operator.cc 37.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
21
#include "paddle/fluid/framework/lod_tensor.h"
22
#include "paddle/fluid/framework/op_proto_maker.h"
23
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
24
#include "paddle/fluid/framework/shape_inference.h"
25
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/var_type.h"
27
#include "paddle/fluid/platform/debug_support.h"
28
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
29

D
dzhwinter 已提交
30
DECLARE_bool(benchmark);
C
chengduoZH 已提交
31 32 33
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
D
dzhwinter 已提交
34

P
peizhilin 已提交
35 36 37 38 39 40
DEFINE_bool(
    enable_debug, false,
    "The enable_debug indicate whether to give more detail information when, "
    "use the paddlepaddle. However it may deduce the performance since it has"
    "to record the information during runtime.");

Q
Qiao Longfei 已提交
41 42 43
namespace paddle {
namespace framework {

44 45 46 47 48 49
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
50

Q
qiaolongfei 已提交
51 52
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
Y
Yu Yang 已提交
53
    return var->Get<framework::LoDTensor>().type();
Q
qiaolongfei 已提交
54
  } else if (var->IsType<framework::SelectedRows>()) {
Y
Yu Yang 已提交
55
    return var->Get<framework::SelectedRows>().value().type();
Q
qiaolongfei 已提交
56 57 58 59 60
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

61 62
static DDim GetDims(const Scope& scope, const std::string& name,
                    bool get_actual_dim = false) {
63
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
64 65
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
66 67
  }

M
minqiyang 已提交
68 69
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
M
minqiyang 已提交
70
    if (UNLIKELY(!tensor.IsInitialized())) {
71
      return DDim({-1});
72
    }
M
minqiyang 已提交
73 74 75 76 77 78 79
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
80 81 82 83 84
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
85 86 87 88 89 90
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
91 92 93 94 95
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
96

M
minqiyang 已提交
97 98 99
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
100 101
      return "";
    }
Y
Yu Yang 已提交
102
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
103
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
104 105 106 107
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
108
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
109
    }
D
dzhwinter 已提交
110 111 112 113 114
  } else {
    return "";
  }
}

115 116 117 118 119 120
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
121 122
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
123 124 125 126 127
  }

  return -1;
}

Q
Qiao Longfei 已提交
128 129 130 131 132 133 134 135
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
136 137 138
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
139 140
      return default_lod;
    }
M
minqiyang 已提交
141
    return tensor.lod();
Q
Qiao Longfei 已提交
142 143 144 145 146
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
147 148 149 150 151
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
152
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
153 154 155 156 157 158
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
159
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
160 161 162 163 164 165
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

P
peizhilin 已提交
166
void OperatorBase::PreHook(const Scope& scope, const platform::Place& place) {
167 168 169 170 171 172 173
  auto attrName = OpProtoAndCheckerMaker::OpCreationCallstackAttrName();
  if (HasAttr(attrName)) {
    auto& callstack = Attr<std::vector<std::string>>(attrName);
    platform::PythonDebugSupport::GetInstance()->SetInformation(callstack);
  }
}

174
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
175 176 177 178
  if (FLAGS_enable_debug) {
    VLOG(4) << "Call the prehook ... ";
    PreHook(scope, place);
  }
179

P
peizhilin 已提交
180 181
  VLOG(4) << place << " " << DebugStringEx(&scope);
  if (platform::is_gpu_place(place)) {
182
#ifndef PADDLE_WITH_CUDA
P
peizhilin 已提交
183
    PADDLE_THROW("Cannot run operator on place %s", place);
184
#else
P
peizhilin 已提交
185 186
    auto dev_id = boost::get<platform::CUDAPlace>(place).device;
    platform::SetDeviceId(dev_id);
187
#endif
P
peizhilin 已提交
188
  }
P
peizhilin 已提交
189

P
peizhilin 已提交
190 191 192 193 194 195 196 197 198
  // The profile has a process-wide mutex, results in serious performance issue
  // in concurrency scenerio. Here use an `if` to fix this issue.
  // Please not remove the `if`, ask @Superjomn if there are any concern.
  if (platform::IsProfileEnabled()) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::RecordEvent record_event(Type(), pool.Get(place));
    RunImpl(scope, place);
  } else {
    RunImpl(scope, place);
199
  }
P
peizhilin 已提交
200
  VLOG(3) << place << " " << DebugStringEx(&scope);
201

P
peizhilin 已提交
202 203 204 205
  if (FLAGS_enable_debug) {
    VLOG(4) << "Call the posthook ... ";
    PostHook(scope, place);
  }
206 207
}

P
peizhilin 已提交
208
void OperatorBase::PostHook(const Scope& scope, const platform::Place& place) {
209
  // do nothing here
210 211
}

212
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
213
  return inputs_.find(name) != inputs_.end();
214 215
}

216
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
217
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
218
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
219 220
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
221
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
222 223
}

Y
Yu Yang 已提交
224 225
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
226
  auto it = inputs_.find(name);
227 228
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
229
  return it->second;
Y
Yan Chunwei 已提交
230 231
}

232
bool OperatorBase::HasOutputs(const std::string& name) const {
233
  if (outputs_.find(name) != outputs_.end()) {
234 235 236 237 238 239
    return true;
  } else {
    return false;
  }
}

240
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
241
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
242
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
243 244
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
245
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
246 247
}

Y
Yu Yang 已提交
248 249
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
250
  auto it = outputs_.find(name);
251 252
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
253
  return it->second;
Y
Yan Chunwei 已提交
254 255
}

256
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
257
  std::stringstream ss;
Y
Yu Yang 已提交
258
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
259 260
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
261 262
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
263 264
      auto var_name = input.second[i];
      ss << var_name;
265
      if (scope) {
Q
Qiao Longfei 已提交
266 267 268 269 270 271 272 273 274 275 276
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          std::string dtype = GetDtype(*scope, var_name);
          ss << ":" << dtype;
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
277
        }
278
      }
Y
Yu Yang 已提交
279 280 281
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
282
    }
Y
Yu Yang 已提交
283
    ss << "]";
Y
Yu Yang 已提交
284 285
    ++it;
    if (it != inputs_.end()) {
286 287
      ss << ", ";
    }
Q
Qiao Longfei 已提交
288
  }
Y
Yu Yang 已提交
289
  ss << "}, outputs:{";
Y
Yu Yang 已提交
290 291
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
292 293
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
294 295
      auto var_name = output.second[i];
      ss << var_name;
296
      if (scope) {
Q
Qiao Longfei 已提交
297 298 299 300 301 302 303
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
304 305
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
Q
Qiao Longfei 已提交
306 307
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
308
        }
309
      }
Y
Yu Yang 已提交
310 311 312
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
313
    }
Y
Yu Yang 已提交
314
    ss << "]";
Y
Yu Yang 已提交
315 316
    ++it;
    if (it != outputs_.end()) {
317 318
      ss << ", ";
    }
Q
Qiao Longfei 已提交
319
  }
Y
Yu Yang 已提交
320
  ss << "}.";
Q
Qiao Longfei 已提交
321 322 323
  return ss.str();
}

Y
Yu Yang 已提交
324
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
325 326
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
327 328
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
329 330
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
331
}
332

Q
qijun 已提交
333 334
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
335
  for (auto& o : inputs_) {
Q
qijun 已提交
336 337 338 339 340 341
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
342 343 344 345 346 347 348 349 350 351
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
352
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
353 354

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
355
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
356 357 358 359 360 361 362 363 364
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
365 366
}

367 368 369
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
370
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
371 372

  for (auto& in : op_info->Proto().inputs()) {
373 374 375 376
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
377 378 379
  }

  for (auto& out : op_info->Proto().outputs()) {
380 381 382 383 384
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
401
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
402
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
403 404
}

C
chengduo 已提交
405
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
406 407 408 409
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
410
  } else {
Y
Yang Yang 已提交
411
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
412
                 ToTypeName(var.Type()));
Q
QI JUN 已提交
413 414 415
  }
}

C
chengduo 已提交
416
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
417
  if (var->IsType<LoDTensor>()) {
418
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
419
  } else if (var->IsType<SelectedRows>()) {
420
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
421
  } else {
Y
Yang Yang 已提交
422
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
423
                 ToTypeName(var->Type()));
Q
QI JUN 已提交
424 425 426
  }
}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

X
Xin Pan 已提交
459 460 461 462 463 464 465 466 467 468
const Variable* ExecutionContext::InputVar(const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's input %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
469 470 471 472
const Variable* ExecutionContext::LegacyInputVar(
    const std::string& name) const {
  auto ipt = op_.Input(name);
  return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
X
Xin Pan 已提交
473 474
}

X
clean  
Xin Pan 已提交
475
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
476 477 478 479 480 481 482 483 484
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's output %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
485 486 487 488 489
Variable* ExecutionContext::LegacyOutputVar(const std::string& name) const {
  auto opt = op_.Output(name);
  return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
}

490
template <>
491
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
492
  return Input<LoDTensor>(name);
493 494
}

X
Xin Pan 已提交
495
template <>
X
clean  
Xin Pan 已提交
496
const Tensor* ExecutionContext::LegacyInput<Tensor>(
X
Xin Pan 已提交
497
    const std::string& name) const {
X
clean  
Xin Pan 已提交
498
  return LegacyInput<LoDTensor>(name);
X
Xin Pan 已提交
499 500
}

501
template <>
502
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
503
    const std::string& name) const {
X
Xin Pan 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> const Tensor* {
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
517
                       ToTypeName(var->Type()));
X
Xin Pan 已提交
518 519 520 521 522 523 524 525
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

template <>
const std::vector<const Tensor*> ExecutionContext::LegacyMultiInput<Tensor>(
    const std::string& name) const {
526 527 528
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
529
  std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
530
                 [&](const std::string& sub_name) -> const Tensor* {
531
                   auto var = scope_.FindVar(sub_name);
C
chengduo 已提交
532 533 534 535
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "%s should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
536
                       sub_name, ToTypeName(var->Type()));
C
chengduo 已提交
537
                   return &(var->Get<LoDTensor>());
538
                 });
539 540 541 542
  return res;
}

template <>
543
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
544
  return Output<LoDTensor>(name);
545 546
}

X
Xin Pan 已提交
547
template <>
X
clean  
Xin Pan 已提交
548 549
Tensor* ExecutionContext::LegacyOutput<Tensor>(const std::string& name) const {
  return LegacyOutput<LoDTensor>(name);
X
Xin Pan 已提交
550 551
}

552
template <>
553
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
554 555 556 557
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
558
  std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
559
                 [&](const std::string& sub_name) -> Tensor* {
560
                   auto var = scope_.FindVar(sub_name);
C
chengduo 已提交
561 562 563 564
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "%s should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
565
                       sub_name, ToTypeName(var->Type()));
C
chengduo 已提交
566
                   return var->GetMutable<LoDTensor>();
567
                 });
568 569 570
  return res;
}

Y
Yu Yang 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

586 587
class RuntimeInferShapeContext : public InferShapeContext {
 public:
X
Xin Pan 已提交
588 589 590
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope,
                           const RuntimeContext& ctx)
      : op_(op), scope_(scope), ctx_(ctx) {}
591 592

  bool HasInput(const std::string& name) const override {
593
    // has only one input
X
Xin Pan 已提交
594
    const auto& ins = ctx_.inputs;
595 596
    auto it = ins.find(name);
    if (it == ins.end()) {
597 598
      return false;
    }
599
    const auto& in = it->second;
X
Xin Pan 已提交
600
    if (in.size() == 0) return false;
T
tensor-tang 已提交
601
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
602
                      "Input %s should not have more than one inputs", name);
X
Xin Pan 已提交
603
    return in[0] != nullptr;
604 605 606
  }

  bool HasOutput(const std::string& name) const override {
607
    // has only one output
X
Xin Pan 已提交
608
    const auto& outs = ctx_.outputs;
609 610
    auto it = outs.find(name);
    if (it == outs.end()) {
611 612
      return false;
    }
613
    const auto& out = it->second;
X
Xin Pan 已提交
614
    if (out.size() == 0) {
615 616
      return false;
    }
T
tensor-tang 已提交
617 618
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
X
Xin Pan 已提交
619
    return out[0] != nullptr;
620 621 622
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
623 624
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
625
    if (it == ins.end() || it->second.empty()) {
626 627
      return false;
    }
X
Xin Pan 已提交
628 629
    for (auto& input : it->second) {
      if (input == nullptr) {
630 631 632 633 634 635 636
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
637 638
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
639
    if (it == outs.end() || it->second.empty()) {
640 641
      return false;
    }
X
Xin Pan 已提交
642 643
    for (auto& output : it->second) {
      if (output == nullptr) {
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

662 663
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
664 665 666 667 668 669 670 671 672
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
673 674

    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
X
fix  
Xin Pan 已提交
675
                   "The type of %s and %s is not the same.", in, out);
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

Q
Qiao Longfei 已提交
694 695
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
696 697 698 699 700 701 702 703
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
704
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
705
    Variable* out_var = out_it->second.at(j);
Q
Qiao Longfei 已提交
706 707 708 709 710
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
711

M
mozga-intel 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
731 732
  }

C
chengduo 已提交
733 734 735 736 737
  void DecreaseLoDLevel(const std::string& in, const std::string& out,
                        size_t i = 0, size_t j = 0) const override {
    PADDLE_THROW("DecreaseLoDLevel is only used in compile time.");
  }

738 739
  bool IsRuntime() const override { return true; }

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Input(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
772 773 774 775 776 777 778 779 780 781
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Output(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

796
 protected:
X
Xin Pan 已提交
797
  DDim GetDim(Variable* var) const {
F
fengjiayi 已提交
798
    PADDLE_ENFORCE_NOT_NULL(var);
799 800 801 802 803
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
804
      PADDLE_THROW(
X
Xin Pan 已提交
805
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
F
fengjiayi 已提交
806
          "type_id is %s.",
S
sneaxiy 已提交
807
          ToTypeName(var->Type()));
F
fengjiayi 已提交
808 809 810
    }
  }

X
Xin Pan 已提交
811 812 813 814 815 816 817 818
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
819
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
820
    PADDLE_THROW("Only compile time support this method");
821 822
  }

X
Xin Pan 已提交
823
  void SetDim(Variable* var, const DDim& dim) {
824 825 826 827 828
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
X
Xin Pan 已提交
829
      PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
830
                   ToTypeName(var->Type()));
X
Xin Pan 已提交
831 832 833 834 835 836 837 838 839 840 841 842
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size());
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
843 844 845
    }
  }

F
fengjiayi 已提交
846 847
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
848
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
849 850
  }

X
Xin Pan 已提交
851 852 853 854 855 856 857 858 859 860 861
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
862 863 864
    return ToVarType(var->Type());
  }

865 866 867 868 869 870 871 872 873 874 875 876 877 878
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE(it != ctx_.inputs.end(),
                   "Operator %s does not have the input %s.", op_.Type(), name);
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE(it != ctx_.outputs.end(),
                   "Operator %s does not have the outputs %s.", op_.Type(),
                   name);
    return it->second;
F
fengjiayi 已提交
879 880
  }

881 882
  const OperatorBase& op_;
  const Scope& scope_;
X
Xin Pan 已提交
883
  const RuntimeContext& ctx_;
884 885
};

C
chengduoZH 已提交
886 887 888 889 890
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
891 892
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
893 894 895 896 897 898 899 900
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
}

B
baojun-nervana 已提交
901
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
902 903 904
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
  RuntimeInferShapeContext infer_shape_ctx(*this, scope, ctx);
B
baojun-nervana 已提交
905 906 907
  this->InferShape(&infer_shape_ctx);
}

908 909
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
X
Xin Pan 已提交
910
  RuntimeContext ctx(Inputs(), Outputs(), scope);
Y
Yu Yang 已提交
911
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
912
  auto* dev_ctx = pool.Get(place);
913

914 915 916 917
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
918 919
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
920 921
  }

Q
qiaolongfei 已提交
922 923
  OpKernelMap& kernels = kernels_iter->second;

X
Xin Pan 已提交
924 925
  auto expected_kernel_key = this->GetExpectedKernelType(
      ExecutionContext(*this, scope, *dev_ctx, ctx));
M
minqiyang 已提交
926
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
Q
qiaolongfei 已提交
927

928
  auto kernel_iter = kernels.find(expected_kernel_key);
929
#ifdef PADDLE_WITH_MKLDNN
P
Paweł Żelazko 已提交
930
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
931 932
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
M
minqiyang 已提交
933
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
934 935 936 937 938
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
939 940 941 942 943
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

Y
yuyang18 已提交
944 945 946
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
  auto* transfer_scope =
X
Xin Pan 已提交
947
      PrepareData(scope, expected_kernel_key, &transfered_inplace_vars, &ctx);
948

Y
yuyang18 已提交
949 950 951 952 953 954
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

  if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
955
  }
Q
QI JUN 已提交
956

X
Xin Pan 已提交
957
  RuntimeInferShapeContext infer_shape_ctx(*this, exec_scope, ctx);
X
Xin Pan 已提交
958
  this->InferShape(&infer_shape_ctx);
X
clean  
Xin Pan 已提交
959 960
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
X
Xin Pan 已提交
961
  kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx, ctx));
D
dzhwinter 已提交
962

Y
yuyang18 已提交
963 964 965
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
966 967
  }

D
dzhwinter 已提交
968
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
969
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
970
    dev_ctx->Wait();
D
dzhwinter 已提交
971
  }
C
chengduoZH 已提交
972 973 974

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
975
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
976 977 978
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
979 980
      } else if (var->IsType<framework::SelectedRows>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
981 982 983
      }
    }
  }
Q
Qiao Longfei 已提交
984
}
X
Xin Pan 已提交
985

Y
yuyang18 已提交
986 987 988 989
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
990
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
991 992
    auto* original_tensor =
        GetMutableLoDTensorOrSelectedRowsValueFromVar(scope.FindVar(var_name));
C
chengduo 已提交
993 994 995
    auto* var = transfer_scope.FindVar(var_name);
    PADDLE_ENFORCE(var != nullptr, "The var[%s] should not be nullptr",
                   var_name);
C
chengduo 已提交
996
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
997 998 999 1000
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

X
Xin Pan 已提交
1001
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1002
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1003 1004
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1005 1006
  Scope* new_scope = nullptr;
  for (auto& var_name_item : Inputs()) {
X
Xin Pan 已提交
1007 1008 1009 1010
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1011
      auto* var = input_vars[i];
X
Xin Pan 已提交
1012

Y
yuyang18 已提交
1013
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1014
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1015 1016 1017
        continue;
      }

C
chengduo 已提交
1018
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
1036 1037
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1038

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
      // We use a thread_local cache to fix that issue, the key in the cache is
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
      // variables, that behavior a lot different.
      if (!run_by_executor_) {
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1054
      }
1055
      if (!new_scope) {
Y
yuyang18 已提交
1056 1057 1058 1059
        new_scope = &scope.NewScope();
      }

      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1060
      input_vars[i] = trans_var;
1061

Y
yuyang18 已提交
1062
      Tensor out;
Y
yuyang18 已提交
1063
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1064 1065 1066 1067 1068 1069
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
1070

1071
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1072 1073 1074
    const ExecutionContext& ctx) const {
  int data_type = -1;
  for (auto& input : this->inputs_) {
X
Xin Pan 已提交
1075 1076 1077
    const std::vector<const Variable*> vars = ctx.MultiInputVar(input.first);
    for (size_t i = 0; i < vars.size(); ++i) {
      const Variable* var = vars[i];
Y
Yu Yang 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
X
Xin Pan 已提交
1088 1089
          PADDLE_ENFORCE(t->IsInitialized(), "Input %s(%lu)is not initialized",
                         input.first, i);
Y
Yu Yang 已提交
1090
          int tmp = static_cast<int>(t->type());
1091 1092
          PADDLE_ENFORCE(
              tmp == data_type || data_type == -1,
X
Xin Pan 已提交
1093 1094
              "DataType of Paddle Op %s must be the same. Get (%d) != (%d)",
              Type(), data_type, tmp);
Y
Yu Yang 已提交
1095 1096 1097 1098 1099 1100
          data_type = tmp;
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
1101
  return static_cast<proto::VarType::Type>(data_type);
Y
Yu Yang 已提交
1102
}
1103

1104 1105 1106 1107 1108 1109 1110 1111
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1112 1113
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1114 1115
}

Q
Qiao Longfei 已提交
1116
}  // namespace framework
L
liaogang 已提交
1117
}  // namespace paddle