operator.cc 114.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
15

P
peizhilin 已提交
16 17
#include <sstream>
#include <string>
18

19
#include "gflags/gflags.h"
20
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/data_transform.h"
22
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
23
#include "paddle/fluid/framework/details/nan_inf_utils.h"
24
#include "paddle/fluid/framework/inference_cached_ops.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
26
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
27
#include "paddle/fluid/framework/shape_inference.h"
28
#include "paddle/fluid/framework/transfer_scope_cache.h"
29
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/framework/var_type.h"
31
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
32
#include "paddle/fluid/platform/enforce.h"
33
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
34
#include "paddle/fluid/platform/profiler/event_tracing.h"
35
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
36
#include "paddle/phi/common/int_array.h"
37
#include "paddle/phi/common/scalar.h"
38
#include "paddle/phi/core/kernel_context.h"
39 40
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
41

42
namespace phi {
43
class DenseTensor;
44
}  // namespace phi
45

46
#ifdef PADDLE_WITH_XPU
47 48
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
49
#endif
Q
Qiao Longfei 已提交
50

51 52 53 54
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
55 56 57 58
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
59
DECLARE_bool(benchmark);
60
DECLARE_bool(check_nan_inf);
61
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
62
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
63
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
64

Q
Qiao Longfei 已提交
65 66 67
namespace paddle {
namespace framework {

68 69 70 71 72 73
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
74

75 76
static DDim GetDimsDebug(const ScopeBase& scope,
                         const std::string& name,
77
                         bool get_actual_dim = false) {
78
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
79 80
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
81 82
  }

M
minqiyang 已提交
83 84 85
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
86
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
87
    if (get_actual_dim) {
88
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
89
    } else {
90
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
91
    }
S
Steffy-zxf 已提交
92 93
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
94 95 96 97 98
  } else {
    return DDim({-1});
  }
}

99
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
100 101 102 103 104
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

105
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
106 107 108 109
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
110

M
minqiyang 已提交
111 112 113
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
114 115
      return "";
    }
116
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
117 118
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
119 120 121
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
122
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
123
    }
S
Steffy-zxf 已提交
124 125
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
126 127 128 129 130
  } else {
    return "";
  }
}

131
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
148 149
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
150 151 152 153 154 155 156 157 158 159
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

160
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
161 162 163 164 165
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

166 167
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
168 169 170 171 172
  }

  return -1;
}

173
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
174 175 176 177 178 179 180
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
181 182 183
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
184 185 186 187 188
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
189 190 191 192 193
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
194
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
195 196 197 198 199 200
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
201
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
202 203 204 205 206 207
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

208
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
209 210 211
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
212
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
213 214 215 216
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
217
#else
218
      auto dev_id = place.device;
P
peizhilin 已提交
219
      platform::SetDeviceId(dev_id);
220 221 222
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
223 224 225 226
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
227
#else
228
      auto dev_id = place.device;
229
      platform::SetXPUDeviceId(dev_id);
230 231 232 233 234 235 236 237
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
238
      auto dev_id = place.device;
239
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
240 241 242 243 244 245 246 247
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
248
      auto dev_id = place.device;
F
fwenguang 已提交
249
      platform::SetMLUDeviceId(dev_id);
250 251 252 253 254 255 256 257
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
258
      phi::DeviceManager::SetDevice(place);
259
#endif
P
peizhilin 已提交
260
    }
P
peizhilin 已提交
261

262
    {
263 264 265
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
266
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
267
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
268 269
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
270 271
          op_name,
          platform::TracerEventType::Operator,
C
chenjian 已提交
272
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
273
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
274 275
      RunImpl(scope, place);
    }
276

Z
Zhang Ting 已提交
277
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
278
  } catch (platform::EnforceNotMet& exception) {
279
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
280
    throw std::move(exception);
281 282 283 284 285 286
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
287
  } catch (...) {
288
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
289
    std::rethrow_exception(std::current_exception());
290
  }
291 292
}

293
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
294
  return inputs_.find(name) != inputs_.end();
295 296
}

297
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
298
  auto& ins = Inputs(name);
299
  PADDLE_ENFORCE_LE(
300 301
      ins.size(),
      1UL,
302
      platform::errors::InvalidArgument(
303 304
          "Operator %s's input %s should contain only one variable.",
          type_,
305
          name));
Y
Yu Yang 已提交
306
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
307 308
}

Y
Yu Yang 已提交
309 310
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
311
  auto it = inputs_.find(name);
312
  PADDLE_ENFORCE_NE(
313 314 315 316
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have the input %s.", type_, name));
Y
Yu Yang 已提交
317
  return it->second;
Y
Yan Chunwei 已提交
318 319
}

320
bool OperatorBase::HasOutputs(const std::string& name) const {
321
  if (outputs_.find(name) != outputs_.end()) {
322 323 324 325 326 327
    return true;
  } else {
    return false;
  }
}

328
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
329
  auto& outs = Outputs(name);
330
  PADDLE_ENFORCE_LE(
331 332
      outs.size(),
      1UL,
333
      platform::errors::InvalidArgument(
334 335
          "Operator %s's output %s should contain only one variable.",
          type_,
336
          name));
Y
Yu Yang 已提交
337
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
338 339
}

Y
Yu Yang 已提交
340 341
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
342
  auto it = outputs_.find(name);
343
  PADDLE_ENFORCE_NE(
344 345
      it,
      outputs_.end(),
346 347
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
348
  return it->second;
Y
Yan Chunwei 已提交
349 350
}

351
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
352
  std::stringstream ss;
Y
Yu Yang 已提交
353
  ss << "Op(" << type_ << "), inputs:{";
354

355
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
356 357
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
358 359
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
360 361
  }

Y
Yu Yang 已提交
362 363
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
364 365
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
366 367
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
368 369
      auto var_name = input.second[i];
      ss << var_name;
370
      if (scope) {
Q
Qiao Longfei 已提交
371 372 373 374 375 376 377
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
378 379 380
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
381
          ss << ":" << dtype;
382 383
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
384
          ss << "(" << GetPlace(*scope, var_name) << ")";
385
        }
386
      }
Y
Yu Yang 已提交
387 388 389
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
390
    }
Y
Yu Yang 已提交
391
    ss << "]";
Y
Yu Yang 已提交
392 393
    ++it;
    if (it != inputs_.end()) {
394 395
      ss << ", ";
    }
Q
Qiao Longfei 已提交
396
  }
Y
Yu Yang 已提交
397
  ss << "}, outputs:{";
Y
Yu Yang 已提交
398 399
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
400 401
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
402 403
      auto var_name = output.second[i];
      ss << var_name;
404
      if (scope) {
Q
Qiao Longfei 已提交
405 406 407 408 409 410 411
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
412 413
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
414 415
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
416
          ss << "(" << GetPlace(*scope, var_name) << ")";
417
        }
418
      }
Y
Yu Yang 已提交
419 420 421
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
422
    }
Y
Yu Yang 已提交
423
    ss << "]";
Y
Yu Yang 已提交
424 425
    ++it;
    if (it != outputs_.end()) {
426 427
      ss << ", ";
    }
Q
Qiao Longfei 已提交
428
  }
Y
Yu Yang 已提交
429
  ss << "}.";
Q
Qiao Longfei 已提交
430 431 432
  return ss.str();
}

Y
Yu Yang 已提交
433
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
434 435
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
436
                           const AttributeMap& attrs)
S
sneaxiy 已提交
437 438 439 440 441 442
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
443 444 445 446 447 448 449 450
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
451 452 453 454 455 456 457
  // In OperatorBase level, all attribute with VarDesc type will be considered
  // as Input.
  for (auto& attr : FilterAttrVar(attrs)) {
    VLOG(3) << "found Attribute with Variable type: " << attr.first;
    inputs_[attr.first] = std::move(AttrVarNames(attr.second));
    attrs_.erase(attr.first);
  }
Y
Yu Yang 已提交
458
}
459

Q
qijun 已提交
460 461
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
462
  for (auto& o : inputs_) {
Q
qijun 已提交
463 464 465 466 467 468
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
469 470 471 472 473 474 475 476 477 478
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
479
  auto& info = Info();
Y
Yu Yang 已提交
480 481

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
482
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
483 484 485 486 487 488 489 490 491
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
492 493
}

494
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
495
  if (info_ == nullptr || info_->proto_ == nullptr) return;
496

S
sneaxiy 已提交
497
  for (auto& in : info_->Proto().inputs()) {
498
    if (!in.dispensable() && !in.extra()) {
499
      PADDLE_ENFORCE_NE(
500 501 502 503
          inputs_.find(in.name()),
          inputs_.end(),
          platform::errors::NotFound(
              "Operator %s's input (%s) is not set.", Type(), in.name()));
504
    }
505 506
  }

S
sneaxiy 已提交
507
  for (auto& out : info_->Proto().outputs()) {
508
    if (!out.dispensable() && !out.extra()) {
509
      PADDLE_ENFORCE_NE(
510 511 512 513
          outputs_.find(out.name()),
          outputs_.end(),
          platform::errors::NotFound(
              "Operator %s's output (%s) is not set.", Type(), out.name()));
514
    }
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
530

C
chengduo 已提交
531
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
532 533
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
534 535
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
536
  } else {
537 538 539
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
540 541 542
  }
}

C
chengduo 已提交
543
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
544
  if (var->IsType<LoDTensor>()) {
545
    return var->GetMutable<LoDTensor>();
546 547
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
548
  } else {
549 550 551
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
552 553 554
  }
}

555
bool ExecutionContext::HasInput(const std::string& name) const {
556
  auto* var = InputVar(name);
557 558 559
  return var != nullptr;
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

574
bool ExecutionContext::HasOutput(const std::string& name) const {
575
  auto* var = OutputVar(name);
576 577 578
  return var != nullptr;
}

X
Xin Pan 已提交
579
const Variable* ExecutionContext::InputVar(const std::string& name) const {
580 581
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
582 583 584
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

585
  PADDLE_ENFORCE_LE(
586 587
      it->second.size(),
      1UL,
588
      platform::errors::InvalidArgument(
589
          "Operator %s's input %s should contain only one variable.",
590 591
          op_.Type(),
          name));
X
Xin Pan 已提交
592 593 594
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
595
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
596 597 598
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

599
  PADDLE_ENFORCE_LE(
600 601
      it->second.size(),
      1UL,
602 603
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
604 605
          op_.Type(),
          name));
X
Xin Pan 已提交
606 607 608
  return it->second.empty() ? nullptr : it->second[0];
}

609
template <>
610
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
611
    const std::string& name) const {
612 613
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
614 615
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
616 617 618 619
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
620 621 622
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
H
hong 已提交
623
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
624
                   if (var == nullptr) return nullptr;
625 626
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(),
                                     true,
627 628 629 630
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
631 632 633 634 635
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

636
template <>
637
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
638
    const std::string& name) const {
H
hong 已提交
639 640 641
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
642 643
    return {};
  }
644
  std::vector<Tensor*> res;
645
  res.reserve(vars.size());
646 647 648
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
649 650 651
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
652
                 });
653 654 655
  return res;
}

Y
Yu Yang 已提交
656
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
657
  // check in new Function kernel first
658
  bool has_phi_kernel = false;
659
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
660
  auto kernel_key_map =
661
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
662
  for (auto& kernel : kernel_key_map) {
663
    has_phi_kernel = true;
664
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
665 666 667 668
      return true;
    }
  }

Y
Yu Yang 已提交
669 670
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
671 672 673 674 675 676 677 678 679 680 681 682 683
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
684 685 686
      return true;
    }
  }
H
hong 已提交
687

Y
Yu Yang 已提交
688 689 690
  return false;
}

691 692
class RuntimeInferShapeContext : public InferShapeContext {
 public:
693
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
694
      : op_(op), ctx_(ctx) {}
695 696

  bool HasInput(const std::string& name) const override {
697
    // has only one input
X
Xin Pan 已提交
698
    const auto& ins = ctx_.inputs;
699 700
    auto it = ins.find(name);
    if (it == ins.end()) {
701 702
      return false;
    }
703
    const auto& in = it->second;
X
Xin Pan 已提交
704
    if (in.size() == 0) return false;
705
    PADDLE_ENFORCE_EQ(
706 707
        in.size(),
        1UL,
708 709
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
710
    return in[0] != nullptr;
711 712
  }

713 714 715 716 717 718
  size_t InputsSize() const {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    return op_proto->inputs().size();
  }

719
  bool HasOutput(const std::string& name) const override {
720
    // has only one output
X
Xin Pan 已提交
721
    const auto& outs = ctx_.outputs;
722 723
    auto it = outs.find(name);
    if (it == outs.end()) {
724 725
      return false;
    }
726
    const auto& out = it->second;
X
Xin Pan 已提交
727
    if (out.size() == 0) {
728 729
      return false;
    }
730
    PADDLE_ENFORCE_EQ(
731 732
        out.size(),
        1UL,
733 734
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
735
    return out[0] != nullptr;
736 737
  }

738 739 740 741
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

742
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
743 744
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
745
    if (it == ins.end() || it->second.empty()) {
746 747
      return false;
    }
X
Xin Pan 已提交
748 749
    for (auto& input : it->second) {
      if (input == nullptr) {
750 751 752 753 754 755
        return false;
      }
    }
    return true;
  }

756 757
  bool HasOutputs(const std::string& name,
                  bool allow_null = false) const override {
X
Xin Pan 已提交
758 759
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
760
    if (it == outs.end() || it->second.empty()) {
761 762
      return false;
    }
763 764 765 766 767 768 769 770
    if (allow_null) {
      for (auto& output : it->second) {
        if (output != nullptr) return true;
      }
      return false;
    } else {
      for (auto& output : it->second) {
        if (output == nullptr) return false;
771
      }
772
      return true;
773 774 775 776 777
    }
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
778
  std::vector<std::string> Inputs(const std::string& name) const override {
779 780 781
    return op_.Inputs(name);
  }

H
hong 已提交
782
  std::vector<std::string> Outputs(const std::string& name) const override {
783 784 785
    return op_.Outputs(name);
  }

786 787 788
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
789 790
    PADDLE_ENFORCE_LT(idx,
                      op_proto->inputs().size(),
791 792 793
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
794 795 796
                          op_.Type(),
                          idx,
                          op_proto->inputs().size()));
797 798 799 800 801 802 803
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
804 805
        idx,
        op_proto->outputs().size(),
806 807 808
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
809 810 811
            op_.Type(),
            idx,
            op_proto->outputs().size()));
812 813 814
    return op_proto->outputs()[idx].name();
  }

815 816 817
  void ShareDim(const std::string& in,
                const std::string& out,
                size_t i = 0,
818
                size_t j = 0) override {
X
Xin Pan 已提交
819 820
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
821
    PADDLE_ENFORCE_NE(
822 823
        in_it,
        ctx_.inputs.end(),
824 825
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
826 827
        out_it,
        ctx_.outputs.end(),
828
        platform::errors::NotFound("Output %s does not exist.", out));
829 830
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
831 832 833
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
834 835 836 837
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
838 839 840
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
841 842
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
843 844 845

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
846

847
    PADDLE_ENFORCE_EQ(
848 849
        in_var->Type(),
        out_var->Type(),
850
        platform::errors::InvalidArgument(
851 852
            "The type of input (%s) and output (%s) are inconsistent.",
            in,
853
            out));
854

855 856 857
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
858 859 860 861 862 863 864 865
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
866
      PADDLE_THROW(platform::errors::Unimplemented(
867
          "Currently, the input type of ShareDim only can be LoDTensor "
868
          "or SelectedRows."));
869 870 871
    }
  }

H
hong 已提交
872 873 874 875
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
876 877
    PADDLE_ENFORCE_NE(in_it,
                      ctx_.inputs.end(),
H
hong 已提交
878 879 880
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
881 882 883 884
        out_it,
        ctx_.outputs.end(),
        platform::errors::NotFound(
            "Output [%s] found error in Op [%s]", out, op_.Type()));
H
hong 已提交
885 886 887 888 889

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
890 891
        in_var_list.size(),
        out_var_list.size(),
H
hong 已提交
892
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
893
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
894 895 896 897 898 899 900 901 902 903 904 905
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
906 907
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(),
                        true,
H
hong 已提交
908 909
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
910 911
                            i,
                            out_var_names[i]));
H
hong 已提交
912 913 914 915 916 917 918 919 920 921
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

922 923 924
  void ShareLoD(const std::string& in,
                const std::string& out,
                size_t i = 0,
Q
Qiao Longfei 已提交
925
                size_t j = 0) const override {
X
Xin Pan 已提交
926 927
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
928
    PADDLE_ENFORCE_NE(
929 930
        in_it,
        ctx_.inputs.end(),
931 932
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
933 934
        out_it,
        ctx_.outputs.end(),
935
        platform::errors::NotFound("Output %s does not exist.", out));
936 937
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
938 939 940
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
941 942 943 944
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
945 946 947
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
948 949
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
950 951

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
952
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
953
    Variable* out_var = out_it->second.at(j);
954
    PADDLE_ENFORCE_EQ(
955 956
        out_var->IsType<LoDTensor>(),
        true,
957 958
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
959
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
960 961
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
962

M
mozga-intel 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
982 983
  }

984
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
985
    PADDLE_THROW(platform::errors::PreconditionNotMet(
986
        "GetLoDLevel is only used in compile time. The calculation of "
987
        "output's actual lod is different among operators so that should be "
988
        "set in the runtime kernel."));
989 990
  }

991 992
  void SetLoDLevel(const std::string& out,
                   int32_t lod_level,
993
                   size_t j = 0) const override {
994
    PADDLE_THROW(platform::errors::PreconditionNotMet(
995
        "SetLoDLevel is only used in compile time. The calculation of "
996
        "output's actual lod is different among operators so that should be "
997
        "set in the runtime kernel."));
C
chengduo 已提交
998 999
  }

1000 1001
  bool IsRuntime() const override { return true; }

1002 1003 1004 1005 1006 1007
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
1008
    } catch (const std::bad_cast& exp) {
1009 1010 1011 1012
      return false;
    }
  }

1013
  // TODO(paddle-dev): Can this be template?
C
Chen Weihang 已提交
1014
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
1015
  GetInputVarPtrs(const std::string& name) const override {
1016
    const std::vector<Variable*>& vars = InputVars(name);
C
Chen Weihang 已提交
1017
    paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
1018 1019 1020 1021 1022
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

C
Chen Weihang 已提交
1023
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
1024
  GetOutputVarPtrs(const std::string& name) const override {
1025
    const std::vector<Variable*>& vars = OutputVars(name);
C
Chen Weihang 已提交
1026
    paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
1027 1028 1029 1030 1031
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
1032 1033
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
1034
    PADDLE_ENFORCE_EQ(
1035 1036
        vars.size(),
        1UL,
1037 1038
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
1039 1040
            name,
            vars.size()));
X
Xin Pan 已提交
1041 1042 1043 1044 1045 1046 1047 1048
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

1049 1050 1051 1052
  proto::VarType::Type GetInputVarType(const std::string& name) const override {
    return GetVarType(InputVars(name).at(0));
  }

X
Xin Pan 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
1063 1064
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
1065
    PADDLE_ENFORCE_EQ(
1066 1067
        vars.size(),
        1UL,
1068 1069
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
1070 1071
                                          name,
                                          vars.size()));
X
Xin Pan 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

1081 1082 1083 1084 1085 1086 1087 1088
  const phi::ArgumentMappingFn* GetPhiArgumentMappingFn() const override {
    return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
  }

  const phi::KernelSignature* GetPhiDefaultKernelSignature() const override {
    return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
  }

1089
 protected:
X
Xin Pan 已提交
1090
  DDim GetDim(Variable* var) const {
1091 1092
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
1093 1094
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
1095 1096
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1097
    } else {
1098 1099 1100 1101
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1102 1103 1104
    }
  }

X
Xin Pan 已提交
1105 1106 1107
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
1108 1109 1110
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(ret),
X
Xin Pan 已提交
1111 1112 1113 1114
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1115
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1116 1117
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1118 1119
  }

X
Xin Pan 已提交
1120
  void SetDim(Variable* var, const DDim& dim) {
1121 1122
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
1123 1124
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1125
    } else {
1126 1127 1128 1129
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1130 1131 1132 1133 1134 1135
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1136 1137
    PADDLE_ENFORCE_EQ(length,
                      dims.size(),
1138 1139 1140 1141
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
1142 1143
                          length,
                          dims.size()));
X
Xin Pan 已提交
1144 1145 1146 1147 1148
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1149 1150 1151
    }
  }

F
fengjiayi 已提交
1152 1153
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1154 1155
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1156 1157
  }

X
Xin Pan 已提交
1158 1159 1160 1161
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
1162 1163 1164
    std::transform(vars.begin(),
                   vars.end(),
                   retv.begin(),
X
Xin Pan 已提交
1165
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
1166 1167
                             this,
                             std::placeholders::_1));
X
Xin Pan 已提交
1168 1169 1170 1171
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1172 1173 1174
    return ToVarType(var->Type());
  }

1175 1176 1177
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1178
    PADDLE_ENFORCE_NE(
1179 1180
        it,
        ctx_.inputs.end(),
1181 1182
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1183 1184 1185 1186 1187
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1188
    PADDLE_ENFORCE_NE(
1189 1190
        it,
        ctx_.outputs.end(),
1191 1192
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1193
    return it->second;
F
fengjiayi 已提交
1194 1195
  }

1196
  const OperatorBase& op_;
X
Xin Pan 已提交
1197
  const RuntimeContext& ctx_;
1198 1199
};

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
struct OperatorWithKernel::CacheImpl {
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
                     RuntimeInferShapeContext* infer_shape_ctx)
      : kernel_ctx_(kernel_ctx), infer_shape_ctx_(infer_shape_ctx) {}

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
  bool updateInputsShapesDimCache() {
    bool flag = false;
    size_t inputs_size =
        std::min(kernel_ctx_->InputsSize(), infer_shape_ctx_->InputsSize());
    for (size_t i = 0; i < inputs_size; i++) {
      const std::string& in_name = infer_shape_ctx_->GetInputNameByIdx(i);
      if (!infer_shape_ctx_->HasInputs(in_name)) continue;
      if (!inputs_dim_caches.count(in_name) ||
          infer_shape_ctx_->GetInputsDim(in_name) !=
              inputs_dim_caches[in_name]) {
        inputs_dim_caches[in_name] = infer_shape_ctx_->GetInputsDim(in_name);
        flag = true;
      }
    }

#if defined(PADDLE_WITH_CUDA)
    if (flag) discardCudaGraphCache();
#endif
    return flag;
  }

  bool cudaGraphEnabled(bool need_prepare_data,
                        bool need_prepare_phi_data,
                        const std::string& op_type) const {
#if defined(PADDLE_WITH_CUDA)
    return std::count(cached_gpu_ops.begin(), cached_gpu_ops.end(), op_type) &&
           !need_prepare_data && !need_prepare_phi_data;
#else
    return false;
#endif
  }

  bool cacheEnabled(bool run_phi_kernel,
                    bool need_prepare_data,
                    bool need_prepare_phi_data,
                    const std::string& op_type) const {
#if defined(PADDLE_WITH_CUDA)
    if (cudaGraphEnabled(need_prepare_data, need_prepare_phi_data, op_type))
      return true;
#endif
    return (run_phi_kernel && !need_prepare_data && !need_prepare_phi_data);
  }

#if defined(PADDLE_WITH_CUDA)
  void startCudaGraphCapture() {
    phi::GPUContext* ctx = static_cast<phi::GPUContext*>(
        platform::DeviceContextPool::Instance().Get(platform::CUDAPlace(0)));
    auto stream = ctx->stream();
    cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal);
  }

  void endCudaGraphCapture() {
    phi::GPUContext* ctx = static_cast<phi::GPUContext*>(
        platform::DeviceContextPool::Instance().Get(platform::CUDAPlace(0)));
    auto stream = ctx->stream();

    cudaGraph_t graph_;
    cudaStreamEndCapture(stream, &graph_);
    cudaGraphInstantiate(&graph_instance_, graph_, NULL, NULL, 0);
    graph_generated = true;
  }

  void runCudaGraph() {
    phi::GPUContext* ctx = static_cast<phi::GPUContext*>(
        platform::DeviceContextPool::Instance().Get(platform::CUDAPlace(0)));
    auto stream = ctx->stream();
    cudaGraphLaunch(graph_instance_, stream);
  }

  bool cudaGraphGenerated() { return graph_generated; }

  void discardCudaGraphCache() { graph_generated = false; }

 private:
  bool graph_generated{false};
  cudaGraphExec_t graph_instance_;
#endif

1288
 private:
1289
  std::map<std::string, std::vector<DDim>> inputs_dim_caches;
1290 1291 1292 1293
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
};

1294 1295
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1296 1297 1298 1299
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
1300 1301
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1302 1303
    return;
  }
1304
  PADDLE_ENFORCE_NE(
1305 1306 1307 1308
      framework::TensorContainsInf(tensor),
      true,
      platform::errors::Fatal(
          "Operator %s output Tensor %s contains Inf.", op_type, name));
1309
  PADDLE_ENFORCE_NE(
1310 1311 1312 1313
      framework::TensorContainsNAN(tensor),
      true,
      platform::errors::Fatal(
          "Operator %s output Tensor %s contains NAN.", op_type, name));
C
chengduoZH 已提交
1314 1315
}

1316 1317 1318 1319
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1320 1321
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1334 1335
          op_kernels.begin(),
          op_kernels.end(),
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1347 1348
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1361 1362
          op_kernels.begin(),
          op_kernels.end(),
1363 1364 1365 1366 1367 1368 1369
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
bool OperatorWithKernel::SupportXPU() const {
#ifdef PADDLE_WITH_XPU
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::XPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_xpu_place(kern_pair.first.place_) &&
                   paddle::platform::is_xpu_support_op(type_,
                                                       kern_pair.first) &&
                   !paddle::platform::is_in_xpu_black_list(type_);
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportXPU() when not compiled with "
      "XPU support."));
  return false;
#endif
}

1407 1408
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::ONEDNN;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [data_type](OpKernelMap::const_reference kern_pair) {
            return platform::is_cpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kMKLDNN &&
                   kern_pair.first.data_type_ == data_type;
          });
    }
1434
  }
1435 1436
}

1437 1438 1439 1440
bool OperatorWithKernel::SupportsKernelType(
    const OpKernelType& kernel_type) const {
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1441 1442 1443 1444 1445
  if (kernels_iter == all_op_kernels.end()) return false;
  OpKernelMap& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(kernel_type);

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1446
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
1447 1448 1449
    return kernel_iter != kernels.end() &&
           paddle::platform::is_xpu_support_op(type_, kernel_type) &&
           !paddle::platform::is_in_xpu_black_list(type_);
1450 1451
  }
#endif
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

#ifdef PADDLE_WITH_XPU_KP
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, kernel_type);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
      auto tmp_kernel_type = kernel_type;
      tmp_kernel_type.library_type_ = LibraryType::kKP;
      return kernels.find(tmp_kernel_type) != kernels.end();
    }
    return kernel_iter != kernels.end() &&
           paddle::platform::is_xpu_support_op(type_, kernel_type) &&
           !paddle::platform::is_in_xpu_black_list(type_);
  }
#endif

  return kernel_iter != kernels.end();
1473 1474
}

1475 1476
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1477 1478 1479
  const auto& attrs_map = ctx.Attrs();
  auto iter = attrs_map.find("use_mkldnn");
  bool use_mkldnn_ctx = iter != attrs_map.end() &&
R
Ruibiao Chen 已提交
1480
                        PADDLE_GET_CONST(bool, iter->second) &&
1481
                        platform::is_cpu_place(ctx.GetPlace());
1482
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1483 1484
}

1485 1486 1487 1488 1489 1490 1491
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1492
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1493 1494
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1495
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1496
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1497 1498
}

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
void OperatorWithKernel::InitOpCache(const Scope& scope,
                                     const platform::Place& place) const {
  if (runtime_ctx_.get() == nullptr || pre_scope_ != &scope) {
    std::lock_guard<std::mutex> lock(cache_update_mutex_);
    if (runtime_ctx_.get() == nullptr || pre_scope_ != &scope) {
      runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
      pre_scope_ = &scope;
    }
  }

  impl_ =
      new CacheImpl(new phi::KernelContext(),
                    new RuntimeInferShapeContext(*this, *runtime_ctx_.get()));

  RunImpl(scope, place, runtime_ctx_.get());
  if (impl_->cacheEnabled(run_phi_kernel_,
                          need_prepare_data_,
                          need_prepare_phi_data_,
                          Type())) {
    impl_->updateInputsShapesDimCache();
  }
}

L
luotao1 已提交
1522 1523
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
  // function name: runOpCache()
  //    effect:  reuse cacheImpl to accelerate inference period
  auto runOpCache = [&]() {
#if defined(PADDLE_WITH_CUDA)
    if (impl_->cudaGraphEnabled(
            need_prepare_data_, need_prepare_phi_data_, Type())) {
      // cudaGraph cache
      if (impl_->updateInputsShapesDimCache()) {
        if (!all_kernels_must_compute_runtime_shape_)
          this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
        (*phi_kernel_)(impl_->getKernelContext());
      } else if (!impl_->cudaGraphGenerated()) {
        impl_->startCudaGraphCapture();
        impl_->getKernelContext();
        RunImpl(scope, place, runtime_ctx_.get());
        impl_->endCudaGraphCapture();
      } else {
        if (!all_kernels_must_compute_runtime_shape_)
          this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
        impl_->runCudaGraph();
      }
      return;
    }
#endif
    // common cache
    if (!all_kernels_must_compute_runtime_shape_)
      this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
    (*phi_kernel_)(impl_->getKernelContext());
  };

  // function name: updateRuntimeContext
  //        effect: update runtime_ctx from current scope.
  auto updateRuntimeContext = [&](const Scope& scope) {
    const Scope* cur_scope = &scope;
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
    }
  };

L
luotao1 已提交
1567 1568
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1569 1570 1571
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1572
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1573
    all_kernels_must_compute_runtime_shape_ = true;
1574
  const Scope* cur_scope = &scope;
1575
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1576 1577
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1578
    pre_scope_ = cur_scope;
L
luotao1 已提交
1579
  } else {
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
    if (!impl_) {
      InitOpCache(scope, place);
    } else if (impl_->cacheEnabled(run_phi_kernel_,
                                   need_prepare_data_,
                                   need_prepare_phi_data_,
                                   Type())) {
      runOpCache();
    } else {
      updateRuntimeContext(scope);
      RunImpl(scope, place, runtime_ctx_.get());
L
luotao1 已提交
1590 1591 1592 1593 1594 1595 1596
    }
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1597
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1598
  auto* dev_ctx = pool.Get(place);
1599

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1610
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1611 1612 1613 1614
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1615

1616 1617 1618 1619 1620 1621
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1622 1623 1624 1625 1626
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1627 1628
  phi::KernelKey phi_kernel_key;
  std::string phi_kernel_name;
1629
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1630
    if (kernel_signature_ == nullptr || phi_kernel_ == nullptr) {
1631 1632 1633
      kernel_signature_.reset(new phi::KernelSignature(
          std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      VLOG(6) << *kernel_signature_.get();
1634 1635 1636 1637 1638

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

1639
      phi_kernel_name = kernel_signature_->name;
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1662
                  << phi_kernel_name
1663
                  << ", using_kernel_key:" << *kernel_type_.get();
1664
          auto try_phi_kernel_key =
1665
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1666 1667
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1668 1669
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1670
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1671 1672 1673
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1674
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1675 1676 1677 1678
          }
        }
      }
#endif
1679 1680
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
      phi_kernel_.reset(
1681
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1682
              phi_kernel_name, phi_kernel_key)));
1683

1684
      if (phi_kernel_->IsValid()) {
1685
        VLOG(6) << "Static mode ChoosePhiKernel - kernel name: "
1686 1687
                << phi_kernel_name << " | kernel key: " << phi_kernel_key
                << " | kernel: " << *phi_kernel_;
1688
      } else {
1689
        VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << phi_kernel_name
1690 1691
                << "` not found.";
      }
1692
    } else {
1693
      phi_kernel_name = kernel_signature_->name;
1694 1695 1696
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1715
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1716
                  << phi_kernel_name
1717
                  << ", using_kernel_key:" << *kernel_type_.get();
1718
          auto try_phi_kernel_key =
1719
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1720 1721
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1722
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1723
            VLOG(3) << "modify XPU KP kernel in static graph: "
1724
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1725 1726 1727
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1728
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1729 1730 1731 1732
          }
        }
      }
#endif
1733
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1734
    }
1735 1736 1737 1738

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1739
#if defined(PADDLE_WITH_XPU)
1740 1741 1742 1743 1744
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
            !paddle::platform::is_xpu_support_op(type_, *kernel_type_.get()) ||
        paddle::platform::is_in_xpu_black_list(type_);
#endif
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1756
    if (phi_kernel_->IsValid()
1757
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1758 1759
        && !is_xpu_unsupport
#endif
1760 1761 1762
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
1763
    ) {
1764
      run_phi_kernel_ = true;
1765 1766 1767
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif

1778 1779 1780
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1781
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1782
          || is_xpu_unsupport
1783
#endif
1784 1785 1786
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
#endif
1787
      ) {
1788 1789 1790
        auto phi_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), phi_kernel_key, *this);
        phi_kernel_.reset(
1791
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1792
                phi_kernel_name, phi_cpu_kernel_key)));
1793 1794

        dev_ctx = pool.Get(platform::CPUPlace());
1795 1796 1797 1798
        if (phi_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: "
                  << phi_kernel_name << " | kernel key: " << phi_cpu_kernel_key
                  << " | kernel: " << *phi_kernel_;
1799
          run_phi_kernel_ = true;
1800 1801
        }
      }
1802 1803
    }
  }
1804
  if (!run_phi_kernel_) {
1805 1806
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1807
      dev_ctx = pool.Get(kernel_type_->place_);
1808
    }
1809 1810
  }

Y
yuyang18 已提交
1811 1812
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1813 1814
  Scope* transfer_scope = nullptr;
  {
1815
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1816
                                       platform::TracerEventType::OperatorInner,
1817 1818
                                       1,
                                       platform::EventRole::kInnerOp);
1819
    if (need_prepare_data_) {
1820 1821
      transfer_scope = PrepareData(
          scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
1822
    }
1823
  }
Y
yuyang18 已提交
1824 1825 1826 1827
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1828
  if (!all_kernels_must_compute_runtime_shape_) {
1829
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1830
                                       platform::TracerEventType::OperatorInner,
1831 1832
                                       1,
                                       platform::EventRole::kInnerOp);
1833
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1834
    this->Info().infer_shape_(&infer_shape_ctx);
1835 1836 1837
    record_event.End();
    platform::RecordOpInfoSupplement(
        Type(), Attrs(), infer_shape_ctx, *runtime_ctx);
1838
  }
1839 1840 1841 1842 1843

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1844 1845
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1846
  {
1847
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1848
                                       platform::TracerEventType::OperatorInner,
1849 1850
                                       1,
                                       platform::EventRole::kInnerOp);
1851
    if (run_phi_kernel_) {
1852
      phi::KernelContext phi_kernel_context;
1853 1854 1855
      if (enable_cache_runtime_context_ && !need_prepare_phi_data_ &&
          !need_prepare_data_) {
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, impl_->getKernelContext());
1856
        (*phi_kernel_)(impl_->getKernelContext());
1857
      } else {
1858
        phi::KernelContext phi_kernel_context;
1859 1860
        // Do data transform before building KernelContext
        // TODO(zhiqiu): support TransferInplaceVarsBack
1861 1862
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, &phi_kernel_context);
        (*phi_kernel_)(&phi_kernel_context);
1863
      }
1864 1865 1866 1867
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1868
  }
D
dzhwinter 已提交
1869

Y
yuyang18 已提交
1870
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1871
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1872
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1873
  }
1874 1875 1876 1877 1878 1879 1880

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1881 1882 1883 1884 1885 1886 1887 1888
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1889

D
dzhwinter 已提交
1890
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1891
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1892
    dev_ctx->Wait();
1893 1894
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1895 1896
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1897
  }
C
chengduoZH 已提交
1898 1899

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1900
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1901
  }
1902 1903 1904 1905 1906 1907 1908

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1909
}
X
Xin Pan 已提交
1910

1911 1912 1913
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1914 1915 1916
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1927 1928 1929
      // when the Op that does not have GPUKernel is assigned to GPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
1930 1931
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1932
      if (SupportGPU()) {
1933
        auto& dev_ctx = ctx.device_context();
1934
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1935 1936
      }
#endif
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("npu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have NPUKernel is assigned to NPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
1956 1957 1958
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
1959
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1960 1961 1962
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
1963 1964
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
            << ") has no NPU implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("xpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have XPUKernel is assigned to XPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
#ifdef PADDLE_WITH_XPU
      if (SupportXPU()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no XPU implementation. It will be assigned to CPUPlace.";
1991 1992 1993
      }
    }
  }
C
cc 已提交
1994 1995
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1996 1997 1998
  return expected_kernel_key;
}

1999
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
2000
    const ExecutionContext& ctx) const {
2001 2002 2003
  kernel_signature_.reset(
      new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  VLOG(6) << *kernel_signature_.get();
2004 2005 2006 2007

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

2008 2009 2010 2011
  auto phi_kernel_name = kernel_signature_->name;
  auto phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
  phi_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      phi_kernel_name, phi_kernel_key)));
2012

2013 2014 2015 2016
  if (phi_kernel_->IsValid()) {
    VLOG(6) << "Static mode ChoosePhiKernel - kernel name: " << phi_kernel_name
            << " | kernel key: " << phi_kernel_key
            << " | kernel: " << *phi_kernel_;
2017
  } else {
2018
    VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << phi_kernel_name
2019 2020
            << "` not found.";
  }
2021
  return phi_kernel_key;
2022 2023 2024 2025 2026 2027 2028
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
2029 2030
      kernels_iter,
      all_op_kernels.end(),
2031 2032 2033 2034 2035 2036 2037
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
2038 2039

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
2040

L
Liu Yiqun 已提交
2041 2042 2043 2044 2045 2046 2047 2048 2049
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
2050
#endif
2051 2052

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
2053
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
2054 2055 2056
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
2057
    VLOG(3) << "fluid missing XPU kernel: " << type_
2058 2059 2060 2061 2062
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
2063
#endif
L
Liu-xiandong 已提交
2064 2065

#ifdef PADDLE_WITH_XPU_KP
2066 2067 2068 2069 2070 2071 2072
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
2073
      VLOG(3) << "fluid xpu_kp using rt mode ";
2074 2075
    }
    if (use_xpu_kp_kernel_debug) {
2076
      VLOG(3) << "fluid xpu_kp using debug mode ";
2077 2078 2079
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
2080 2081
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
2082 2083
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
2084 2085 2086 2087 2088 2089 2090 2091 2092
      // if can't find corresponding kernel when is_xpu_kp_support is on
      // if the fluid do not register related kernel, it can't work and hava
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
2093
        VLOG(3) << "fluid using XPU KP kernel: " << type_
2094 2095
                << ", using_kernel_key:" << expected_kernel_key;
      }
2096 2097 2098 2099 2100 2101
    }
    bool is_xpu_unsupport =
        (!paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
         paddle::platform::is_in_xpu_black_list(type_));
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
2102
      VLOG(3) << "fluid missing XPU kernel: " << type_
2103 2104 2105 2106 2107
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
2108 2109 2110
  }
#endif

A
Allen Guo 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
2121 2122
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
2123
      platform::is_npu_place(expected_kernel_key.place_)) {
2124 2125 2126 2127 2128 2129
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
2130 2131 2132
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
2133
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
2134 2135 2136
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
2148 2149 2150
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
2151
#endif
2152 2153 2154 2155 2156 2157
  PADDLE_ENFORCE_NE(
      kernel_iter,
      kernels.end(),
      platform::errors::NotFound("Operator (%s) does not have kernel for %s.",
                                 type_,
                                 KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
2158

2159 2160 2161 2162 2163
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
2164 2165
}

Y
yuyang18 已提交
2166
void OperatorWithKernel::TransferInplaceVarsBack(
2167 2168
    const Scope& scope,
    const std::vector<std::string>& inplace_vars,
Y
yuyang18 已提交
2169 2170
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
2171
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
2172
    auto* origin_var = scope.FindVar(var_name);
2173 2174 2175
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2176
    auto* original_tensor =
C
chengduo 已提交
2177
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
2178
    auto* var = transfer_scope.FindVar(var_name);
2179 2180 2181
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2182
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2183
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
2184
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
2185 2186 2187 2188 2189
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
2190 2191 2192
  }
}

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
2222
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
2242
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
2260
Scope* OperatorWithKernel::PrepareData(
2261 2262
    const Scope& scope,
    const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
2263 2264
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
2265
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
2266

2267
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
2268 2269 2270 2271
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
2272 2273
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
2274 2275 2276
    }
  }

2277 2278 2279 2280 2281 2282 2283 2284 2285
  const auto& name_map = Inputs();
  auto prepare_input_data = [&](const std::string& in_name,
                                std::vector<Variable*>* in_vars,
                                const phi::TensorArgDef* in_def,
                                bool should_skip_input) -> void {
    auto& name_vec = name_map.at(in_name);
    for (size_t i = 0; i < in_vars->size(); ++i) {
      const auto& var_name = name_vec[i];
      auto* var = in_vars->at(i);
X
Xin Pan 已提交
2286

Y
yuyang18 已提交
2287
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
2288
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
2289 2290 2291
        continue;
      }

C
chengduo 已提交
2292
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
2308
            (paddle::platform::MKLDNNDeviceContext::tls()
2309 2310
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC) &&
            (tensor_in->dims().size() >= 3)) {
2311 2312 2313 2314 2315
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
2316
          in_vars->at(i) = trans_var;
2317 2318
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
2319 2320
          platform::MatchShapeToLayout(
              out, tensor_in->layout(), DataLayout::kNHWC);
2321 2322
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
2323
                  << in_name << " in Operator " << type_;
2324
        } else {
2325 2326
          VLOG(7) << "Skip scanning input " << in_name << " in Operator "
                  << type_;
2327 2328 2329 2330 2331
        }
#endif
        continue;
      }

Y
yuyang18 已提交
2332 2333 2334 2335
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
      auto kernel_type_for_var =
          GetKernelTypeForVar(in_name, *tensor_in, expected_kernel_key);
      bool need_trans_dtype =
          kernel_type_for_var.data_type_ != expected_kernel_key.data_type_;
      bool need_trans_layout = NeedTransformLayout(
          kernel_type_for_var.data_layout_, expected_kernel_key.data_layout_);
      if (!need_trans_dtype && !need_trans_layout) {
        if (!run_phi_kernel_ &&
            platform::places_are_same_class(kernel_type_for_var.place_,
                                            expected_kernel_key.place_)) {
          continue;
        }
      }
Y
yuyang18 已提交
2349

2350 2351 2352 2353 2354
      std::unique_ptr<OpKernelType> new_expected_kernel_key = nullptr;
      if (run_phi_kernel_ && in_def->backend != phi::Backend::ALL_BACKEND) {
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if ((in_def->backend != tensor_backend &&
             (in_def->backend != phi::Backend::GPUDNN ||
2355 2356
              tensor_backend != phi::Backend::GPU) &&
             (in_def->backend != phi::Backend::KPS ||
2357 2358 2359
              tensor_backend != phi::Backend::XPU) &&
             (in_def->backend != phi::Backend::ONEDNN ||
              tensor_backend != phi::Backend::CPU)) ||
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
            tensor_in->place().GetType() == AllocationType::GPUPINNED) {
          new_expected_kernel_key = std::make_unique<OpKernelType>(
              expected_kernel_key.data_type_,
              phi::TransToPhiPlace(in_def->backend),
              expected_kernel_key.data_layout_,
              expected_kernel_key.library_type_,
              expected_kernel_key.customized_type_value_);
        }
      }

      if (!need_trans_dtype && !need_trans_layout) {
        if (run_phi_kernel_ && new_expected_kernel_key == nullptr) {
          continue;
        }
Y
yuyang18 已提交
2374 2375
      }

M
minqiyang 已提交
2376
      VLOG(3) << "Transform Variable " << var_name << " from "
2377 2378 2379
              << kernel_type_for_var << " to "
              << (new_expected_kernel_key ? *new_expected_kernel_key
                                          : expected_kernel_key);
Y
yuyang18 已提交
2380

2381 2382 2383
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
2384
      // We use a thread_local cache to fix that issue, the key in the cache is
2385 2386 2387 2388 2389
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
2390 2391
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
2392
      // variables, that behavior a lot different.
2393 2394 2395 2396 2397 2398
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
      if (!run_by_executor_) {
        if (new_expected_kernel_key) {
          if ((platform::is_gpu_place(kernel_type_for_var.place_) ||
               platform::is_gpu_place(new_expected_kernel_key->place_))) {
            new_scope = TryCreateTransferScope(
                kernel_type_for_var, *new_expected_kernel_key, &scope);
            enable_cache_transfer_scope_ = true;
          }
        } else if ((platform::is_gpu_place(kernel_type_for_var.place_) ||
                    platform::is_gpu_place(expected_kernel_key.place_))) {
          new_scope = TryCreateTransferScope(
              kernel_type_for_var, expected_kernel_key, &scope);
          enable_cache_transfer_scope_ = true;
        }
2413
      }
2414

2415
      if (!new_scope) {
Y
yuyang18 已提交
2416 2417
        new_scope = &scope.NewScope();
      }
2418 2419 2420 2421
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
2422
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
2423 2424
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
2425
      if (enable_cache_runtime_context_) {
2426 2427
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
2428 2429

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2430
      auto* trans_var = new_scope->Var(var_name);
2431
      in_vars->at(i) = trans_var;
L
Leo Chen 已提交
2432 2433 2434 2435 2436 2437 2438

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
2439
            VLOG(4) << "Found inplace between input(" << in_name
L
Leo Chen 已提交
2440 2441 2442 2443 2444 2445 2446 2447 2448
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
2449
      Tensor out;
2450 2451 2452 2453 2454
      TransformData(new_expected_kernel_key ? *new_expected_kernel_key
                                            : expected_kernel_key,
                    kernel_type_for_var,
                    *tensor_in,
                    &out);
Y
yuyang18 已提交
2455 2456
      SetTensorToVariable(*var, out, trans_var);
    }
2457 2458 2459 2460
  };

  if (run_phi_kernel_) {
    const auto& input_names = kernel_signature_->input_names;
2461
    const auto& input_defs = phi_kernel_->args_def().input_defs();
2462 2463 2464 2465 2466 2467 2468 2469
    PADDLE_ENFORCE_EQ(input_names.size(),
                      input_defs.size(),
                      platform::errors::InvalidArgument(
                          "The size of inputs_args names (%d) must be equal to "
                          "the size of kernel input_defs (%d).",
                          input_names.size(),
                          input_defs.size()));
    for (size_t i = 0; i < input_defs.size(); ++i) {
2470
      const auto& input_defs = phi_kernel_->args_def().input_defs();
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
      auto& in_def = input_defs.at(i);
      std::string input_name = input_names[i];
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      auto& ins_vector = iter->second;
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      prepare_input_data(input_name, &ins_vector, &in_def, should_skip_input);
    }
  } else {
    for (auto& var_name_item : Inputs()) {
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

      std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];
      prepare_input_data(
          var_name_item.first, &input_vars, nullptr, should_skip_input);
    }
Y
yuyang18 已提交
2491
  }
L
Leo Chen 已提交
2492

2493 2494 2495 2496 2497 2498
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
2499 2500 2501 2502 2503 2504

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
2505 2506
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2507 2508 2509

  return new_scope;
}
Q
Qiao Longfei 已提交
2510

2511
void OperatorWithKernel::ParseInputDataType(
2512 2513
    const Variable* var,
    const std::string& name,
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
    const Tensor* t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      PADDLE_ENFORCE_EQ(
2533 2534
          t->IsInitialized(),
          true,
2535 2536
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
2537 2538
                                            Type(),
                                            name));
2539 2540 2541 2542 2543 2544
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2545 2546
    const std::vector<Variable*>& vars,
    const std::string& name,
2547
    proto::VarType::Type* data_type) const {
2548
  proto::VarType::Type default_data_type =
2549 2550 2551 2552 2553 2554 2555 2556 2557
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
2558 2559
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2560
      } else if (var->IsType<LoDTensorArray>()) {
2561 2562 2563 2564
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2565 2566
          }
        }
2567 2568
      }
      if (t != nullptr) {
2569
        PADDLE_ENFORCE_EQ(
2570 2571
            t->IsInitialized(),
            true,
2572 2573
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
2574 2575
                                              Type(),
                                              name));
2576 2577
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2578 2579 2580 2581 2582 2583 2584
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
2585 2586 2587
                           Type(),
                           name,
                           DataTypeToString(tmp),
2588
                           DataTypeToString(*data_type)));
2589 2590 2591 2592 2593 2594
        *data_type = tmp;
      }
    }
  }
}

2595
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2596
    const ExecutionContext& ctx) const {
2597 2598 2599
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2600 2601 2602 2603 2604 2605
  for (auto* name : ctx.InNameList()) {
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2606
  }
2607
  PADDLE_ENFORCE_NE(
2608 2609
      data_type,
      dafault_data_type,
2610 2611
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2612 2613 2614 2615 2616 2617 2618 2619
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2620 2621 2622 2623 2624
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2625
  PADDLE_ENFORCE_NE(
2626 2627
      data_type,
      dafault_data_type,
2628 2629 2630 2631
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
2632 2633
          name,
          Type()));
2634
  return data_type;
Y
Yu Yang 已提交
2635
}
2636

2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
2655 2656
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2657 2658 2659 2660 2661 2662 2663 2664
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
2665 2666
  PADDLE_ENFORCE_EQ(t->IsInitialized(),
                    true,
2667 2668 2669
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
2670 2671 2672
                        Type(),
                        name,
                        ctx.InputName(name)));
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
2684 2685
    const ExecutionContext& ctx,
    const std::string& name1,
2686 2687 2688 2689 2690 2691
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2692 2693
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2694 2695 2696 2697 2698 2699 2700

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2701 2702 2703 2704 2705 2706
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
2707 2708
    const std::string& var_name,
    const Tensor& tensor,
2709
    const OpKernelType& expected_kernel_type) const {
2710 2711
  return OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
2712 2713
}

2714
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2715
    const ExecutionContext& ctx) const {
2716
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2717
  if (arg_map_fn_ == nullptr) {
2718 2719 2720 2721
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2722 2723 2724
      auto func =
          [this](
              const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2725 2726 2727 2728
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2729 2730
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2731 2732
}

2733
void OperatorWithKernel::BuildPhiKernelContext(
2734 2735
    const RuntimeContext& ctx,
    platform::DeviceContext* dev_ctx,
2736 2737
    phi::KernelContext* phi_kernel_context) const {
  phi_kernel_context->SetDeviceContext(dev_ctx);
2738

2739 2740 2741
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
2742

2743 2744 2745
  auto input_defs = phi_kernel_->args_def().input_defs();
  auto attr_defs = phi_kernel_->args_def().attribute_defs();
  auto output_defs = phi_kernel_->args_def().output_defs();
2746

2747 2748
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
2749 2750 2751
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
2752 2753
                        input_names.size(),
                        input_defs.size()));
2754

2755 2756
  PADDLE_ENFORCE_EQ(output_names.size(),
                    output_defs.size(),
2757 2758 2759
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
2760 2761
                        output_names.size(),
                        output_defs.size()));
2762

2763 2764
  PADDLE_ENFORCE_EQ(attr_names.size(),
                    attr_defs.size(),
2765 2766 2767
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
2768 2769
                        attr_names.size(),
                        attr_defs.size()));
2770 2771

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2772
    auto it = ctx.inputs.find(input_names[i]);
2773 2774 2775

    // calcute the start and end index of the input tensors
    size_t start_idx =
2776
        (i == 0 ? 0 : phi_kernel_context->InputRangeAt(i - 1).second);
H
hong 已提交
2777
    // deal with optional here
2778
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
2779
        (input_defs[i].type_index ==
2780
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
2781
         input_defs[i].type_index ==
2782
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
2783
         input_defs[i].type_index ==
2784 2785
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
2786
      phi_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
H
hong 已提交
2787
      auto end_idx = start_idx + 1;
2788 2789
      phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                           i);
2790

H
hong 已提交
2791 2792 2793 2794
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2795
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2796
      const phi::TensorBase* tensor_in = nullptr;
2797
      auto* var = ins_vector[offset];
H
hong 已提交
2798 2799
      if (var->IsType<framework::LoDTensor>()) {
        tensor_in = &(var->Get<framework::LoDTensor>());
2800
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2801 2802
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
2803
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2804
      } else if (var->IsType<framework::LoDTensorArray>()) {
2805
        need_prepare_phi_data_ = true;
C
Chen Weihang 已提交
2806
        paddle::small_vector<const phi::TensorBase*> tensor_vector;
2807 2808 2809 2810
        auto& tensor_array = var->Get<framework::LoDTensorArray>();
        for (auto& t : tensor_array) {
          tensor_vector.emplace_back(&t);
        }
2811
        phi_kernel_context->EmplaceBackInputsWithoutSetRange(tensor_vector);
2812
        end_idx += tensor_array.size() - 1;
2813 2814 2815 2816
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2817
      }
2818
    }
2819
    // Note: here cannot deal with vector<LoDTensorArray> input
2820
    phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2821
  }
2822
  VLOG(4) << "Done inputs";
2823 2824

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2825
    auto it = ctx.outputs.find(output_names[i]);
2826
    size_t start_idx =
2827
        (i == 0 ? 0 : phi_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2828 2829 2830 2831 2832 2833

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
2834
      phi_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
H
hong 已提交
2835
      auto end_idx = start_idx + 1;
2836 2837
      phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                            i);
H
hong 已提交
2838 2839 2840 2841
      continue;
    }
    auto& outs_vector = it->second;

2842
    size_t end_idx = start_idx + outs_vector.size();
2843 2844

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2845
      phi::TensorBase* tensor_out = nullptr;
2846
      auto* var = outs_vector[offset];
2847 2848 2849
      if (var) {
        if (var->template IsType<framework::LoDTensor>()) {
          tensor_out = var->template GetMutable<framework::LoDTensor>();
2850
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2851 2852
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
2853
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2854
        } else if (var->template IsType<framework::LoDTensorArray>()) {
C
Chen Weihang 已提交
2855
          paddle::small_vector<phi::TensorBase*> tensor_vector;
2856 2857 2858 2859 2860 2861 2862
          auto* tensor_array =
              var->template GetMutable<framework::LoDTensorArray>();
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
          for (auto& t : *tensor_array) {
            tensor_vector.emplace_back(&t);
          }
2863
          phi_kernel_context->EmplaceBackOutputsWithoutSetRange(tensor_vector);
2864
          end_idx += tensor_array->size() - 1;
2865 2866 2867 2868 2869
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
2870
      } else {
2871
        phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2872
      }
2873
    }
2874 2875
    phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
2876
  }
2877
  VLOG(4) << "Done outputs";
2878 2879

  for (size_t i = 0; i < attr_names.size(); ++i) {
2880 2881
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
2882 2883
    // attribute with Variable type has been placed into Inputs(), and
    // we can parse them from RuntimeContext.inputs.
2884 2885 2886 2887 2888 2889 2890
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
2891
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
2892
                  phi::Scalar(PADDLE_GET_CONST(float, attr_iter->second))));
2893 2894
              break;
            case proto::AttrType::INT:
2895
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
2896
                  phi::Scalar(PADDLE_GET_CONST(int, attr_iter->second))));
2897 2898
              break;
            case proto::AttrType::STRING:
2899
              phi_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
R
Ruibiao Chen 已提交
2900
                  PADDLE_GET_CONST(std::string, attr_iter->second))));
2901 2902 2903 2904 2905 2906 2907 2908
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
2909
          need_prepare_phi_data_ = true;
2910
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
2911
          phi_kernel_context->EmplaceBackAttr(std::move(
2912
              experimental::MakePhiScalarFromVar(*ins_vector.front())));
2913
        }
2914 2915 2916 2917 2918
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
2919
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2920
                  PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second))));
2921 2922
              break;
            case proto::AttrType::LONGS:
2923
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2924
                  PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second))));
2925 2926
              break;
            case proto::AttrType::INT:
2927
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2928
                  &PADDLE_GET_CONST(int32_t, attr_iter->second), 1)));
2929 2930
              break;
            case proto::AttrType::LONG:
2931
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2932
                  &PADDLE_GET_CONST(int64_t, attr_iter->second), 1)));
2933 2934 2935 2936 2937 2938 2939 2940
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
2941
          need_prepare_phi_data_ = true;
2942 2943
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
2944
            phi_kernel_context->EmplaceBackAttr(std::move(
2945 2946
                experimental::MakePhiIntArrayFromVar(*ins_vector.front())));
          } else {  // ShapeTensorList
2947
            phi_kernel_context->EmplaceBackAttr(std::move(
2948 2949
                experimental::MakePhiIntArrayFromVarList(ins_vector)));
          }
2950
        }
2951 2952 2953
        break;
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
2954 2955
            attr_iter,
            Attrs().end(),
2956 2957 2958 2959 2960 2961
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2962
                PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second);
2963 2964 2965 2966 2967
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2968
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2969 2970 2971
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2972
                PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second);
2973 2974 2975 2976 2977
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2978
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2979 2980 2981
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2982
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second);
2983 2984 2985 2986 2987
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2988
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2989 2990 2991
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
R
Ruibiao Chen 已提交
2992
                PADDLE_GET_CONST(std::vector<double>, attr_iter->second);
2993 2994 2995 2996 2997
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2998
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2999 3000 3001
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3002
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second);
3003 3004 3005 3006 3007
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3008
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3009 3010 3011 3012 3013
          } break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
3014 3015
                attr_names[i]));
        }
3016 3017 3018
      } break;
      default: {
        PADDLE_ENFORCE_NE(
3019 3020
            attr_iter,
            Attrs().end(),
3021 3022 3023 3024 3025
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
3026
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3027
                PADDLE_GET_CONST(float, attr_iter->second));
3028 3029
            break;
          case phi::AttributeType::INT32:
3030
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3031
                PADDLE_GET_CONST(int, attr_iter->second));
3032 3033
            break;
          case phi::AttributeType::BOOL:
3034
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3035
                PADDLE_GET_CONST(bool, attr_iter->second));
3036 3037
            break;
          case phi::AttributeType::INT64:
3038
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3039
                PADDLE_GET_CONST(int64_t, attr_iter->second));
3040 3041
            break;
          case phi::AttributeType::INT32S:
3042
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3043
                PADDLE_GET_CONST(std::vector<int>, attr_iter->second));
3044 3045 3046 3047
            break;
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
3048
                    PADDLE_GET_CONST(int, attr_iter->second)));
3049
            phi_kernel_context->EmplaceBackAttr(data_type);
3050 3051
          } break;
          case phi::AttributeType::STRING:
3052
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3053
                std::move(PADDLE_GET_CONST(std::string, attr_iter->second)));
3054 3055 3056 3057
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
3058
                phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3059
                    PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second));
3060 3061 3062
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
R
Ruibiao Chen 已提交
3063
                    PADDLE_GET_CONST(std::vector<int>, attr_iter->second);
3064 3065
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
3066
                phi_kernel_context->EmplaceBackAttr(vector_int64_attr);
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
3077
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3078
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second));
3079 3080
            break;
          case phi::AttributeType::STRINGS:
3081
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3082
                PADDLE_GET_CONST(std::vector<std::string>, attr_iter->second));
3083 3084 3085 3086 3087 3088
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
3089
        }
3090 3091 3092
      }
    }
  }
3093
  VLOG(4) << "Done attributes";
3094 3095
}

Q
Qiao Longfei 已提交
3096
}  // namespace framework
L
liaogang 已提交
3097
}  // namespace paddle