operator.cc 25.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14
#include <gflags/gflags.h>
D
dzhwinter 已提交
15
#include <glog/logging.h>
Q
Qiao Longfei 已提交
16

17
#include <algorithm>
D
dzhwinter 已提交
18

Y
Yi Wang 已提交
19 20 21 22 23
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/var_type.h"
24
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
25

D
dzhwinter 已提交
26
DECLARE_bool(benchmark);
C
chengduoZH 已提交
27 28 29
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
D
dzhwinter 已提交
30

Q
Qiao Longfei 已提交
31 32 33
namespace paddle {
namespace framework {

34 35 36 37 38 39
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
40

Q
qiaolongfei 已提交
41 42 43 44 45 46 47 48 49 50 51
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
    return framework::ToDataType(var->Get<framework::LoDTensor>().type());
  } else if (var->IsType<framework::SelectedRows>()) {
    return framework::ToDataType(
        var->Get<framework::SelectedRows>().value().type());
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

52 53
static DDim GetDims(const Scope& scope, const std::string& name,
                    bool get_actual_dim = false) {
54
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
55 56
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
57 58 59
  }

  if (var->IsType<LoDTensor>()) {
60 61
    return var->Get<LoDTensor>().dims();
  } else if (var->IsType<SelectedRows>()) {
62 63 64 65 66
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
67 68 69 70 71
  } else {
    return DDim({-1});
  }
}

D
dzhwinter 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  if (var->IsType<LoDTensor>()) {
    return DataTypeToString(ToDataType(var->Get<LoDTensor>().type()));
  } else if (var->IsType<SelectedRows>()) {
    return DataTypeToString(
        ToDataType(var->Get<SelectedRows>().value().type()));
  } else {
    return "";
  }
}

87 88 89 90 91 92 93 94 95 96 97 98 99
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
  }

  return -1;
}

Q
Qiao Longfei 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

  if (var->IsType<LoDTensor>()) {
    return var->Get<LoDTensor>().lod();
  } else {
    return default_lod;
  }
}

115
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
116
  VLOG(10) << "- " << DebugStringEx(&scope);
117 118 119 120 121 122 123 124 125
  if (platform::is_gpu_place(place)) {
#ifndef PADDLE_WITH_CUDA
    PADDLE_THROW("Cannot run operator on place %s", place);
#else
    auto dev_id = boost::get<platform::CUDAPlace>(place).device;
    platform::SetDeviceId(dev_id);
#endif
  }
  RunImpl(scope, place);
126
  VLOG(10) << "+ " << DebugStringEx(&scope);
127 128
}

129 130 131 132 133 134 135 136
bool OperatorBase::HasInputs(const std::string& name) const {
  if (inputs_.find(name) != inputs_.end()) {
    return true;
  } else {
    return false;
  }
}

137
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
138
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
139
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
140 141
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
142
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
143 144
}

Y
Yu Yang 已提交
145 146
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
147
  auto it = inputs_.find(name);
148 149
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
150
  return it->second;
Y
Yan Chunwei 已提交
151 152
}

153 154 155 156 157 158 159 160
bool OperatorBase::HasOutputs(const std::string& name) const {
  if (outputs_.find(name) != outputs_.end()) {
    return true;
  } else {
    return false;
  }
}

161
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
162
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
163
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
164 165
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
166
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
167 168
}

Y
Yu Yang 已提交
169 170
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
171
  auto it = outputs_.find(name);
172 173
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
174
  return it->second;
Y
Yan Chunwei 已提交
175 176
}

177
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
178
  std::stringstream ss;
Y
Yu Yang 已提交
179
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
180 181
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
182 183 184
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
      ss << input.second[i];
185
      if (scope) {
186 187 188 189
        int row_size = GetRowSize(*scope, input.second[i]);
        if (row_size >= 0) {
          ss << "[row_size=" << row_size << "]";
        }
D
dzhwinter 已提交
190 191
        std::string dtype = GetDtype(*scope, input.second[i]);
        ss << ":" << dtype;
192
        ss << "[" << GetDims(*scope, input.second[i], true) << "]";
Q
Qiao Longfei 已提交
193
        ss << "(" << GetLoD(*scope, input.second[i]) << ")";
194
      }
Y
Yu Yang 已提交
195 196 197
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
198
    }
Y
Yu Yang 已提交
199
    ss << "]";
Y
Yu Yang 已提交
200 201
    ++it;
    if (it != inputs_.end()) {
202 203
      ss << ", ";
    }
Q
Qiao Longfei 已提交
204
  }
Y
Yu Yang 已提交
205
  ss << "}, outputs:{";
Y
Yu Yang 已提交
206 207
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
208 209 210
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
      ss << output.second[i];
211
      if (scope) {
212 213 214 215
        int row_size = GetRowSize(*scope, output.second[i]);
        if (row_size >= 0) {
          ss << "[row_size=" << row_size << "]";
        }
216
        ss << "[" << GetDims(*scope, output.second[i], true) << "]";
Q
Qiao Longfei 已提交
217
        ss << "(" << GetLoD(*scope, output.second[i]) << ")";
218
      }
Y
Yu Yang 已提交
219 220 221
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
222
    }
Y
Yu Yang 已提交
223
    ss << "]";
Y
Yu Yang 已提交
224 225
    ++it;
    if (it != outputs_.end()) {
226 227
      ss << ", ";
    }
Q
Qiao Longfei 已提交
228
  }
Y
Yu Yang 已提交
229
  ss << "}.";
Q
Qiao Longfei 已提交
230 231 232
  return ss.str();
}

Y
Yu Yang 已提交
233
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
234 235
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
236 237
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
238 239
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
240
}
241

Q
qijun 已提交
242 243
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
244
  for (auto& o : inputs_) {
Q
qijun 已提交
245 246 247 248 249 250
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
251 252 253 254 255 256 257 258 259 260
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
261
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
262 263

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
264
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
265 266 267 268 269 270 271 272 273
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
274 275
}

276 277 278
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
279
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
280 281

  for (auto& in : op_info->Proto().inputs()) {
282 283 284 285
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
286 287 288
  }

  for (auto& out : op_info->Proto().outputs()) {
289 290 291 292 293
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

310 311 312 313
static bool VarIsTensor(const Variable* var) {
  return var->IsType<LoDTensor>() || var->IsType<SelectedRows>();
}

314
static const Tensor* GetTensorFromVar(Variable* var) {
Q
QI JUN 已提交
315
  if (var->IsType<LoDTensor>()) {
316
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
317
  } else if (var->IsType<SelectedRows>()) {
318
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
319
  } else {
Y
Yang Yang 已提交
320 321
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
322 323 324 325 326
  }
}

static Tensor* GetMutableTensorFromVar(Variable* var) {
  if (var->IsType<LoDTensor>()) {
327
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
328
  } else if (var->IsType<SelectedRows>()) {
329
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
330
  } else {
Y
Yang Yang 已提交
331 332
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
333 334 335
  }
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

368
template <>
369
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
370
  auto* var = InputVar(name);
371 372
  return var == nullptr ? nullptr
                        : GetTensorFromVar(const_cast<Variable*>(var));
373 374 375
}

template <>
376
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
377 378 379 380
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
381 382 383 384 385
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr : GetTensorFromVar(var);
                 });
386 387 388 389
  return res;
}

template <>
390
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
391
  auto var = OutputVar(name);
Q
QI JUN 已提交
392
  return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
393 394 395
}

template <>
396
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
397 398 399 400
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
401 402
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
403 404
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr
Q
QI JUN 已提交
405
                                         : GetMutableTensorFromVar(var);
406
                 });
407 408 409
  return res;
}

Y
Yu Yang 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

425 426 427 428 429 430
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
431 432 433
    if (!op_.HasInputs(name)) {
      return false;
    }
434 435 436 437 438
    auto& ins = Inputs(name);
    size_t length = ins.size();
    if (length == 0) {
      return false;
    }
F
fengjiayi 已提交
439 440
    PADDLE_ENFORCE_EQ(length, 1UL,
                      "Input %s should not have more than one inputs", name);
441 442 443 444 445 446
    auto ipt = ins[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasOutput(const std::string& name) const override {
447 448 449
    if (!op_.HasOutputs(name)) {
      return false;
    }
450 451 452 453 454
    auto& outs = Outputs(name);
    size_t length = outs.size();
    if (length == 0) {
      return false;
    }
F
fengjiayi 已提交
455 456
    PADDLE_ENFORCE_EQ(length, 1UL,
                      "Output %s should not have more than one inputs", name);
457 458 459 460 461 462
    auto ipt = outs[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasInputs(const std::string& name) const override {
463 464 465
    if (!op_.HasInputs(name)) {
      return false;
    }
466 467 468 469 470 471 472 473 474 475 476 477 478
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
479 480 481
    if (!op_.HasOutputs(name)) {
      return false;
    }
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

Q
Qiao Longfei 已提交
506 507 508 509 510 511 512 513 514 515 516 517
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
518

M
mozga-intel 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551
  }

  void ShareLayout(const std::string& in, const std::string& out, size_t i = 0,
                   size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_layout(in_tensor.layout());
Q
Qiao Longfei 已提交
552 553
  }

554 555 556
  bool IsRuntime() const override { return true; }

 protected:
557 558
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
F
fengjiayi 已提交
559
    PADDLE_ENFORCE_NOT_NULL(var);
560 561 562 563 564
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
565 566 567 568 569 570 571
      PADDLE_THROW(
          "Only LoDTensor/SelectedRows support 'GetDim', but Variable %s's "
          "type_id is %s.",
          name, var->Type().name());
    }
  }

F
fengjiayi 已提交
572
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
573
    PADDLE_THROW("Only compile time support this method");
574 575 576 577 578 579 580 581 582
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
Y
Yang Yang 已提交
583 584
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
585 586 587
    }
  }

F
fengjiayi 已提交
588 589
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
590
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
591 592
  }

593
  proto::VarType::Type GetVarType(const std::string& name) const override {
594 595 596 597
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

F
fengjiayi 已提交
598 599 600 601
  InferShapeVarPtr GetVarPtr(const std::string& name) override {
    return scope_.FindVar(name);
  }

602
 private:
603 604 605 606
  const OperatorBase& op_;
  const Scope& scope_;
};

C
chengduoZH 已提交
607 608 609 610 611
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
S
sneaxiy 已提交
612
  if (!IsType<float>(tensor.type()) && !IsType<double>(tensor.type())) {
C
chengduoZH 已提交
613 614 615 616 617 618 619 620
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
}

621 622
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
623 624
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);
Y
Yu Yang 已提交
625
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
626
  auto* dev_ctx = pool.Get(place);
627 628 629 630

  // For profiling, don't move out of this function because that will result
  // in the failure of multi-GPU profiling.
  platform::RecordEvent record_event(Type(), dev_ctx);
631 632 633 634
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
635 636
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
637 638
  }

Q
qiaolongfei 已提交
639 640
  OpKernelMap& kernels = kernels_iter->second;

641 642
  // TODO(dzhwinter) : kernel fallback mechanism will be added when all the
  // transform functions are ready.
Q
qiaolongfei 已提交
643

644 645 646 647
  // for (auto& candidate : kKernelPriority) {
  //   Do selection
  // }

Y
yuyang18 已提交
648 649
  auto expected_kernel_key =
      this->GetExpectedKernelType(ExecutionContext(*this, scope, *dev_ctx));
Q
qiaolongfei 已提交
650 651
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

652
  auto kernel_iter = kernels.find(expected_kernel_key);
653
#ifdef PADDLE_WITH_MKLDNN
P
Paweł Żelazko 已提交
654
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
655 656
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
P
Paweł Żelazko 已提交
657
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
658 659 660 661 662
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
663 664 665 666 667
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

Y
yuyang18 已提交
668 669 670 671
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
  auto* transfer_scope =
      TryTransferData(scope, expected_kernel_key, &transfered_inplace_vars);
672

Y
yuyang18 已提交
673 674 675 676 677 678
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

  if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
679
  }
Q
QI JUN 已提交
680

Y
yuyang18 已提交
681
  kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx));
D
dzhwinter 已提交
682

Y
yuyang18 已提交
683 684 685
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
686 687
  }

D
dzhwinter 已提交
688
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
689
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
690
    dev_ctx->Wait();
D
dzhwinter 已提交
691
  }
C
chengduoZH 已提交
692 693 694

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
695
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
696 697 698
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
699 700
      } else if (var->IsType<framework::SelectedRows>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
701 702 703
      }
    }
  }
Q
Qiao Longfei 已提交
704
}
Y
yuyang18 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
    auto* original_tensor = GetMutableTensorFromVar(scope.FindVar(var_name));
    auto* transformed_tensor =
        GetTensorFromVar(transfer_scope.FindVar(var_name));
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

Scope* OperatorWithKernel::TryTransferData(
    const Scope& scope, const OpKernelType& expected_kernel_key,
    std::vector<std::string>* transfered_inplace_vars) const {
  Scope* new_scope = nullptr;
  for (auto& var_name_item : Inputs()) {
    for (auto& var_name : var_name_item.second) {
      auto* var = scope.FindVar(var_name);
      // Only tensor can be tranfer to another device.
      if (var == nullptr || !VarIsTensor(var)) {
        continue;
      }

      auto* tensor_in = GetTensorFromVar(var);
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;

      if (new_scope == nullptr) {
        new_scope = &scope.NewScope();
      }

      auto* trans_var = new_scope->Var(var_name);
      Tensor out;
Y
yuyang18 已提交
756
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
757 758 759 760 761 762
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
763

764
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
782 783 784 785
          PADDLE_ENFORCE(
              tmp == data_type || data_type == -1,
              "DataType of Paddle Op %s must be the same. Get %d != %d", Type(),
              data_type, tmp);
Y
Yu Yang 已提交
786 787 788 789 790 791
          data_type = tmp;
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
792
  return static_cast<proto::VarType::Type>(data_type);
Y
Yu Yang 已提交
793
}
794

795 796 797 798 799 800 801 802
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
803 804
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
805 806
}

Q
Qiao Longfei 已提交
807
}  // namespace framework
L
liaogang 已提交
808
}  // namespace paddle