operator.cc 86.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
22
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_transform.h"
24
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
25
#include "paddle/fluid/framework/details/nan_inf_utils.h"
26
#include "paddle/fluid/framework/op_call_stack.h"
27
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/shape_inference.h"
29
#include "paddle/fluid/framework/transfer_scope_cache.h"
30
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/platform/enforce.h"
34
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
35
#include "paddle/fluid/platform/profiler/event_tracing.h"
36 37 38 39
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/common/scalar_array.h"
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
40

41
namespace phi {
42
class DenseTensor;
43
}  // namespace phi
44

45
#ifdef PADDLE_WITH_XPU
46 47
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
48
#endif
Q
Qiao Longfei 已提交
49

50 51 52 53
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
54 55 56 57
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
58
DECLARE_bool(benchmark);
59
DECLARE_bool(check_nan_inf);
60
DECLARE_bool(enable_unused_var_check);
61 62
PADDLE_DEFINE_EXPORTED_int32(inner_op_parallelism, 0,
                             "number of threads for inner op");
F
Feng Xing 已提交
63
DECLARE_bool(run_kp_kernel);
D
dzhwinter 已提交
64

Q
Qiao Longfei 已提交
65 66 67
namespace paddle {
namespace framework {

68 69 70 71 72 73
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
74

75
static DDim GetDimsDebug(const ScopeBase& scope, const std::string& name,
76
                         bool get_actual_dim = false) {
77
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
78 79
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
80 81
  }

M
minqiyang 已提交
82 83 84
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
85
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
86
    if (get_actual_dim) {
87
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
88
    } else {
89
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
90
    }
S
Steffy-zxf 已提交
91 92
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
93 94 95 96 97
  } else {
    return DDim({-1});
  }
}

98
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
99 100 101 102 103
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

104
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
105 106 107 108
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
109

M
minqiyang 已提交
110 111 112
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
113 114
      return "";
    }
115
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
116 117
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
118 119 120
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
121
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
122
    }
S
Steffy-zxf 已提交
123 124
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
125 126 127 128 129
  } else {
    return "";
  }
}

130
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
147 148
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
149 150 151 152 153 154 155 156 157 158
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

159
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
160 161 162 163 164
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

165 166
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
167 168 169 170 171
  }

  return -1;
}

172
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
173 174 175 176 177 178 179
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
180 181 182
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
183 184 185 186 187
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
188 189 190 191 192
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
193
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
194 195 196 197 198 199
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
200
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
201 202 203 204 205 206
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

207
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
208 209 210
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
211
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
212 213 214 215
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
216
#else
217
      auto dev_id = place.device;
P
peizhilin 已提交
218
      platform::SetDeviceId(dev_id);
219 220 221
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
222 223 224 225
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
226
#else
227
      auto dev_id = place.device;
228
      platform::SetXPUDeviceId(dev_id);
229 230 231 232 233 234 235 236
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
237
      auto dev_id = place.device;
238
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
239 240 241 242 243 244 245 246
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
247
      auto dev_id = place.device;
F
fwenguang 已提交
248
      platform::SetMLUDeviceId(dev_id);
249 250 251 252 253 254 255 256
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
257
      phi::DeviceManager::SetDevice(place);
258
#endif
P
peizhilin 已提交
259
    }
P
peizhilin 已提交
260

261
    {
262 263 264
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
265
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
266
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
267 268 269 270
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
          op_name, platform::TracerEventType::Operator, 10,
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
271 272
      RunImpl(scope, place);
    }
273

Z
Zhang Ting 已提交
274
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
275
  } catch (platform::EnforceNotMet& exception) {
276
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
277
    throw std::move(exception);
278 279 280 281 282 283
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
284
  } catch (...) {
285
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
286
    std::rethrow_exception(std::current_exception());
287
  }
288 289
}

290
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
291
  return inputs_.find(name) != inputs_.end();
292 293
}

294
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
295
  auto& ins = Inputs(name);
296 297
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
298
      platform::errors::InvalidArgument(
299 300
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
301
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
302 303
}

Y
Yu Yang 已提交
304 305
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
306
  auto it = inputs_.find(name);
307 308 309 310
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
311
  return it->second;
Y
Yan Chunwei 已提交
312 313
}

314
bool OperatorBase::HasOutputs(const std::string& name) const {
315
  if (outputs_.find(name) != outputs_.end()) {
316 317 318 319 320 321
    return true;
  } else {
    return false;
  }
}

322
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
323
  auto& outs = Outputs(name);
324 325 326 327 328
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
329
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
330 331
}

Y
Yu Yang 已提交
332 333
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
334
  auto it = outputs_.find(name);
335 336 337 338
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
339
  return it->second;
Y
Yan Chunwei 已提交
340 341
}

342
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
343
  std::stringstream ss;
Y
Yu Yang 已提交
344
  ss << "Op(" << type_ << "), inputs:{";
345

346
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
347 348
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
349 350
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
351 352
  }

Y
Yu Yang 已提交
353 354
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
355 356
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
357 358
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
359 360
      auto var_name = input.second[i];
      ss << var_name;
361
      if (scope) {
Q
Qiao Longfei 已提交
362 363 364 365 366 367 368
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
369 370 371
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
372
          ss << ":" << dtype;
373 374
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
375
          ss << "(" << GetPlace(*scope, var_name) << ")";
376
        }
377
      }
Y
Yu Yang 已提交
378 379 380
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
381
    }
Y
Yu Yang 已提交
382
    ss << "]";
Y
Yu Yang 已提交
383 384
    ++it;
    if (it != inputs_.end()) {
385 386
      ss << ", ";
    }
Q
Qiao Longfei 已提交
387
  }
Y
Yu Yang 已提交
388
  ss << "}, outputs:{";
Y
Yu Yang 已提交
389 390
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
391 392
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
393 394
      auto var_name = output.second[i];
      ss << var_name;
395
      if (scope) {
Q
Qiao Longfei 已提交
396 397 398 399 400 401 402
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
403 404
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
405 406
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
407
          ss << "(" << GetPlace(*scope, var_name) << ")";
408
        }
409
      }
Y
Yu Yang 已提交
410 411 412
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
413
    }
Y
Yu Yang 已提交
414
    ss << "]";
Y
Yu Yang 已提交
415 416
    ++it;
    if (it != outputs_.end()) {
417 418
      ss << ", ";
    }
Q
Qiao Longfei 已提交
419
  }
Y
Yu Yang 已提交
420
  ss << "}.";
Q
Qiao Longfei 已提交
421 422 423
  return ss.str();
}

Y
Yu Yang 已提交
424
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
425 426
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
427
                           const AttributeMap& attrs)
S
sneaxiy 已提交
428 429 430 431 432 433
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
434 435 436 437 438 439 440 441
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
442
}
443

Q
qijun 已提交
444 445
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
446
  for (auto& o : inputs_) {
Q
qijun 已提交
447 448 449 450 451 452
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
453 454 455 456 457 458 459 460 461 462
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
463
  auto& info = Info();
Y
Yu Yang 已提交
464 465

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
466
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
467 468 469 470 471 472 473 474 475
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
476 477
}

478
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
479
  if (info_ == nullptr || info_->proto_ == nullptr) return;
480

S
sneaxiy 已提交
481
  for (auto& in : info_->Proto().inputs()) {
482
    if (!in.dispensable() && !in.extra()) {
483 484 485 486
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
487
    }
488 489
  }

S
sneaxiy 已提交
490
  for (auto& out : info_->Proto().outputs()) {
491
    if (!out.dispensable() && !out.extra()) {
492 493 494 495
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
496
    }
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
512

C
chengduo 已提交
513
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
514 515
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
516 517
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
518
  } else {
519 520 521
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
522 523 524
  }
}

C
chengduo 已提交
525
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
526
  if (var->IsType<LoDTensor>()) {
527
    return var->GetMutable<LoDTensor>();
528 529
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
530
  } else {
531 532 533
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
534 535 536
  }
}

537
bool ExecutionContext::HasInput(const std::string& name) const {
538
  auto* var = InputVar(name);
539 540 541
  return var != nullptr;
}

542 543 544 545 546 547 548 549 550 551 552 553 554 555
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

556
bool ExecutionContext::HasOutput(const std::string& name) const {
557
  auto* var = OutputVar(name);
558 559 560
  return var != nullptr;
}

X
Xin Pan 已提交
561
const Variable* ExecutionContext::InputVar(const std::string& name) const {
562 563
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
564 565 566
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

567 568
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
569
      platform::errors::InvalidArgument(
570 571
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
572 573 574
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
575
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
576 577 578
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

579 580 581 582 583
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
584 585 586
  return it->second.empty() ? nullptr : it->second[0];
}

587
template <>
588
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
589
    const std::string& name) const {
590 591
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
592 593
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
594 595 596 597 598
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
599
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
600
                   if (var == nullptr) return nullptr;
601 602 603 604 605
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
606 607 608 609 610
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

611
template <>
612
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
613
    const std::string& name) const {
H
hong 已提交
614 615 616
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
617 618
    return {};
  }
619
  std::vector<Tensor*> res;
620 621 622 623 624
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
625
                 });
626 627 628
  return res;
}

Y
Yu Yang 已提交
629
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
630
  // check in new Function kernel first
631
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
632
  auto kernel_key_map =
633
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
634
  for (auto& kernel : kernel_key_map) {
635
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
636 637 638 639
      return true;
    }
  }

Y
Yu Yang 已提交
640 641 642 643 644 645 646 647 648 649 650
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
H
hong 已提交
651

Y
Yu Yang 已提交
652 653 654
  return false;
}

655 656
class RuntimeInferShapeContext : public InferShapeContext {
 public:
657
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
658
      : op_(op), ctx_(ctx) {}
659 660

  bool HasInput(const std::string& name) const override {
661
    // has only one input
X
Xin Pan 已提交
662
    const auto& ins = ctx_.inputs;
663 664
    auto it = ins.find(name);
    if (it == ins.end()) {
665 666
      return false;
    }
667
    const auto& in = it->second;
X
Xin Pan 已提交
668
    if (in.size() == 0) return false;
669 670 671 672
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
673
    return in[0] != nullptr;
674 675 676
  }

  bool HasOutput(const std::string& name) const override {
677
    // has only one output
X
Xin Pan 已提交
678
    const auto& outs = ctx_.outputs;
679 680
    auto it = outs.find(name);
    if (it == outs.end()) {
681 682
      return false;
    }
683
    const auto& out = it->second;
X
Xin Pan 已提交
684
    if (out.size() == 0) {
685 686
      return false;
    }
687 688 689 690
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
691
    return out[0] != nullptr;
692 693
  }

694 695 696 697
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

698
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
699 700
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
701
    if (it == ins.end() || it->second.empty()) {
702 703
      return false;
    }
X
Xin Pan 已提交
704 705
    for (auto& input : it->second) {
      if (input == nullptr) {
706 707 708 709 710 711 712
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
713 714
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
715
    if (it == outs.end() || it->second.empty()) {
716 717
      return false;
    }
X
Xin Pan 已提交
718 719
    for (auto& output : it->second) {
      if (output == nullptr) {
720 721 722 723 724 725 726 727
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
728
  std::vector<std::string> Inputs(const std::string& name) const override {
729 730 731
    return op_.Inputs(name);
  }

H
hong 已提交
732
  std::vector<std::string> Outputs(const std::string& name) const override {
733 734 735
    return op_.Outputs(name);
  }

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

759 760
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
761 762
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
779 780 781

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
782

783 784 785 786 787
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
788

789 790 791
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
792 793 794 795 796 797 798 799
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
800
      PADDLE_THROW(platform::errors::Unimplemented(
801
          "Currently, the input type of ShareDim only can be LoDTensor "
802
          "or SelectedRows."));
803 804 805
    }
  }

H
hong 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
824
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
851 852
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
853 854
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
871 872

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
873
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
874
    Variable* out_var = out_it->second.at(j);
875 876 877 878
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
879
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
880 881
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
882

M
mozga-intel 已提交
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
902 903
  }

904
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
905
    PADDLE_THROW(platform::errors::PreconditionNotMet(
906
        "GetLoDLevel is only used in compile time. The calculation of "
907
        "output's actual lod is different among operators so that should be "
908
        "set in the runtime kernel."));
909 910
  }

911 912
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
913
    PADDLE_THROW(platform::errors::PreconditionNotMet(
914
        "SetLoDLevel is only used in compile time. The calculation of "
915
        "output's actual lod is different among operators so that should be "
916
        "set in the runtime kernel."));
C
chengduo 已提交
917 918
  }

919 920
  bool IsRuntime() const override { return true; }

921 922 923 924 925 926 927 928 929 930 931
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
    } catch (std::bad_cast exp) {
      return false;
    }
  }

932 933
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
934
      const std::string& name) const override {
935 936 937 938 939 940 941 942
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
943
      const std::string& name) const override {
944 945 946 947 948 949 950
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
951 952
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
953 954 955 956 957
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
958 959 960 961 962 963 964 965
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
966 967 968 969 970 971 972 973 974 975
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
976 977
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
978 979 980 981 982
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
983 984 985 986 987 988 989 990 991
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

992
 protected:
X
Xin Pan 已提交
993
  DDim GetDim(Variable* var) const {
994 995
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
996 997
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
998 999
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1000
    } else {
1001 1002 1003 1004
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1005 1006 1007
    }
  }

X
Xin Pan 已提交
1008 1009 1010 1011 1012 1013 1014 1015
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1016
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1017 1018
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1019 1020
  }

X
Xin Pan 已提交
1021
  void SetDim(Variable* var, const DDim& dim) {
1022 1023
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
1024 1025
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1026
    } else {
1027 1028 1029 1030
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1031 1032 1033 1034 1035 1036
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1037 1038 1039 1040 1041 1042
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
1043 1044 1045 1046 1047
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1048 1049 1050
    }
  }

F
fengjiayi 已提交
1051 1052
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1053 1054
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1055 1056
  }

X
Xin Pan 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1068 1069 1070
    return ToVarType(var->Type());
  }

1071 1072 1073
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1074 1075 1076 1077
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1078 1079 1080 1081 1082
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1083 1084 1085 1086
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1087
    return it->second;
F
fengjiayi 已提交
1088 1089
  }

1090
  const OperatorBase& op_;
X
Xin Pan 已提交
1091
  const RuntimeContext& ctx_;
1092 1093
};

1094 1095
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1096 1097 1098 1099
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
1100 1101
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1102 1103
    return;
  }
1104 1105 1106 1107 1108 1109 1110 1111
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1112 1113
}

1114 1115
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1116 1117
  auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1118
                     [data_type](OpKernelMap::const_reference kern_pair) {
1119 1120
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1121 1122
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1123 1124 1125
                     });
}

1126 1127
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1128 1129 1130
  bool use_mkldnn_ctx = ctx.HasAttr("use_mkldnn") &&
                        ctx.Attr<bool>("use_mkldnn") &&
                        platform::is_cpu_place(ctx.GetPlace());
1131
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1132 1133
}

1134 1135 1136 1137 1138 1139 1140
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1141
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1142 1143
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1144
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1145
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1146 1147
}

L
luotao1 已提交
1148 1149
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1150 1151
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1152 1153 1154
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1155
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1156
    all_kernels_must_compute_runtime_shape_ = true;
1157
  const Scope* cur_scope = &scope;
1158
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1159 1160
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1161
    pre_scope_ = cur_scope;
L
luotao1 已提交
1162
  } else {
1163 1164 1165 1166 1167 1168
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1169 1170 1171 1172 1173 1174 1175 1176
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1177
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1178
  auto* dev_ctx = pool.Get(place);
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1190
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1191 1192 1193 1194
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1195 1196 1197 1198 1199 1200

  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1201
  phi::KernelKey pt_kernel_key;
1202
  std::string pt_kernel_name;
1203
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1204
    if (pt_kernel_signature_ == nullptr || pt_kernel_ == nullptr) {
1205
      pt_kernel_signature_.reset(
1206
          new KernelSignature(std::move(GetExpectedPhiKernelArgs(exe_ctx))));
1207 1208 1209 1210 1211 1212 1213
      VLOG(6) << *pt_kernel_signature_.get();

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

      pt_kernel_name = pt_kernel_signature_->name;
1214
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1215
      pt_kernel_.reset(
1216
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1217 1218 1219
              pt_kernel_name, pt_kernel_key)));

      if (pt_kernel_->IsValid()) {
1220
        VLOG(6) << "Static mode ChoosePhiKernel - kernel name: "
1221 1222 1223
                << pt_kernel_name << " | kernel key: " << pt_kernel_key
                << " | kernel: " << *pt_kernel_;
      } else {
1224
        VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1225 1226
                << "` not found.";
      }
1227 1228 1229
    } else {
      pt_kernel_name = pt_kernel_signature_->name;
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1230
    }
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
#ifdef PADDLE_WITH_XPU
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
            !paddle::platform::is_xpu_support_op(type_, *kernel_type_.get()) ||
        paddle::platform::is_in_xpu_black_list(type_);
#endif
    if (pt_kernel_->IsValid()
#ifdef PADDLE_WITH_XPU
        && !is_xpu_unsupport
#endif
        ) {
1242
      run_phi_kernel_ = true;
1243 1244 1245 1246 1247 1248 1249
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
#ifdef PADDLE_WITH_XPU
1250
          || is_xpu_unsupport
1251
#endif
1252
          ) {
1253 1254 1255
        auto pt_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), pt_kernel_key, *this);
        pt_kernel_.reset(
1256
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1257 1258 1259 1260 1261 1262 1263
                pt_kernel_name, pt_cpu_kernel_key)));

        dev_ctx = pool.Get(platform::CPUPlace());
        if (pt_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: " << pt_kernel_name
                  << " | kernel key: " << pt_cpu_kernel_key
                  << " | kernel: " << *pt_kernel_;
1264
          run_phi_kernel_ = true;
1265 1266
        }
      }
1267 1268
    }
  }
1269
  if (!run_phi_kernel_) {
1270 1271
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1272
      dev_ctx = pool.Get(kernel_type_->place_);
1273
    }
1274 1275
  }

Y
yuyang18 已提交
1276 1277
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1278 1279
  Scope* transfer_scope = nullptr;
  {
1280
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1281 1282
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1283 1284 1285 1286
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1287
  }
Y
yuyang18 已提交
1288 1289 1290 1291
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1292
  if (!all_kernels_must_compute_runtime_shape_) {
1293
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1294 1295
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1296
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1297
    this->Info().infer_shape_(&infer_shape_ctx);
1298
  }
1299 1300 1301 1302 1303

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1304 1305
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1306
  {
1307
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1308 1309
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1310
    if (run_phi_kernel_) {
1311
      phi::KernelContext pt_kernel_context;
1312
      // Do data transform before building KernelContext
1313
      // TODO(zhiqiu): support TransferInplaceVarsBack
1314 1315 1316
      PreparePhiData(exec_scope, *pt_kernel_, *pt_kernel_signature_,
                     runtime_ctx);
      BuildPhiKernelContext(*runtime_ctx, dev_ctx, &pt_kernel_context);
1317
      (*pt_kernel_)(&pt_kernel_context);
1318 1319 1320 1321
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1322
  }
D
dzhwinter 已提交
1323

Y
yuyang18 已提交
1324
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1325
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1326
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1327
  }
1328 1329 1330 1331 1332 1333 1334

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1335 1336 1337 1338 1339 1340 1341 1342
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1343

D
dzhwinter 已提交
1344
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1345
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1346
    dev_ctx->Wait();
1347 1348
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1349 1350
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1351
  }
C
chengduoZH 已提交
1352 1353

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1354
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1355
  }
1356 1357 1358 1359 1360 1361 1362

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1363
}
X
Xin Pan 已提交
1364

1365 1366 1367
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1368 1369 1370
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1381 1382
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
1383 1384
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1385
      if (SupportGPU()) {
1386
        auto& dev_ctx = ctx.device_context();
1387
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1388 1389 1390 1391 1392
      }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
1393
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1394 1395 1396
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
1397 1398 1399 1400 1401 1402
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1403 1404
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1405 1406 1407
  return expected_kernel_key;
}

1408
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
1409
    const ExecutionContext& ctx) const {
1410
  pt_kernel_signature_.reset(
1411
      new KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
1412
  VLOG(6) << *pt_kernel_signature_.get();
1413 1414 1415 1416

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

Y
YuanRisheng 已提交
1417
  auto pt_kernel_name = pt_kernel_signature_->name;
1418
  auto pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1419 1420
  pt_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      pt_kernel_name, pt_kernel_key)));
1421 1422

  if (pt_kernel_->IsValid()) {
1423
    VLOG(6) << "Static mode ChoosePhiKernel - kernel name: " << pt_kernel_name
1424 1425 1426
            << " | kernel key: " << pt_kernel_key
            << " | kernel: " << *pt_kernel_;
  } else {
1427
    VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1428 1429
            << "` not found.";
  }
1430
  return pt_kernel_key;
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1446 1447

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
1448

L
Liu Yiqun 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1458 1459
#endif
#ifdef PADDLE_WITH_XPU
1460
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1461 1462 1463
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1464 1465 1466 1467 1468 1469
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1470
#endif
L
Liu-xiandong 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486

#ifdef PADDLE_WITH_XPU_KP
  bool use_xpu_kp_kernel_rt =
      FLAGS_run_kp_kernel &&
      paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
  bool use_xpu_kp_kernel_debug =
      paddle::platform::is_in_xpu_kpwhite_list(type_);
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
      (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug)) {
    expected_kernel_key.library_type_ = LibraryType::kKP;
    kernel_iter = kernels.find(expected_kernel_key);
    VLOG(3) << "using XPU KP kernel: " << type_
            << ", using_kernel_key:" << expected_kernel_key;
  }
#endif

A
Allen Guo 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
1497 1498
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
1499
      platform::is_npu_place(expected_kernel_key.place_)) {
1500 1501 1502 1503 1504 1505
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1506 1507 1508
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
1509
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
1510 1511 1512 1513 1514 1515
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1516
#endif
1517 1518 1519 1520
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1521

1522 1523 1524 1525 1526
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1527 1528
}

Y
yuyang18 已提交
1529 1530 1531 1532
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1533
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1534
    auto* origin_var = scope.FindVar(var_name);
1535 1536 1537
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1538
    auto* original_tensor =
C
chengduo 已提交
1539
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1540
    auto* var = transfer_scope.FindVar(var_name);
1541 1542
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1543
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1544
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1545
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1546 1547 1548 1549 1550
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1551 1552 1553
  }
}

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
1583
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
1603
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1621
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1622
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1623 1624
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1625
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1626

1627
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1628 1629 1630 1631
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1632 1633
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1634 1635 1636
    }
  }

Y
yuyang18 已提交
1637
  for (auto& var_name_item : Inputs()) {
1638 1639
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1640

X
Xin Pan 已提交
1641 1642 1643 1644
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1645
      auto* var = input_vars[i];
X
Xin Pan 已提交
1646

Y
yuyang18 已提交
1647
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1648
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1649 1650 1651
        continue;
      }

C
chengduo 已提交
1652
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1668 1669
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1702 1703
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1704

1705 1706 1707
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1708
      // We use a thread_local cache to fix that issue, the key in the cache is
1709 1710 1711 1712 1713
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1714 1715
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1716
      // variables, that behavior a lot different.
1717 1718 1719 1720 1721 1722 1723 1724 1725
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1726 1727
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1728
        enable_cache_transfer_scope_ = true;
1729
      }
1730
      if (!new_scope) {
Y
yuyang18 已提交
1731 1732
        new_scope = &scope.NewScope();
      }
1733 1734 1735 1736
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1737
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1738 1739
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1740
      if (enable_cache_runtime_context_) {
1741 1742
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1743 1744

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1745
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1746
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1764
      Tensor out;
Y
yuyang18 已提交
1765
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1766 1767 1768
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1769

1770 1771 1772 1773 1774 1775
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
1776 1777 1778 1779 1780 1781

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
1782 1783
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1784 1785 1786

  return new_scope;
}
Q
Qiao Longfei 已提交
1787

1788
void OperatorWithKernel::ParseInputDataType(
1789
    const std::vector<Variable*>& vars, const std::string& name,
1790
    proto::VarType::Type* data_type) const {
1791
  proto::VarType::Type default_data_type =
1792 1793 1794 1795 1796 1797 1798 1799 1800
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
1801 1802
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
1803
      } else if (var->IsType<LoDTensorArray>()) {
1804 1805 1806 1807
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
1808 1809
          }
        }
1810 1811
      }
      if (t != nullptr) {
1812 1813
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
1814 1815 1816
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(), name));
1817 1818
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
1819 1820 1821 1822 1823 1824 1825 1826 1827
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(), name, DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
1828 1829 1830 1831 1832 1833
        *data_type = tmp;
      }
    }
  }
}

1834
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1835
    const ExecutionContext& ctx) const {
1836 1837 1838
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1839
  for (auto& input : ctx.InNameList()) {
1840 1841
    const std::vector<Variable*> vars = ctx.MultiInputVar(input);
    ParseInputDataType(vars, input, &data_type);
Y
Yu Yang 已提交
1842
  }
1843 1844 1845 1846
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
1847 1848 1849 1850 1851 1852 1853 1854
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
1855
  ParseInputDataType(ctx.MultiInputVar(name), name, &data_type);
1856 1857
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
1858 1859 1860 1861 1862
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
1863
  return data_type;
Y
Yu Yang 已提交
1864
}
1865

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
1884 1885
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
1917 1918
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
1919 1920 1921 1922 1923 1924 1925

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

1926 1927 1928 1929 1930 1931 1932 1933
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1934 1935
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1936 1937
}

1938
KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
1939
    const ExecutionContext& ctx) const {
1940 1941
  InitDefaultKernelSignatureMap();
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
1942
  return phi::OpUtilsMap::Instance().GetArgumentMappingFn(Type())(
1943
      arg_mapping_ctx);
1944 1945
}

1946
Scope* OperatorWithKernel::PreparePhiData(
1947
    const Scope& scope, const phi::Kernel& pt_kernel,
1948 1949 1950 1951 1952 1953 1954 1955 1956
    const KernelSignature& pt_kernel_signature, RuntimeContext* ctx) const {
  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto input_defs = pt_kernel.args_def().input_defs();
  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));
  Scope* new_scope = nullptr;
1957
  auto& name_map = Inputs();
Y
YuanRisheng 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
    }
  }

1968 1969
  for (size_t i = 0; i < input_defs.size(); ++i) {
    auto& in_def = input_defs.at(i);
1970
    if (ctx->inputs.find(input_names[i]) == ctx->inputs.end()) {
H
hong 已提交
1971 1972
      continue;
    }
1973
    auto& ins_vector = ctx->inputs.at(input_names[i]);
1974
    auto& name_vec = name_map.at(input_names[i]);
Y
YuanRisheng 已提交
1975 1976 1977
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(input_names[i]) > 0;

1978 1979 1980 1981 1982 1983 1984
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      // Only tensor can be tranfer to another device.
      auto* var = ins_vector[offset];
      if (var == nullptr || !VarIsTensor(*var)) {
        continue;
      }
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
YuanRisheng 已提交
1985 1986 1987 1988 1989 1990 1991 1992 1993

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
        // TODO(YuanRisheng) : There need to supplement MKLDNN code later
        continue;
      }

1994 1995 1996 1997
      if (!tensor_in->IsInitialized()) {
        continue;
      }

1998 1999 2000
      if (in_def.backend == phi::Backend::ALL_BACKEND) {
        continue;
      }
2001
      auto expected_place = phi::TransToPhiPlace(in_def.backend);
2002 2003 2004 2005
      if (platform::is_same_place(tensor_in->place(), expected_place)) {
        continue;
      }

2006
      VLOG(3) << "phi Transform Variable " << input_names[i] << " from "
2007
              << tensor_in->place() << " to " << expected_place;
2008

2009 2010 2011
      if (!new_scope) {
        new_scope = &scope.NewScope();
      }
2012

2013
      // Create new var with the same name in transfer scopes
2014
      auto* trans_var = new_scope->Var(name_vec[offset]);
2015
      ins_vector[offset] = trans_var;
2016

2017 2018 2019 2020
      // Do transfer
      Tensor out;
      framework::TensorCopySync(*tensor_in, expected_place, &out);
      SetTensorToVariable(*var, out, trans_var);
2021 2022 2023 2024 2025 2026
    }
  }

  return new_scope;
}

2027
void OperatorWithKernel::BuildPhiKernelContext(
2028
    const RuntimeContext& ctx, platform::DeviceContext* dev_ctx,
2029
    phi::KernelContext* pt_kernel_context) const {
2030
  pt_kernel_context->SetDeviceContext(dev_ctx);
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058

  auto& input_names = std::get<0>(pt_kernel_signature_->args);
  auto& attr_names = std::get<1>(pt_kernel_signature_->args);
  auto& output_names = std::get<2>(pt_kernel_signature_->args);

  auto input_defs = pt_kernel_->args_def().input_defs();
  auto attr_defs = pt_kernel_->args_def().attribute_defs();
  auto output_defs = pt_kernel_->args_def().output_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2059
    auto it = ctx.inputs.find(input_names[i]);
2060 2061 2062

    // calcute the start and end index of the input tensors
    size_t start_idx =
2063
        (i == 0 ? 0 : pt_kernel_context->InputRangeAt(i - 1).second);
2064

H
hong 已提交
2065
    // deal with optional here
2066
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
2067
        (input_defs[i].type_index ==
H
hong 已提交
2068 2069 2070 2071 2072
             std::type_index(
                 typeid(paddle::optional<const phi::DenseTensor&>)) ||
         input_defs[i].type_index ==
             std::type_index(
                 typeid(paddle::optional<const phi::SelectedRows&>)))) {
H
hong 已提交
2073 2074 2075 2076 2077 2078 2079 2080
      pt_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                          i);
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2081
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2082
      const phi::TensorBase* tensor_in = nullptr;
2083
      auto* var = ins_vector[offset];
H
hong 已提交
2084 2085
      if (var->IsType<framework::LoDTensor>()) {
        tensor_in = &(var->Get<framework::LoDTensor>());
2086 2087
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
2088 2089 2090 2091
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2092
      }
H
hong 已提交
2093

2094
      pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2095
    }
2096
    pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2097
  }
2098
  VLOG(4) << "Done inputs";
2099 2100

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2101
    auto it = ctx.outputs.find(output_names[i]);
2102
    size_t start_idx =
2103
        (i == 0 ? 0 : pt_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
      pt_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                           i);
      continue;
    }
    auto& outs_vector = it->second;

2118
    size_t end_idx = start_idx + outs_vector.size();
2119 2120

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2121
      phi::TensorBase* tensor_out = nullptr;
2122
      auto* var = outs_vector[offset];
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133

      if (var) {
        if (var->template IsType<framework::LoDTensor>()) {
          tensor_out = var->template GetMutable<framework::LoDTensor>();
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
2134
      }
2135

2136
      pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2137
    }
2138

2139
    pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
2140
  }
2141
  VLOG(4) << "Done outputs";
2142 2143

  for (size_t i = 0; i < attr_names.size(); ++i) {
2144
    if (attr_defs[i].type_index == std::type_index(typeid(phi::ScalarArray))) {
2145 2146 2147 2148
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // shape is in the attribute
        if (std::type_index(attr_iter->second.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
2149
          pt_kernel_context->EmplaceBackAttr(std::move(phi::ScalarArray(
2150
              BOOST_GET_CONST(std::vector<int64_t>, attr_iter->second))));
2151 2152
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
2153
          pt_kernel_context->EmplaceBackAttr(std::move(phi::ScalarArray(
2154
              BOOST_GET_CONST(std::vector<int32_t>, attr_iter->second))));
C
chentianyu03 已提交
2155 2156
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(int32_t))) {
2157
          pt_kernel_context->EmplaceBackAttr(std::move(phi::ScalarArray(
C
chentianyu03 已提交
2158
              &BOOST_GET_CONST(int32_t, attr_iter->second), 1)));
2159 2160 2161 2162 2163 2164 2165 2166 2167
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to ScalarArray when "
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
2168
          pt_kernel_context->EmplaceBackAttr(std::move(
2169
              experimental::MakePhiScalarArrayFromVar(*ins_vector.front())));
2170
        } else {  // ShapeTensorList
2171
          pt_kernel_context->EmplaceBackAttr(std::move(
2172
              experimental::MakePhiScalarArrayFromVarList(ins_vector)));
2173 2174 2175
        }
      }
    } else if (attr_defs[i].type_index ==
2176
               std::type_index(typeid(phi::Scalar))) {
2177 2178 2179
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
2180 2181 2182 2183
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // scalar is in the attribute
        auto& attr = Attrs().at(attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
2184
          pt_kernel_context->EmplaceBackAttr(
2185
              std::move(phi::Scalar(BOOST_GET_CONST(float, attr))));
2186 2187
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
2188
          pt_kernel_context->EmplaceBackAttr(
2189
              std::move(phi::Scalar(BOOST_GET_CONST(std::string, attr))));
2190 2191 2192
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          pt_kernel_context->EmplaceBackAttr(
2193
              std::move(phi::Scalar(BOOST_GET_CONST(int, attr))));
2194 2195 2196 2197 2198 2199
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext.",
              attr_names[i]));
        }
2200
      } else {
2201
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
2202 2203
        pt_kernel_context->EmplaceBackAttr(
            std::move(experimental::MakePhiScalarFromVar(*ins_vector.front())));
2204
      }
2205

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(std::vector<phi::Scalar>))) {
      auto& attr = Attrs().at(attr_names[i]);
      if (std::type_index(attr.type()) ==
          std::type_index(typeid(std::vector<int32_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int32_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int64_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<float>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<float>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<double>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<double>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported cast op attribute `%s` to vector<Scalar> when "
            "construct KernelContext.",
            attr_names[i]));
      }
2251 2252
    } else {
      // TODO(chenweihang): support other attrs later
H
hong 已提交
2253
      auto attr_it = attrs_.find(attr_names[i]);
2254
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
H
hong 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
        if (attr_it == attrs_.end()) {
          auto in_it = ctx.inputs.find(attr_names[i]);
          if (in_it != ctx.inputs.end()) {
            // get data from input
            auto val = experimental::MakePhiScalarFromVar(*(in_it->second[0]));
            int32_t val_int = val.template to<int32_t>();
            pt_kernel_context->EmplaceBackAttr(val_int);
          } else {
            PADDLE_THROW(platform::errors::NotFound(
                "can not find attribute `%s` both in attribute and input ",
                attr_names[i]));
          }
        } else {
          pt_kernel_context->EmplaceBackAttr(
              BOOST_GET_CONST(int, attr_it->second));
        }
2271
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
H
hong 已提交
2272 2273
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(float, attr_it->second));
2274
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
H
hong 已提交
2275 2276
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(bool, attr_it->second));
H
hong 已提交
2277
      } else if (attr_defs[i].type_index == std::type_index(typeid(int64_t))) {
H
hong 已提交
2278 2279
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(int64_t, attr_it->second));
H
hong 已提交
2280 2281
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::string))) {
H
hong 已提交
2282 2283
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::string, attr_it->second));
2284
      } else if (attr_defs[i].type_index ==
2285
                 std::type_index(typeid(phi::DataType))) {
2286
        auto data_type = paddle::framework::TransToPhiDataType(
2287
            static_cast<framework::proto::VarType::Type>(
H
hong 已提交
2288
                BOOST_GET_CONST(int, attr_it->second)));
2289
        pt_kernel_context->EmplaceBackAttr(data_type);
2290 2291
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
H
hong 已提交
2292
        if (std::type_index(attr_it->second.type()) ==
2293 2294
            std::type_index(typeid(std::vector<int64_t>))) {
          pt_kernel_context->EmplaceBackAttr(
H
hong 已提交
2295 2296
              BOOST_GET_CONST(std::vector<int64_t>, attr_it->second));
        } else if (std::type_index(attr_it->second.type()) ==
2297
                   std::type_index(typeid(std::vector<int>))) {
2298
          // Emplace Back Attr according to the type of Phi_Kernel args.
H
hong 已提交
2299 2300
          const auto& vector_int_attr =
              BOOST_GET_CONST(std::vector<int>, attr_it->second);
2301 2302
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
2303
          pt_kernel_context->EmplaceBackAttr(vector_int64_attr);
2304
        }
H
hong 已提交
2305 2306
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int32_t>))) {
H
hong 已提交
2307 2308
        const auto& vector_int_attr =
            BOOST_GET_CONST(std::vector<int>, attr_it->second);
H
hong 已提交
2309
        pt_kernel_context->EmplaceBackAttr(vector_int_attr);
2310 2311
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
2312
            "Unsupported cast op attribute `%s` when construct "
2313 2314 2315 2316 2317
            "KernelContext.",
            attr_names[i]));
      }
    }
  }
2318
  VLOG(4) << "Done attributes";
2319 2320
}

Q
Qiao Longfei 已提交
2321
}  // namespace framework
L
liaogang 已提交
2322
}  // namespace paddle