
}

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
2077
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
2097
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
2115
Scope* OperatorWithKernel::PrepareData(
2116 2117
    const Scope& scope,
    const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
2118 2119
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
2120
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
2121

2122
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
2123 2124 2125 2126
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
2127 2128
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
2129 2130 2131
    }
  }

2132 2133 2134 2135 2136 2137 2138 2139 2140
  const auto& name_map = Inputs();
  auto prepare_input_data = [&](const std::string& in_name,
                                std::vector<Variable*>* in_vars,
                                const phi::TensorArgDef* in_def,
                                bool should_skip_input) -> void {
    auto& name_vec = name_map.at(in_name);
    for (size_t i = 0; i < in_vars->size(); ++i) {
      const auto& var_name = name_vec[i];
      auto* var = in_vars->at(i);
X
Xin Pan 已提交
2141

Y
yuyang18 已提交
2142
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
2143
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
2144 2145 2146
        continue;
      }

C
chengduo 已提交
2147
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
2163
            (paddle::platform::MKLDNNDeviceContext::tls()
2164 2165
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC) &&
            (tensor_in->dims().size() >= 3)) {
2166 2167 2168 2169 2170
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
2171
          in_vars->at(i) = trans_var;
2172 2173
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
2174 2175
          platform::MatchShapeToLayout(
              out, tensor_in->layout(), DataLayout::kNHWC);
2176 2177
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
2178
                  << in_name << " in Operator " << type_;
2179
        } else {
2180 2181
          VLOG(7) << "Skip scanning input " << in_name << " in Operator "
                  << type_;
2182 2183 2184 2185 2186
        }
#endif
        continue;
      }

Y
yuyang18 已提交
2187 2188 2189 2190
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
      auto kernel_type_for_var =
          GetKernelTypeForVar(in_name, *tensor_in, expected_kernel_key);
      bool need_trans_dtype =
          kernel_type_for_var.data_type_ != expected_kernel_key.data_type_;
      bool need_trans_layout = NeedTransformLayout(
          kernel_type_for_var.data_layout_, expected_kernel_key.data_layout_);
      if (!need_trans_dtype && !need_trans_layout) {
        if (!run_phi_kernel_ &&
            platform::places_are_same_class(kernel_type_for_var.place_,
                                            expected_kernel_key.place_)) {
          continue;
        }
      }
Y
yuyang18 已提交
2204

2205 2206 2207 2208 2209
      std::unique_ptr<OpKernelType> new_expected_kernel_key = nullptr;
      if (run_phi_kernel_ && in_def->backend != phi::Backend::ALL_BACKEND) {
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if ((in_def->backend != tensor_backend &&
             (in_def->backend != phi::Backend::GPUDNN ||
2210 2211
              tensor_backend != phi::Backend::GPU) &&
             (in_def->backend != phi::Backend::KPS ||
2212 2213 2214
              tensor_backend != phi::Backend::XPU) &&
             (in_def->backend != phi::Backend::ONEDNN ||
              tensor_backend != phi::Backend::CPU)) ||
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
            tensor_in->place().GetType() == AllocationType::GPUPINNED) {
          new_expected_kernel_key = std::make_unique<OpKernelType>(
              expected_kernel_key.data_type_,
              phi::TransToPhiPlace(in_def->backend),
              expected_kernel_key.data_layout_,
              expected_kernel_key.library_type_,
              expected_kernel_key.customized_type_value_);
        }
      }

      if (!need_trans_dtype && !need_trans_layout) {
        if (run_phi_kernel_ && new_expected_kernel_key == nullptr) {
          continue;
        }
Y
yuyang18 已提交
2229 2230
      }

M
minqiyang 已提交
2231
      VLOG(3) << "Transform Variable " << var_name << " from "
2232 2233 2234
              << kernel_type_for_var << " to "
              << (new_expected_kernel_key ? *new_expected_kernel_key
                                          : expected_kernel_key);
Y
yuyang18 已提交
2235

2236 2237 2238
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
2239
      // We use a thread_local cache to fix that issue, the key in the cache is
2240 2241 2242 2243 2244
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
2245 2246
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
2247
      // variables, that behavior a lot different.
2248 2249 2250 2251 2252 2253
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
      if (!run_by_executor_) {
        if (new_expected_kernel_key) {
          if ((platform::is_gpu_place(kernel_type_for_var.place_) ||
               platform::is_gpu_place(new_expected_kernel_key->place_))) {
            new_scope = TryCreateTransferScope(
                kernel_type_for_var, *new_expected_kernel_key, &scope);
            enable_cache_transfer_scope_ = true;
          }
        } else if ((platform::is_gpu_place(kernel_type_for_var.place_) ||
                    platform::is_gpu_place(expected_kernel_key.place_))) {
          new_scope = TryCreateTransferScope(
              kernel_type_for_var, expected_kernel_key, &scope);
          enable_cache_transfer_scope_ = true;
        }
2268
      }
2269

2270
      if (!new_scope) {
Y
yuyang18 已提交
2271 2272
        new_scope = &scope.NewScope();
      }
2273 2274 2275 2276
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
2277
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
2278 2279
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
2280
      if (enable_cache_runtime_context_) {
2281 2282
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
2283 2284

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2285
      auto* trans_var = new_scope->Var(var_name);
2286
      in_vars->at(i) = trans_var;
L
Leo Chen 已提交
2287 2288 2289 2290 2291 2292 2293

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
2294
            VLOG(4) << "Found inplace between input(" << in_name
L
Leo Chen 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
2304
      Tensor out;
2305 2306 2307 2308 2309
      TransformData(new_expected_kernel_key ? *new_expected_kernel_key
                                            : expected_kernel_key,
                    kernel_type_for_var,
                    *tensor_in,
                    &out);
Y
yuyang18 已提交
2310 2311
      SetTensorToVariable(*var, out, trans_var);
    }
2312 2313 2314 2315
  };

  if (run_phi_kernel_) {
    const auto& input_names = kernel_signature_->input_names;
2316
    const auto& input_defs = phi_kernel_->args_def().input_defs();
2317 2318 2319 2320 2321 2322 2323 2324
    PADDLE_ENFORCE_EQ(input_names.size(),
                      input_defs.size(),
                      platform::errors::InvalidArgument(
                          "The size of inputs_args names (%d) must be equal to "
                          "the size of kernel input_defs (%d).",
                          input_names.size(),
                          input_defs.size()));
    for (size_t i = 0; i < input_defs.size(); ++i) {
2325
      const auto& input_defs = phi_kernel_->args_def().input_defs();
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
      auto& in_def = input_defs.at(i);
      std::string input_name = input_names[i];
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      auto& ins_vector = iter->second;
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      prepare_input_data(input_name, &ins_vector, &in_def, should_skip_input);
    }
  } else {
    for (auto& var_name_item : Inputs()) {
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

      std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];
      prepare_input_data(
          var_name_item.first, &input_vars, nullptr, should_skip_input);
    }
Y
yuyang18 已提交
2346
  }
L
Leo Chen 已提交
2347

2348 2349 2350 2351 2352 2353
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
2354 2355 2356 2357 2358 2359

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
2360 2361
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2362 2363 2364

  return new_scope;
}
Q
Qiao Longfei 已提交
2365

2366
void OperatorWithKernel::ParseInputDataType(
2367 2368
    const Variable* var,
    const std::string& name,
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
    const Tensor* t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      PADDLE_ENFORCE_EQ(
2388 2389
          t->IsInitialized(),
          true,
2390 2391
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
2392 2393
                                            Type(),
                                            name));
2394 2395 2396 2397 2398 2399
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2400 2401
    const std::vector<Variable*>& vars,
    const std::string& name,
2402
    proto::VarType::Type* data_type) const {
2403
  proto::VarType::Type default_data_type =
2404 2405 2406 2407 2408 2409 2410 2411 2412
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
2413 2414
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2415
      } else if (var->IsType<LoDTensorArray>()) {
2416 2417 2418 2419
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2420 2421
          }
        }
2422 2423
      }
      if (t != nullptr) {
2424
        PADDLE_ENFORCE_EQ(
2425 2426
            t->IsInitialized(),
            true,
2427 2428
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
2429 2430
                                              Type(),
                                              name));
2431 2432
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2433 2434 2435 2436 2437 2438 2439
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
2440 2441 2442
                           Type(),
                           name,
                           DataTypeToString(tmp),
2443
                           DataTypeToString(*data_type)));
2444 2445 2446 2447 2448 2449
        *data_type = tmp;
      }
    }
  }
}

2450
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2451
    const ExecutionContext& ctx) const {
2452 2453 2454
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2455 2456 2457 2458 2459 2460
  for (auto* name : ctx.InNameList()) {
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2461
  }
2462
  PADDLE_ENFORCE_NE(
2463 2464
      data_type,
      dafault_data_type,
2465 2466
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2467 2468 2469 2470 2471 2472 2473 2474
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2475 2476 2477 2478 2479
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2480
  PADDLE_ENFORCE_NE(
2481 2482
      data_type,
      dafault_data_type,
2483 2484 2485 2486
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
2487 2488
          name,
          Type()));
2489
  return data_type;
Y
Yu Yang 已提交
2490
}
2491

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
2510 2511
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2512 2513 2514 2515 2516 2517 2518 2519
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
2520 2521
  PADDLE_ENFORCE_EQ(t->IsInitialized(),
                    true,
2522 2523 2524
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
2525 2526 2527
                        Type(),
                        name,
                        ctx.InputName(name)));
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
2539 2540
    const ExecutionContext& ctx,
    const std::string& name1,
2541 2542 2543 2544 2545 2546
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2547 2548
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2549 2550 2551 2552 2553 2554 2555

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2556 2557 2558 2559 2560 2561
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
2562 2563
    const std::string& var_name,
    const Tensor& tensor,
2564
    const OpKernelType& expected_kernel_type) const {
2565 2566
  return OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
2567 2568
}

2569
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2570
    const ExecutionContext& ctx) const {
2571
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2572
  if (arg_map_fn_ == nullptr) {
2573 2574 2575 2576
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2577 2578 2579
      auto func =
          [this](
              const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2580 2581 2582 2583
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2584 2585
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2586 2587
}

2588
void OperatorWithKernel::BuildPhiKernelContext(
2589 2590
    const RuntimeContext& ctx,
    platform::DeviceContext* dev_ctx,
2591 2592
    phi::KernelContext* phi_kernel_context) const {
  phi_kernel_context->SetDeviceContext(dev_ctx);
2593

2594 2595 2596
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
2597

2598 2599 2600
  auto input_defs = phi_kernel_->args_def().input_defs();
  auto attr_defs = phi_kernel_->args_def().attribute_defs();
  auto output_defs = phi_kernel_->args_def().output_defs();
2601

2602 2603
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
2604 2605 2606
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
2607 2608
                        input_names.size(),
                        input_defs.size()));
2609

2610 2611
  PADDLE_ENFORCE_EQ(output_names.size(),
                    output_defs.size(),
2612 2613 2614
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
2615 2616
                        output_names.size(),
                        output_defs.size()));
2617

2618 2619
  PADDLE_ENFORCE_EQ(attr_names.size(),
                    attr_defs.size(),
2620 2621 2622
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
2623 2624
                        attr_names.size(),
                        attr_defs.size()));
2625 2626

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2627
    auto it = ctx.inputs.find(input_names[i]);
2628 2629 2630

    // calcute the start and end index of the input tensors
    size_t start_idx =
2631
        (i == 0 ? 0 : phi_kernel_context->InputRangeAt(i - 1).second);
H
hong 已提交
2632
    // deal with optional here
2633
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
2634
        (input_defs[i].type_index ==
2635
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
2636
         input_defs[i].type_index ==
2637
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
2638
         input_defs[i].type_index ==
2639 2640
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
2641
      phi_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
H
hong 已提交
2642
      auto end_idx = start_idx + 1;
2643 2644
      phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                           i);
2645

H
hong 已提交
2646 2647 2648 2649
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2650
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2651
      const phi::TensorBase* tensor_in = nullptr;
2652
      auto* var = ins_vector[offset];
H
hong 已提交
2653 2654
      if (var->IsType<framework::LoDTensor>()) {
        tensor_in = &(var->Get<framework::LoDTensor>());
2655
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2656 2657
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
2658
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2659
      } else if (var->IsType<framework::LoDTensorArray>()) {
2660
        need_prepare_phi_data_ = true;
C
Chen Weihang 已提交
2661
        paddle::small_vector<const phi::TensorBase*> tensor_vector;
2662 2663 2664 2665
        auto& tensor_array = var->Get<framework::LoDTensorArray>();
        for (auto& t : tensor_array) {
          tensor_vector.emplace_back(&t);
        }
2666
        phi_kernel_context->EmplaceBackInputsWithoutSetRange(tensor_vector);
2667
        end_idx += tensor_array.size() - 1;
2668 2669 2670 2671
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2672
      }
2673
    }
2674
    // Note: here cannot deal with vector<LoDTensorArray> input
2675
    phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2676
  }
2677
  VLOG(4) << "Done inputs";
2678 2679

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2680
    auto it = ctx.outputs.find(output_names[i]);
2681
    size_t start_idx =
2682
        (i == 0 ? 0 : phi_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2683 2684 2685 2686 2687 2688

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
2689
      phi_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
H
hong 已提交
2690
      auto end_idx = start_idx + 1;
2691 2692
      phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                            i);
H
hong 已提交
2693 2694 2695 2696
      continue;
    }
    auto& outs_vector = it->second;

2697
    size_t end_idx = start_idx + outs_vector.size();
2698 2699

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2700
      phi::TensorBase* tensor_out = nullptr;
2701
      auto* var = outs_vector[offset];
2702 2703 2704
      if (var) {
        if (var->template IsType<framework::LoDTensor>()) {
          tensor_out = var->template GetMutable<framework::LoDTensor>();
2705
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2706 2707
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
2708
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2709
        } else if (var->template IsType<framework::LoDTensorArray>()) {
C
Chen Weihang 已提交
2710
          paddle::small_vector<phi::TensorBase*> tensor_vector;
2711 2712 2713 2714 2715 2716 2717
          auto* tensor_array =
              var->template GetMutable<framework::LoDTensorArray>();
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
          for (auto& t : *tensor_array) {
            tensor_vector.emplace_back(&t);
          }
2718
          phi_kernel_context->EmplaceBackOutputsWithoutSetRange(tensor_vector);
2719
          end_idx += tensor_array->size() - 1;
2720 2721 2722 2723 2724
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
2725
      } else {
2726
        phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2727
      }
2728
    }
2729 2730
    phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
2731
  }
2732
  VLOG(4) << "Done outputs";
2733 2734

  for (size_t i = 0; i < attr_names.size(); ++i) {
2735 2736
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
2737 2738
    // attribute with Variable type has been placed into Inputs(), and
    // we can parse them from RuntimeContext.inputs.
2739 2740 2741 2742 2743 2744 2745
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
2746
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
2747
                  phi::Scalar(PADDLE_GET_CONST(float, attr_iter->second))));
2748
              break;
2749 2750 2751 2752
            case proto::AttrType::FLOAT64:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(double, attr_iter->second))));
              break;
2753
            case proto::AttrType::INT:
2754
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
2755
                  phi::Scalar(PADDLE_GET_CONST(int, attr_iter->second))));
2756
              break;
2757 2758 2759 2760
            case proto::AttrType::LONG:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(int64_t, attr_iter->second))));
              break;
2761
            case proto::AttrType::STRING:
2762
              phi_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
R
Ruibiao Chen 已提交
2763
                  PADDLE_GET_CONST(std::string, attr_iter->second))));
2764
              break;
2765 2766 2767 2768
            case proto::AttrType::BOOLEAN:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(bool, attr_iter->second))));
              break;
2769 2770 2771 2772 2773 2774 2775
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
2776
          need_prepare_phi_data_ = true;
2777
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
2778
          phi_kernel_context->EmplaceBackAttr(std::move(
2779
              experimental::MakePhiScalarFromVar(*ins_vector.front())));
2780
        }
2781 2782 2783 2784 2785
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
2786
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2787
                  PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second))));
2788 2789
              break;
            case proto::AttrType::LONGS:
2790
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2791
                  PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second))));
2792 2793
              break;
            case proto::AttrType::INT:
2794
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2795
                  &PADDLE_GET_CONST(int32_t, attr_iter->second), 1)));
2796 2797
              break;
            case proto::AttrType::LONG:
2798
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2799
                  &PADDLE_GET_CONST(int64_t, attr_iter->second), 1)));
2800 2801 2802 2803 2804 2805 2806 2807
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
2808
          need_prepare_phi_data_ = true;
2809 2810
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
2811
            phi_kernel_context->EmplaceBackAttr(std::move(
2812 2813
                experimental::MakePhiIntArrayFromVar(*ins_vector.front())));
          } else {  // ShapeTensorList
2814
            phi_kernel_context->EmplaceBackAttr(std::move(
2815 2816
                experimental::MakePhiIntArrayFromVarList(ins_vector)));
          }
2817
        }
2818 2819 2820
        break;
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
2821 2822
            attr_iter,
            Attrs().end(),
2823 2824 2825 2826 2827 2828
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2829
                PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second);
2830 2831 2832 2833 2834
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2835
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2836 2837 2838
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2839
                PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second);
2840 2841 2842 2843 2844
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2845
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2846 2847 2848
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2849
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second);
2850 2851 2852 2853 2854
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2855
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2856 2857 2858
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
R
Ruibiao Chen 已提交
2859
                PADDLE_GET_CONST(std::vector<double>, attr_iter->second);
2860 2861 2862 2863 2864
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2865
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2866 2867 2868
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2869
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second);
2870 2871 2872 2873 2874
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2875
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2876 2877 2878 2879 2880
          } break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
2881 2882
                attr_names[i]));
        }
2883 2884
      } break;
      default: {
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
        if (attr_iter == Attrs().end()) {
          attr_iter = RuntimeAttrs().find(attr_names[i]);
          PADDLE_ENFORCE_NE(attr_iter,
                            RuntimeAttrs().end(),
                            platform::errors::NotFound(
                                "(%s) is not found in AttributeMap when "
                                "buildind static KernelContext.",
                                attr_names[i]));
        }

2895 2896
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
2897
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2898
                PADDLE_GET_CONST(float, attr_iter->second));
2899
            break;
2900 2901 2902 2903
          case phi::AttributeType::FLOAT64:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(double, attr_iter->second));
            break;
2904
          case phi::AttributeType::INT32:
2905
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2906
                PADDLE_GET_CONST(int, attr_iter->second));
2907 2908
            break;
          case phi::AttributeType::BOOL:
2909
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2910
                PADDLE_GET_CONST(bool, attr_iter->second));
2911 2912
            break;
          case phi::AttributeType::INT64:
2913
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2914
                PADDLE_GET_CONST(int64_t, attr_iter->second));
2915 2916
            break;
          case phi::AttributeType::INT32S:
2917
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2918
                PADDLE_GET_CONST(std::vector<int>, attr_iter->second));
2919 2920 2921 2922
            break;
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
2923
                    PADDLE_GET_CONST(int, attr_iter->second)));
2924
            phi_kernel_context->EmplaceBackAttr(data_type);
2925 2926
          } break;
          case phi::AttributeType::STRING:
2927
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2928
                std::move(PADDLE_GET_CONST(std::string, attr_iter->second)));
2929 2930 2931 2932
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
2933
                phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2934
                    PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second));
2935 2936 2937
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
R
Ruibiao Chen 已提交
2938
                    PADDLE_GET_CONST(std::vector<int>, attr_iter->second);
2939 2940
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
2941
                phi_kernel_context->EmplaceBackAttr(vector_int64_attr);
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
2952
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2953
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second));
2954 2955
            break;
          case phi::AttributeType::STRINGS:
2956
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2957
                PADDLE_GET_CONST(std::vector<std::string>, attr_iter->second));
2958 2959 2960 2961 2962 2963
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
2964
        }
2965 2966 2967
      }
    }
  }
2968
  VLOG(4) << "Done attributes";
2969 2970
}

Q
Qiao Longfei 已提交
2971
}  // namespace framework
L
liaogang 已提交
2972
}  // namespace paddle