operator.cc 101.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
P
peizhilin 已提交
15 16
#include <sstream>
#include <string>
17

18
#include "gflags/gflags.h"
19
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/data_transform.h"
21
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
22
#include "paddle/fluid/framework/details/nan_inf_utils.h"
23
#include "paddle/fluid/framework/op_call_stack.h"
24
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
25
#include "paddle/fluid/framework/shape_inference.h"
26
#include "paddle/fluid/framework/transfer_scope_cache.h"
27
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/var_type.h"
29
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
30
#include "paddle/fluid/platform/enforce.h"
31
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
32
#include "paddle/fluid/platform/profiler/event_tracing.h"
33
#include "paddle/phi/common/int_array.h"
34
#include "paddle/phi/common/scalar.h"
35
#include "paddle/phi/core/kernel_context.h"
36 37
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
38

39
namespace phi {
40
class DenseTensor;
41
}  // namespace phi
42

43
#ifdef PADDLE_WITH_XPU
44 45
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
46
#endif
Q
Qiao Longfei 已提交
47

48 49 50 51
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
52 53 54 55
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
56
DECLARE_bool(benchmark);
57
DECLARE_bool(check_nan_inf);
58
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
59
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
60
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
61

Q
Qiao Longfei 已提交
62 63 64
namespace paddle {
namespace framework {

65 66 67 68 69 70
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
71

72
static DDim GetDimsDebug(const ScopeBase& scope, const std::string& name,
73
                         bool get_actual_dim = false) {
74
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
75 76
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
77 78
  }

M
minqiyang 已提交
79 80 81
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
82
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
83
    if (get_actual_dim) {
84
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
85
    } else {
86
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
87
    }
S
Steffy-zxf 已提交
88 89
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
90 91 92 93 94
  } else {
    return DDim({-1});
  }
}

95
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
96 97 98 99 100
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

101
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
102 103 104 105
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
106

M
minqiyang 已提交
107 108 109
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
110 111
      return "";
    }
112
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
113 114
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
115 116 117
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
118
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
119
    }
S
Steffy-zxf 已提交
120 121
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
122 123 124 125 126
  } else {
    return "";
  }
}

127
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
144 145
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
146 147 148 149 150 151 152 153 154 155
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

156
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
157 158 159 160 161
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

162 163
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
164 165 166 167 168
  }

  return -1;
}

169
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
170 171 172 173 174 175 176
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
177 178 179
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
180 181 182 183 184
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
185 186 187 188 189
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
190
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
191 192 193 194 195 196
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
197
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
198 199 200 201 202 203
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

204
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
205 206 207
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
208
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
209 210 211 212
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
213
#else
214
      auto dev_id = place.device;
P
peizhilin 已提交
215
      platform::SetDeviceId(dev_id);
216 217 218
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
219 220 221 222
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
223
#else
224
      auto dev_id = place.device;
225
      platform::SetXPUDeviceId(dev_id);
226 227 228 229 230 231 232 233
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
234
      auto dev_id = place.device;
235
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
236 237 238 239 240 241 242 243
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
244
      auto dev_id = place.device;
F
fwenguang 已提交
245
      platform::SetMLUDeviceId(dev_id);
246 247 248 249 250 251 252 253
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
254
      phi::DeviceManager::SetDevice(place);
255
#endif
P
peizhilin 已提交
256
    }
P
peizhilin 已提交
257

258
    {
259 260 261
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
262
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
263
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
264 265
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
C
chenjian 已提交
266 267
          op_name, platform::TracerEventType::Operator,
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
268
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
269 270
      RunImpl(scope, place);
    }
271

Z
Zhang Ting 已提交
272
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
273
  } catch (platform::EnforceNotMet& exception) {
274
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
275
    throw std::move(exception);
276 277 278 279 280 281
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
282
  } catch (...) {
283
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
284
    std::rethrow_exception(std::current_exception());
285
  }
286 287
}

288
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
289
  return inputs_.find(name) != inputs_.end();
290 291
}

292
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
293
  auto& ins = Inputs(name);
294 295
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
296
      platform::errors::InvalidArgument(
297 298
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
299
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
300 301
}

Y
Yu Yang 已提交
302 303
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
304
  auto it = inputs_.find(name);
305 306 307 308
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
309
  return it->second;
Y
Yan Chunwei 已提交
310 311
}

312
bool OperatorBase::HasOutputs(const std::string& name) const {
313
  if (outputs_.find(name) != outputs_.end()) {
314 315 316 317 318 319
    return true;
  } else {
    return false;
  }
}

320
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
321
  auto& outs = Outputs(name);
322 323 324 325 326
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
327
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
328 329
}

Y
Yu Yang 已提交
330 331
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
332
  auto it = outputs_.find(name);
333 334 335 336
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
337
  return it->second;
Y
Yan Chunwei 已提交
338 339
}

340
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
341
  std::stringstream ss;
Y
Yu Yang 已提交
342
  ss << "Op(" << type_ << "), inputs:{";
343

344
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
345 346
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
347 348
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
349 350
  }

Y
Yu Yang 已提交
351 352
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
353 354
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
355 356
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
357 358
      auto var_name = input.second[i];
      ss << var_name;
359
      if (scope) {
Q
Qiao Longfei 已提交
360 361 362 363 364 365 366
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
367 368 369
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
370
          ss << ":" << dtype;
371 372
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
373
          ss << "(" << GetPlace(*scope, var_name) << ")";
374
        }
375
      }
Y
Yu Yang 已提交
376 377 378
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
379
    }
Y
Yu Yang 已提交
380
    ss << "]";
Y
Yu Yang 已提交
381 382
    ++it;
    if (it != inputs_.end()) {
383 384
      ss << ", ";
    }
Q
Qiao Longfei 已提交
385
  }
Y
Yu Yang 已提交
386
  ss << "}, outputs:{";
Y
Yu Yang 已提交
387 388
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
389 390
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
391 392
      auto var_name = output.second[i];
      ss << var_name;
393
      if (scope) {
Q
Qiao Longfei 已提交
394 395 396 397 398 399 400
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
401 402
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
403 404
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
405
          ss << "(" << GetPlace(*scope, var_name) << ")";
406
        }
407
      }
Y
Yu Yang 已提交
408 409 410
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
411
    }
Y
Yu Yang 已提交
412
    ss << "]";
Y
Yu Yang 已提交
413 414
    ++it;
    if (it != outputs_.end()) {
415 416
      ss << ", ";
    }
Q
Qiao Longfei 已提交
417
  }
Y
Yu Yang 已提交
418
  ss << "}.";
Q
Qiao Longfei 已提交
419 420 421
  return ss.str();
}

Y
Yu Yang 已提交
422
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
423 424
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
425
                           const AttributeMap& attrs)
S
sneaxiy 已提交
426 427 428 429 430 431
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
432 433 434 435 436 437 438 439
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
440
}
441

Q
qijun 已提交
442 443
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
444
  for (auto& o : inputs_) {
Q
qijun 已提交
445 446 447 448 449 450
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
451 452 453 454 455 456 457 458 459 460
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
461
  auto& info = Info();
Y
Yu Yang 已提交
462 463

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
464
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
465 466 467 468 469 470 471 472 473
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
474 475
}

476
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
477
  if (info_ == nullptr || info_->proto_ == nullptr) return;
478

S
sneaxiy 已提交
479
  for (auto& in : info_->Proto().inputs()) {
480
    if (!in.dispensable() && !in.extra()) {
481 482 483 484
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
485
    }
486 487
  }

S
sneaxiy 已提交
488
  for (auto& out : info_->Proto().outputs()) {
489
    if (!out.dispensable() && !out.extra()) {
490 491 492 493
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
494
    }
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
510

C
chengduo 已提交
511
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
512 513
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
514 515
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
516
  } else {
517 518 519
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
520 521 522
  }
}

C
chengduo 已提交
523
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
524
  if (var->IsType<LoDTensor>()) {
525
    return var->GetMutable<LoDTensor>();
526 527
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
528
  } else {
529 530 531
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
532 533 534
  }
}

535
bool ExecutionContext::HasInput(const std::string& name) const {
536
  auto* var = InputVar(name);
537 538 539
  return var != nullptr;
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

554
bool ExecutionContext::HasOutput(const std::string& name) const {
555
  auto* var = OutputVar(name);
556 557 558
  return var != nullptr;
}

X
Xin Pan 已提交
559
const Variable* ExecutionContext::InputVar(const std::string& name) const {
560 561
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
562 563 564
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

565 566
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
567
      platform::errors::InvalidArgument(
568 569
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
570 571 572
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
573
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
574 575 576
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

577 578 579 580 581
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
582 583 584
  return it->second.empty() ? nullptr : it->second[0];
}

585
template <>
586
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
587
    const std::string& name) const {
588 589
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
590 591
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
592 593 594 595 596
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
597
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
598
                   if (var == nullptr) return nullptr;
599 600 601 602 603
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
604 605 606 607 608
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

609
template <>
610
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
611
    const std::string& name) const {
H
hong 已提交
612 613 614
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
615 616
    return {};
  }
617
  std::vector<Tensor*> res;
618 619 620 621 622
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
623
                 });
624 625 626
  return res;
}

Y
Yu Yang 已提交
627
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
628
  // check in new Function kernel first
629
  bool has_phi_kernel = false;
630
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
631
  auto kernel_key_map =
632
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
633
  for (auto& kernel : kernel_key_map) {
634
    has_phi_kernel = true;
635
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
636 637 638 639
      return true;
    }
  }

Y
Yu Yang 已提交
640 641
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
642 643 644 645 646 647 648 649 650 651 652 653 654
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
655 656 657
      return true;
    }
  }
H
hong 已提交
658

Y
Yu Yang 已提交
659 660 661
  return false;
}

662 663
class RuntimeInferShapeContext : public InferShapeContext {
 public:
664
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
665
      : op_(op), ctx_(ctx) {}
666 667

  bool HasInput(const std::string& name) const override {
668
    // has only one input
X
Xin Pan 已提交
669
    const auto& ins = ctx_.inputs;
670 671
    auto it = ins.find(name);
    if (it == ins.end()) {
672 673
      return false;
    }
674
    const auto& in = it->second;
X
Xin Pan 已提交
675
    if (in.size() == 0) return false;
676 677 678 679
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
680
    return in[0] != nullptr;
681 682 683
  }

  bool HasOutput(const std::string& name) const override {
684
    // has only one output
X
Xin Pan 已提交
685
    const auto& outs = ctx_.outputs;
686 687
    auto it = outs.find(name);
    if (it == outs.end()) {
688 689
      return false;
    }
690
    const auto& out = it->second;
X
Xin Pan 已提交
691
    if (out.size() == 0) {
692 693
      return false;
    }
694 695 696 697
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
698
    return out[0] != nullptr;
699 700
  }

701 702 703 704
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

705
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
706 707
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
708
    if (it == ins.end() || it->second.empty()) {
709 710
      return false;
    }
X
Xin Pan 已提交
711 712
    for (auto& input : it->second) {
      if (input == nullptr) {
713 714 715 716 717 718
        return false;
      }
    }
    return true;
  }

719 720
  bool HasOutputs(const std::string& name,
                  bool allow_null = false) const override {
X
Xin Pan 已提交
721 722
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
723
    if (it == outs.end() || it->second.empty()) {
724 725
      return false;
    }
726 727 728 729 730 731 732 733
    if (allow_null) {
      for (auto& output : it->second) {
        if (output != nullptr) return true;
      }
      return false;
    } else {
      for (auto& output : it->second) {
        if (output == nullptr) return false;
734
      }
735
      return true;
736 737 738 739 740
    }
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
741
  std::vector<std::string> Inputs(const std::string& name) const override {
742 743 744
    return op_.Inputs(name);
  }

H
hong 已提交
745
  std::vector<std::string> Outputs(const std::string& name) const override {
746 747 748
    return op_.Outputs(name);
  }

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

772 773
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
774 775
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
792 793 794

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
795

796 797 798 799 800
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
801

802 803 804
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
805 806 807 808 809 810 811 812
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
813
      PADDLE_THROW(platform::errors::Unimplemented(
814
          "Currently, the input type of ShareDim only can be LoDTensor "
815
          "or SelectedRows."));
816 817 818
    }
  }

H
hong 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
837
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
864 865
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
866 867
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
884 885

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
886
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
887
    Variable* out_var = out_it->second.at(j);
888 889 890 891
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
892
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
893 894
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
895

M
mozga-intel 已提交
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
915 916
  }

917
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
918
    PADDLE_THROW(platform::errors::PreconditionNotMet(
919
        "GetLoDLevel is only used in compile time. The calculation of "
920
        "output's actual lod is different among operators so that should be "
921
        "set in the runtime kernel."));
922 923
  }

924 925
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
926
    PADDLE_THROW(platform::errors::PreconditionNotMet(
927
        "SetLoDLevel is only used in compile time. The calculation of "
928
        "output's actual lod is different among operators so that should be "
929
        "set in the runtime kernel."));
C
chengduo 已提交
930 931
  }

932 933
  bool IsRuntime() const override { return true; }

934 935 936 937 938 939
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
940
    } catch (const std::bad_cast& exp) {
941 942 943 944
      return false;
    }
  }

945
  // TODO(paddle-dev): Can this be template?
C
Chen Weihang 已提交
946
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
947
  GetInputVarPtrs(const std::string& name) const override {
948
    const std::vector<Variable*>& vars = InputVars(name);
C
Chen Weihang 已提交
949
    paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
950 951 952 953 954
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

C
Chen Weihang 已提交
955
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
956
  GetOutputVarPtrs(const std::string& name) const override {
957
    const std::vector<Variable*>& vars = OutputVars(name);
C
Chen Weihang 已提交
958
    paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
959 960 961 962 963
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
964 965
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
966 967 968 969 970
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
971 972 973 974 975 976 977 978
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

979 980 981 982
  proto::VarType::Type GetInputVarType(const std::string& name) const override {
    return GetVarType(InputVars(name).at(0));
  }

X
Xin Pan 已提交
983 984 985 986 987 988 989 990 991 992
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
993 994
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
995 996 997 998 999
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

1009 1010 1011 1012 1013 1014 1015 1016
  const phi::ArgumentMappingFn* GetPhiArgumentMappingFn() const override {
    return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
  }

  const phi::KernelSignature* GetPhiDefaultKernelSignature() const override {
    return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
  }

1017
 protected:
X
Xin Pan 已提交
1018
  DDim GetDim(Variable* var) const {
1019 1020
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
1021 1022
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
1023 1024
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1025
    } else {
1026 1027 1028 1029
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1030 1031 1032
    }
  }

X
Xin Pan 已提交
1033 1034 1035 1036 1037 1038 1039 1040
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1041
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1042 1043
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1044 1045
  }

X
Xin Pan 已提交
1046
  void SetDim(Variable* var, const DDim& dim) {
1047 1048
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
1049 1050
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1051
    } else {
1052 1053 1054 1055
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1056 1057 1058 1059 1060 1061
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1062 1063 1064 1065 1066 1067
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
1068 1069 1070 1071 1072
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1073 1074 1075
    }
  }

F
fengjiayi 已提交
1076 1077
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1078 1079
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1080 1081
  }

X
Xin Pan 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1093 1094 1095
    return ToVarType(var->Type());
  }

1096 1097 1098
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1099 1100 1101 1102
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1103 1104 1105 1106 1107
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1108 1109 1110 1111
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1112
    return it->second;
F
fengjiayi 已提交
1113 1114
  }

1115
  const OperatorBase& op_;
X
Xin Pan 已提交
1116
  const RuntimeContext& ctx_;
1117 1118
};

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
struct OperatorWithKernel::CacheImpl {
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
                     RuntimeInferShapeContext* infer_shape_ctx)
      : kernel_ctx_(kernel_ctx), infer_shape_ctx_(infer_shape_ctx) {}

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

 private:
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
};

1134 1135
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1136 1137 1138 1139
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
1140 1141
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1142 1143
    return;
  }
1144 1145 1146 1147 1148 1149 1150 1151
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1152 1153
}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(), phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(), op_kernels.end(),
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(), phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(), op_kernels.end(),
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1204 1205
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1206 1207 1208 1209 1210 1211 1212 1213 1214
  auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
  if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
    VLOG(6) << "Warning: " << type_ << " don't find its MKLDNN Kernel in Fluid "
                                       "Registered Kernels. And We don't "
                                       "search its kernels in phi lib, "
                                       "SupportsMKLDNN() return false.";
    return false;
  }
  auto& op_kernels = op_kernel_iter->second;
1215
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1216
                     [data_type](OpKernelMap::const_reference kern_pair) {
1217 1218
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1219 1220
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1221 1222 1223
                     });
}

1224 1225
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1226 1227 1228 1229
  const auto& attrs_map = ctx.Attrs();
  auto iter = attrs_map.find("use_mkldnn");
  bool use_mkldnn_ctx = iter != attrs_map.end() &&
                        BOOST_GET_CONST(bool, iter->second) &&
1230
                        platform::is_cpu_place(ctx.GetPlace());
1231
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1232 1233
}

1234 1235 1236 1237 1238 1239 1240
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1241
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1242 1243
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1244
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1245
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1246 1247
}

L
luotao1 已提交
1248 1249
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1250 1251
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1252 1253 1254
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1255
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1256
    all_kernels_must_compute_runtime_shape_ = true;
1257
  const Scope* cur_scope = &scope;
1258
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1259 1260
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1261
    pre_scope_ = cur_scope;
L
luotao1 已提交
1262
  } else {
1263 1264 1265 1266 1267 1268
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1269 1270 1271 1272 1273 1274 1275 1276
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1277
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1278
  auto* dev_ctx = pool.Get(place);
1279

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1290
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1291 1292 1293 1294
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1295

1296 1297 1298 1299 1300 1301
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1302 1303 1304 1305 1306
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1307
  phi::KernelKey pt_kernel_key;
1308
  std::string pt_kernel_name;
1309
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1310 1311 1312 1313
    if (kernel_signature_ == nullptr || pt_kernel_ == nullptr) {
      kernel_signature_.reset(new phi::KernelSignature(
          std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      VLOG(6) << *kernel_signature_.get();
1314 1315 1316 1317 1318

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

1319
      pt_kernel_name = kernel_signature_->name;
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
                  << pt_kernel_name
                  << ", using_kernel_key:" << *kernel_type_.get();
          auto try_pt_kernel_key =
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
          if (!phi::KernelFactory::Instance().HasKernel(pt_kernel_name,
                                                        try_pt_kernel_key)) {
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
                    << pt_kernel_name << " is failed " << *kernel_type_.get();
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
                    << pt_kernel_name << " is succeed " << *kernel_type_.get();
          }
        }
      }
#endif
1359
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1360
      pt_kernel_.reset(
1361
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1362 1363 1364
              pt_kernel_name, pt_kernel_key)));

      if (pt_kernel_->IsValid()) {
1365
        VLOG(6) << "Static mode ChoosePhiKernel - kernel name: "
1366 1367 1368
                << pt_kernel_name << " | kernel key: " << pt_kernel_key
                << " | kernel: " << *pt_kernel_;
      } else {
1369
        VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1370 1371
                << "` not found.";
      }
1372
    } else {
1373
      pt_kernel_name = kernel_signature_->name;
1374 1375 1376
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1395 1396
          VLOG(3) << "modifing XPU KP kernel in static graph: "
                  << pt_kernel_name
1397 1398 1399
                  << ", using_kernel_key:" << *kernel_type_.get();
          auto try_pt_kernel_key =
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1400 1401
          if (!phi::KernelFactory::Instance().HasKernel(pt_kernel_name,
                                                        try_pt_kernel_key)) {
1402
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1403 1404 1405 1406 1407 1408
            VLOG(3) << "modify XPU KP kernel in static graph: "
                    << pt_kernel_name << " is failed " << *kernel_type_.get();
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
                    << pt_kernel_name << " is succeed " << *kernel_type_.get();
1409 1410 1411 1412
          }
        }
      }
#endif
1413
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1414
    }
1415 1416 1417 1418

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1419
#if defined(PADDLE_WITH_XPU)
1420 1421 1422 1423 1424
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
            !paddle::platform::is_xpu_support_op(type_, *kernel_type_.get()) ||
        paddle::platform::is_in_xpu_black_list(type_);
#endif
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1436
    if (pt_kernel_->IsValid()
1437
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1438 1439
        && !is_xpu_unsupport
#endif
1440 1441 1442 1443
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
            ) {
1444
      run_phi_kernel_ = true;
1445 1446 1447
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif

1458 1459 1460
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1461
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1462
          || is_xpu_unsupport
1463
#endif
1464 1465 1466 1467
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
#endif
              ) {
1468 1469 1470
        auto pt_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), pt_kernel_key, *this);
        pt_kernel_.reset(
1471
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1472 1473 1474 1475 1476 1477 1478
                pt_kernel_name, pt_cpu_kernel_key)));

        dev_ctx = pool.Get(platform::CPUPlace());
        if (pt_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: " << pt_kernel_name
                  << " | kernel key: " << pt_cpu_kernel_key
                  << " | kernel: " << *pt_kernel_;
1479
          run_phi_kernel_ = true;
1480 1481
        }
      }
1482 1483
    }
  }
1484
  if (!run_phi_kernel_) {
1485 1486
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1487
      dev_ctx = pool.Get(kernel_type_->place_);
1488
    }
1489 1490
  }

Y
yuyang18 已提交
1491 1492
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1493 1494
  Scope* transfer_scope = nullptr;
  {
1495
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1496 1497
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1498 1499 1500 1501
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1502
  }
Y
yuyang18 已提交
1503 1504 1505 1506
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1507
  if (!all_kernels_must_compute_runtime_shape_) {
1508
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1509 1510
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1511
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1512
    this->Info().infer_shape_(&infer_shape_ctx);
1513
  }
1514 1515 1516 1517 1518

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1519 1520
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1521
  {
1522
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1523 1524
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1525
    if (run_phi_kernel_) {
1526 1527 1528
      phi::KernelContext pt_kernel_context;
      // Do data transform before building KernelContext
      // TODO(zhiqiu): support TransferInplaceVarsBack
1529
      PreparePhiData(exec_scope, *pt_kernel_, *kernel_signature_, runtime_ctx);
1530 1531
      BuildPhiKernelContext(*runtime_ctx, dev_ctx, &pt_kernel_context);
      (*pt_kernel_)(&pt_kernel_context);
1532 1533 1534 1535
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1536
  }
D
dzhwinter 已提交
1537

Y
yuyang18 已提交
1538
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1539
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1540
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1541
  }
1542 1543 1544 1545 1546 1547 1548

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1549 1550 1551 1552 1553 1554 1555 1556
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1557

D
dzhwinter 已提交
1558
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1559
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1560
    dev_ctx->Wait();
1561 1562
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1563 1564
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1565
  }
C
chengduoZH 已提交
1566 1567

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1568
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1569
  }
1570 1571 1572 1573 1574 1575 1576

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1577
}
X
Xin Pan 已提交
1578

1579 1580 1581
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1582 1583 1584
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1595 1596
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
1597 1598
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1599
      if (SupportGPU()) {
1600
        auto& dev_ctx = ctx.device_context();
1601
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1602 1603 1604 1605 1606
      }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
1607
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1608 1609 1610
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
1611 1612 1613 1614 1615 1616
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1617 1618
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1619 1620 1621
  return expected_kernel_key;
}

1622
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
1623
    const ExecutionContext& ctx) const {
1624 1625 1626
  kernel_signature_.reset(
      new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  VLOG(6) << *kernel_signature_.get();
1627 1628 1629 1630

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

1631
  auto pt_kernel_name = kernel_signature_->name;
1632
  auto pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1633 1634
  pt_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      pt_kernel_name, pt_kernel_key)));
1635 1636

  if (pt_kernel_->IsValid()) {
1637
    VLOG(6) << "Static mode ChoosePhiKernel - kernel name: " << pt_kernel_name
1638 1639 1640
            << " | kernel key: " << pt_kernel_key
            << " | kernel: " << *pt_kernel_;
  } else {
1641
    VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1642 1643
            << "` not found.";
  }
1644
  return pt_kernel_key;
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1660 1661

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
1662

L
Liu Yiqun 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1672
#endif
1673 1674

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1675
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1676 1677 1678
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1679
    VLOG(3) << "fluid missing XPU kernel: " << type_
1680 1681 1682 1683 1684
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1685
#endif
L
Liu-xiandong 已提交
1686 1687

#ifdef PADDLE_WITH_XPU_KP
1688 1689 1690 1691 1692 1693 1694
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
1695
      VLOG(3) << "fluid xpu_kp using rt mode ";
1696 1697
    }
    if (use_xpu_kp_kernel_debug) {
1698
      VLOG(3) << "fluid xpu_kp using debug mode ";
1699 1700 1701
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
1702 1703
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
1704 1705
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
1706 1707 1708 1709 1710 1711 1712 1713 1714
      // if can't find corresponding kernel when is_xpu_kp_support is on
      // if the fluid do not register related kernel, it can't work and hava
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
1715
        VLOG(3) << "fluid using XPU KP kernel: " << type_
1716 1717
                << ", using_kernel_key:" << expected_kernel_key;
      }
1718 1719 1720 1721 1722 1723
    }
    bool is_xpu_unsupport =
        (!paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
         paddle::platform::is_in_xpu_black_list(type_));
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
1724
      VLOG(3) << "fluid missing XPU kernel: " << type_
1725 1726 1727 1728 1729
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
1730 1731 1732
  }
#endif

A
Allen Guo 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
1743 1744
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
1745
      platform::is_npu_place(expected_kernel_key.place_)) {
1746 1747 1748 1749 1750 1751
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1752 1753 1754
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
1755
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
1756 1757 1758
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
1770 1771 1772
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1773
#endif
1774 1775 1776 1777
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1778

1779 1780 1781 1782 1783
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1784 1785
}

Y
yuyang18 已提交
1786 1787 1788 1789
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1790
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1791
    auto* origin_var = scope.FindVar(var_name);
1792 1793 1794
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1795
    auto* original_tensor =
C
chengduo 已提交
1796
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1797
    auto* var = transfer_scope.FindVar(var_name);
1798 1799
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1800
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1801
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1802
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1803 1804 1805 1806 1807
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1808 1809 1810
  }
}

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
1840
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
1860
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1878
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1879
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1880 1881
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1882
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1883

1884
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1885 1886 1887 1888
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1889 1890
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1891 1892 1893
    }
  }

Y
yuyang18 已提交
1894
  for (auto& var_name_item : Inputs()) {
1895 1896
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1897

X
Xin Pan 已提交
1898 1899 1900 1901
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1902
      auto* var = input_vars[i];
X
Xin Pan 已提交
1903

Y
yuyang18 已提交
1904
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1905
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1906 1907 1908
        continue;
      }

C
chengduo 已提交
1909
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1925
            (paddle::platform::MKLDNNDeviceContext::tls()
1926 1927
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC) &&
            (tensor_in->dims().size() >= 3)) {
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1960 1961
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1962

1963 1964 1965
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1966
      // We use a thread_local cache to fix that issue, the key in the cache is
1967 1968 1969 1970 1971
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1972 1973
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1974
      // variables, that behavior a lot different.
1975 1976 1977 1978 1979 1980 1981 1982 1983
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1984 1985
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1986
        enable_cache_transfer_scope_ = true;
1987
      }
1988
      if (!new_scope) {
Y
yuyang18 已提交
1989 1990
        new_scope = &scope.NewScope();
      }
1991 1992 1993 1994
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1995
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1996 1997
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1998
      if (enable_cache_runtime_context_) {
1999 2000
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
2001 2002

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2003
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
2004
      input_vars[i] = trans_var;
L
Leo Chen 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
2022
      Tensor out;
Y
yuyang18 已提交
2023
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
2024 2025 2026
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
2027

2028 2029 2030 2031 2032 2033
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
2034 2035 2036 2037 2038 2039

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
2040 2041
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2042 2043 2044

  return new_scope;
}
Q
Qiao Longfei 已提交
2045

2046
void OperatorWithKernel::ParseInputDataType(
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
    const Variable* var, const std::string& name,
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
    const Tensor* t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      PADDLE_ENFORCE_EQ(
          t->IsInitialized(), true,
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
                                            Type(), name));
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2077
    const std::vector<Variable*>& vars, const std::string& name,
2078
    proto::VarType::Type* data_type) const {
2079
  proto::VarType::Type default_data_type =
2080 2081 2082 2083 2084 2085 2086 2087 2088
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
2089 2090
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2091
      } else if (var->IsType<LoDTensorArray>()) {
2092 2093 2094 2095
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2096 2097
          }
        }
2098 2099
      }
      if (t != nullptr) {
2100 2101
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
2102 2103 2104
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(), name));
2105 2106
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2107 2108 2109 2110 2111 2112 2113 2114 2115
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(), name, DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
2116 2117 2118 2119 2120 2121
        *data_type = tmp;
      }
    }
  }
}

2122
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2123
    const ExecutionContext& ctx) const {
2124 2125 2126
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2127 2128 2129 2130 2131 2132
  for (auto* name : ctx.InNameList()) {
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2133
  }
2134 2135 2136 2137
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2138 2139 2140 2141 2142 2143 2144 2145
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2146 2147 2148 2149 2150
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2151 2152
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
2153 2154 2155 2156 2157
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
2158
  return data_type;
Y
Yu Yang 已提交
2159
}
2160

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
2179 2180
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2212 2213
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2214 2215 2216 2217 2218 2219 2220

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2221 2222 2223 2224 2225 2226 2227 2228
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
2229 2230
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
2231 2232
}

2233
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2234
    const ExecutionContext& ctx) const {
2235
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2236
  if (arg_map_fn_ == nullptr) {
2237 2238 2239 2240
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2241 2242
      auto func = [this](
          const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2243 2244 2245 2246
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2247 2248
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2249 2250
}

2251
Scope* OperatorWithKernel::PreparePhiData(
2252
    const Scope& scope, const phi::Kernel& pt_kernel,
2253 2254
    const phi::KernelSignature& pt_kernel_signature,
    RuntimeContext* ctx) const {
2255
  const auto& input_names = pt_kernel_signature.input_names;
2256 2257 2258 2259 2260 2261 2262
  auto input_defs = pt_kernel.args_def().input_defs();
  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));
  Scope* new_scope = nullptr;
2263
  auto& name_map = Inputs();
Y
YuanRisheng 已提交
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
    }
  }

2274 2275
  for (size_t i = 0; i < input_defs.size(); ++i) {
    auto& in_def = input_defs.at(i);
2276
    if (ctx->inputs.find(input_names[i]) == ctx->inputs.end()) {
H
hong 已提交
2277 2278
      continue;
    }
2279
    auto& ins_vector = ctx->inputs.at(input_names[i]);
2280
    auto& name_vec = name_map.at(input_names[i]);
Y
YuanRisheng 已提交
2281 2282 2283
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(input_names[i]) > 0;

2284 2285 2286 2287 2288 2289 2290
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      // Only tensor can be tranfer to another device.
      auto* var = ins_vector[offset];
      if (var == nullptr || !VarIsTensor(*var)) {
        continue;
      }
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
YuanRisheng 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
        // TODO(YuanRisheng) : There need to supplement MKLDNN code later
        continue;
      }

2300 2301 2302 2303
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2304 2305 2306
      if (in_def.backend == phi::Backend::ALL_BACKEND) {
        continue;
      }
2307 2308 2309 2310 2311

      auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
      if (in_def.backend == tensor_backend ||
          (in_def.backend == phi::Backend::GPUDNN &&
           tensor_backend == phi::Backend::GPU)) {
2312 2313 2314
        continue;
      }

2315
      auto expected_place = phi::TransToPhiPlace(in_def.backend);
2316
      VLOG(3) << "phi Transform Variable " << input_names[i] << " from "
2317
              << tensor_in->place() << " to " << expected_place;
2318

2319 2320 2321
      if (!new_scope) {
        new_scope = &scope.NewScope();
      }
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
      if (enable_cache_runtime_context_) {
        pre_scope_ = nullptr;
      }
2332

2333
      // Create new var with the same name in transfer scopes
2334
      auto* trans_var = new_scope->Var(name_vec[offset]);
2335
      ins_vector[offset] = trans_var;
2336

2337 2338 2339 2340
      // Do transfer
      Tensor out;
      framework::TensorCopySync(*tensor_in, expected_place, &out);
      SetTensorToVariable(*var, out, trans_var);
2341 2342

      need_prepare_phi_data_ = true;
2343 2344 2345 2346 2347 2348
    }
  }

  return new_scope;
}

2349
void OperatorWithKernel::BuildPhiKernelContext(
2350
    const RuntimeContext& ctx, platform::DeviceContext* dev_ctx,
2351
    phi::KernelContext* pt_kernel_context) const {
2352
  pt_kernel_context->SetDeviceContext(dev_ctx);
2353

2354 2355 2356
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380

  auto input_defs = pt_kernel_->args_def().input_defs();
  auto attr_defs = pt_kernel_->args_def().attribute_defs();
  auto output_defs = pt_kernel_->args_def().output_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2381
    auto it = ctx.inputs.find(input_names[i]);
2382 2383 2384

    // calcute the start and end index of the input tensors
    size_t start_idx =
2385
        (i == 0 ? 0 : pt_kernel_context->InputRangeAt(i - 1).second);
2386

H
hong 已提交
2387
    // deal with optional here
2388
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
2389
        (input_defs[i].type_index ==
2390
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
2391
         input_defs[i].type_index ==
2392
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
2393
         input_defs[i].type_index ==
2394 2395
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
H
hong 已提交
2396 2397 2398 2399 2400 2401 2402 2403
      pt_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                          i);
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2404
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2405
      const phi::TensorBase* tensor_in = nullptr;
2406
      auto* var = ins_vector[offset];
H
hong 已提交
2407 2408
      if (var->IsType<framework::LoDTensor>()) {
        tensor_in = &(var->Get<framework::LoDTensor>());
2409
        pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2410 2411
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
2412 2413
        pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
      } else if (var->IsType<framework::LoDTensorArray>()) {
C
Chen Weihang 已提交
2414
        paddle::small_vector<const phi::TensorBase*> tensor_vector;
2415 2416 2417 2418 2419 2420
        auto& tensor_array = var->Get<framework::LoDTensorArray>();
        for (auto& t : tensor_array) {
          tensor_vector.emplace_back(&t);
        }
        pt_kernel_context->EmplaceBackInputsWithoutSetRange(tensor_vector);
        end_idx += tensor_array.size() - 1;
2421 2422 2423 2424
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2425
      }
2426
    }
2427
    // Note: here cannot deal with vector<LoDTensorArray> input
2428
    pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2429
  }
2430
  VLOG(4) << "Done inputs";
2431 2432

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2433
    auto it = ctx.outputs.find(output_names[i]);
2434
    size_t start_idx =
2435
        (i == 0 ? 0 : pt_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
      pt_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                           i);
      continue;
    }
    auto& outs_vector = it->second;

2450
    size_t end_idx = start_idx + outs_vector.size();
2451 2452

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2453
      phi::TensorBase* tensor_out = nullptr;
2454
      auto* var = outs_vector[offset];
2455 2456 2457
      if (var) {
        if (var->template IsType<framework::LoDTensor>()) {
          tensor_out = var->template GetMutable<framework::LoDTensor>();
2458
          pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2459 2460
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
2461 2462
          pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (var->template IsType<framework::LoDTensorArray>()) {
C
Chen Weihang 已提交
2463
          paddle::small_vector<phi::TensorBase*> tensor_vector;
2464 2465 2466 2467 2468 2469 2470 2471 2472
          auto* tensor_array =
              var->template GetMutable<framework::LoDTensorArray>();
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
          for (auto& t : *tensor_array) {
            tensor_vector.emplace_back(&t);
          }
          pt_kernel_context->EmplaceBackOutputsWithoutSetRange(tensor_vector);
          end_idx += tensor_array->size() - 1;
2473 2474 2475 2476 2477
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
2478 2479
      } else {
        pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2480
      }
2481
    }
2482
    pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
2483
  }
2484
  VLOG(4) << "Done outputs";
2485 2486

  for (size_t i = 0; i < attr_names.size(); ++i) {
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
              pt_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(BOOST_GET_CONST(float, attr_iter->second))));
              break;
            case proto::AttrType::INT:
              pt_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(BOOST_GET_CONST(int, attr_iter->second))));
              break;
            case proto::AttrType::STRING:
              pt_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
                  BOOST_GET_CONST(std::string, attr_iter->second))));
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
2515
          pt_kernel_context->EmplaceBackAttr(std::move(
2516
              experimental::MakePhiScalarFromVar(*ins_vector.front())));
2517
        }
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
              pt_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
                  BOOST_GET_CONST(std::vector<int32_t>, attr_iter->second))));
              break;
            case proto::AttrType::LONGS:
              pt_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
                  BOOST_GET_CONST(std::vector<int64_t>, attr_iter->second))));
              break;
            case proto::AttrType::INT:
              pt_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
                  &BOOST_GET_CONST(int32_t, attr_iter->second), 1)));
              break;
            case proto::AttrType::LONG:
              pt_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
                  &BOOST_GET_CONST(int64_t, attr_iter->second), 1)));
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
            pt_kernel_context->EmplaceBackAttr(std::move(
                experimental::MakePhiIntArrayFromVar(*ins_vector.front())));
          } else {  // ShapeTensorList
            pt_kernel_context->EmplaceBackAttr(std::move(
                experimental::MakePhiIntArrayFromVarList(ins_vector)));
          }
2553
        }
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
        break;
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
            attr_iter, Attrs().end(),
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
                BOOST_GET_CONST(std::vector<int32_t>, attr_iter->second);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
                BOOST_GET_CONST(std::vector<int64_t>, attr_iter->second);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
                BOOST_GET_CONST(std::vector<float>, attr_iter->second);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
                BOOST_GET_CONST(std::vector<double>, attr_iter->second);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
                BOOST_GET_CONST(std::vector<bool>, attr_iter->second);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
2616 2617
                attr_names[i]));
        }
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
      } break;
      default: {
        PADDLE_ENFORCE_NE(
            attr_iter, Attrs().end(),
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
            pt_kernel_context->EmplaceBackAttr(
                BOOST_GET_CONST(float, attr_iter->second));
            break;
          case phi::AttributeType::INT32:
            pt_kernel_context->EmplaceBackAttr(
                BOOST_GET_CONST(int, attr_iter->second));
            break;
          case phi::AttributeType::BOOL:
            pt_kernel_context->EmplaceBackAttr(
                BOOST_GET_CONST(bool, attr_iter->second));
            break;
          case phi::AttributeType::INT64:
            pt_kernel_context->EmplaceBackAttr(
                BOOST_GET_CONST(int64_t, attr_iter->second));
            break;
          case phi::AttributeType::INT32S:
            pt_kernel_context->EmplaceBackAttr(
                BOOST_GET_CONST(std::vector<int>, attr_iter->second));
            break;
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
                    BOOST_GET_CONST(int, attr_iter->second)));
            pt_kernel_context->EmplaceBackAttr(data_type);
          } break;
          case phi::AttributeType::STRING:
            pt_kernel_context->EmplaceBackAttr(
                std::move(BOOST_GET_CONST(std::string, attr_iter->second)));
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
                pt_kernel_context->EmplaceBackAttr(
                    BOOST_GET_CONST(std::vector<int64_t>, attr_iter->second));
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
                    BOOST_GET_CONST(std::vector<int>, attr_iter->second);
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
                pt_kernel_context->EmplaceBackAttr(vector_int64_attr);
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
            pt_kernel_context->EmplaceBackAttr(
                BOOST_GET_CONST(std::vector<float>, attr_iter->second));
            break;
          case phi::AttributeType::STRINGS:
            pt_kernel_context->EmplaceBackAttr(
                BOOST_GET_CONST(std::vector<std::string>, attr_iter->second));
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
2690
        }
2691 2692 2693
      }
    }
  }
2694
  VLOG(4) << "Done attributes";
2695 2696
}

Q
Qiao Longfei 已提交
2697
}  // namespace framework
L
liaogang 已提交
2698
}  // namespace paddle