operator.cc 109.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
15

P
peizhilin 已提交
16 17
#include <sstream>
#include <string>
18

19
#include "gflags/gflags.h"
20
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/data_transform.h"
22
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
23
#include "paddle/fluid/framework/details/nan_inf_utils.h"
24
#include "paddle/fluid/framework/op_call_stack.h"
25
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/shape_inference.h"
27
#include "paddle/fluid/framework/transfer_scope_cache.h"
28
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/var_type.h"
30
#include "paddle/fluid/operators/isfinite_op.h"
31
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
32
#include "paddle/fluid/platform/enforce.h"
33
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
34
#include "paddle/fluid/platform/profiler/event_tracing.h"
35
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
36
#include "paddle/phi/common/int_array.h"
37
#include "paddle/phi/common/scalar.h"
38
#include "paddle/phi/core/kernel_context.h"
39 40
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
41

42
namespace phi {
43
class DenseTensor;
44
}  // namespace phi
45

46
#ifdef PADDLE_WITH_XPU
47 48
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
49
#endif
Q
Qiao Longfei 已提交
50

51 52 53 54
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
55 56 57 58
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
59
DECLARE_bool(benchmark);
60
DECLARE_bool(check_nan_inf);
61
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
62
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
63
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
64

Q
Qiao Longfei 已提交
65 66 67
namespace paddle {
namespace framework {

68 69 70 71 72 73
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
74

75 76
static DDim GetDimsDebug(const ScopeBase& scope,
                         const std::string& name,
77
                         bool get_actual_dim = false) {
78
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
79 80
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
81 82
  }

M
minqiyang 已提交
83 84 85
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
86
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
87
    if (get_actual_dim) {
88
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
89
    } else {
90
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
91
    }
S
Steffy-zxf 已提交
92 93
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
94 95 96 97 98
  } else {
    return DDim({-1});
  }
}

99
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
100 101 102 103 104
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

105
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
106 107 108 109
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
110

M
minqiyang 已提交
111 112 113
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
114 115
      return "";
    }
116
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
117 118
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
119 120 121
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
122
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
123
    }
S
Steffy-zxf 已提交
124 125
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
126 127 128 129 130
  } else {
    return "";
  }
}

131
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
148 149
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
150 151 152 153 154 155 156 157 158 159
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

160
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
161 162 163 164 165
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

166 167
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
168 169 170 171 172
  }

  return -1;
}

173
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
174 175 176 177 178 179 180
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
181 182 183
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
184 185 186 187 188
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
189 190 191 192 193
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
194
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
195 196 197 198 199 200
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
201
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
202 203 204 205 206 207
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

208
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
209 210 211
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
212
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
213 214 215 216
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
217
#else
218
      auto dev_id = place.device;
P
peizhilin 已提交
219
      platform::SetDeviceId(dev_id);
220 221 222
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
223 224 225 226
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
227
#else
228
      auto dev_id = place.device;
229
      platform::SetXPUDeviceId(dev_id);
230 231 232 233 234 235 236 237
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
238
      auto dev_id = place.device;
239
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
240 241 242 243 244 245 246 247
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
248
      auto dev_id = place.device;
F
fwenguang 已提交
249
      platform::SetMLUDeviceId(dev_id);
250 251 252 253 254 255 256 257
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
258
      phi::DeviceManager::SetDevice(place);
259
#endif
P
peizhilin 已提交
260
    }
P
peizhilin 已提交
261

262
    {
263 264 265
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
266
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
267
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
268 269
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
270 271
          op_name,
          platform::TracerEventType::Operator,
C
chenjian 已提交
272
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
273
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
274 275
      RunImpl(scope, place);
    }
276

Z
Zhang Ting 已提交
277
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
278
  } catch (platform::EnforceNotMet& exception) {
279
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
280
    throw std::move(exception);
281 282 283 284 285 286
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
287
  } catch (...) {
288
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
289
    std::rethrow_exception(std::current_exception());
290
  }
291 292
}

293
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
294
  return inputs_.find(name) != inputs_.end();
295 296
}

297
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
298
  auto& ins = Inputs(name);
299
  PADDLE_ENFORCE_LE(
300 301
      ins.size(),
      1UL,
302
      platform::errors::InvalidArgument(
303 304
          "Operator %s's input %s should contain only one variable.",
          type_,
305
          name));
Y
Yu Yang 已提交
306
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
307 308
}

Y
Yu Yang 已提交
309 310
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
311
  auto it = inputs_.find(name);
312
  PADDLE_ENFORCE_NE(
313 314 315 316
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have the input %s.", type_, name));
Y
Yu Yang 已提交
317
  return it->second;
Y
Yan Chunwei 已提交
318 319
}

320
bool OperatorBase::HasOutputs(const std::string& name) const {
321
  if (outputs_.find(name) != outputs_.end()) {
322 323 324 325 326 327
    return true;
  } else {
    return false;
  }
}

328
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
329
  auto& outs = Outputs(name);
330
  PADDLE_ENFORCE_LE(
331 332
      outs.size(),
      1UL,
333
      platform::errors::InvalidArgument(
334 335
          "Operator %s's output %s should contain only one variable.",
          type_,
336
          name));
Y
Yu Yang 已提交
337
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
338 339
}

Y
Yu Yang 已提交
340 341
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
342
  auto it = outputs_.find(name);
343
  PADDLE_ENFORCE_NE(
344 345
      it,
      outputs_.end(),
346 347
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
348
  return it->second;
Y
Yan Chunwei 已提交
349 350
}

351
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
352
  std::stringstream ss;
Y
Yu Yang 已提交
353
  ss << "Op(" << type_ << "), inputs:{";
354

355
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
356 357
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
358 359
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
360 361
  }

Y
Yu Yang 已提交
362 363
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
364 365
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
366 367
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
368 369
      auto var_name = input.second[i];
      ss << var_name;
370
      if (scope) {
Q
Qiao Longfei 已提交
371 372 373 374 375 376 377
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
378 379 380
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
381
          ss << ":" << dtype;
382 383
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
384
          ss << "(" << GetPlace(*scope, var_name) << ")";
385
        }
386
      }
Y
Yu Yang 已提交
387 388 389
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
390
    }
Y
Yu Yang 已提交
391
    ss << "]";
Y
Yu Yang 已提交
392 393
    ++it;
    if (it != inputs_.end()) {
394 395
      ss << ", ";
    }
Q
Qiao Longfei 已提交
396
  }
Y
Yu Yang 已提交
397
  ss << "}, outputs:{";
Y
Yu Yang 已提交
398 399
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
400 401
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
402 403
      auto var_name = output.second[i];
      ss << var_name;
404
      if (scope) {
Q
Qiao Longfei 已提交
405 406 407 408 409 410 411
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
412 413
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
414 415
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
416
          ss << "(" << GetPlace(*scope, var_name) << ")";
417
        }
418
      }
Y
Yu Yang 已提交
419 420 421
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
422
    }
Y
Yu Yang 已提交
423
    ss << "]";
Y
Yu Yang 已提交
424 425
    ++it;
    if (it != outputs_.end()) {
426 427
      ss << ", ";
    }
Q
Qiao Longfei 已提交
428
  }
Y
Yu Yang 已提交
429
  ss << "}.";
Q
Qiao Longfei 已提交
430 431 432
  return ss.str();
}

Y
Yu Yang 已提交
433
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
434 435
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
436
                           const AttributeMap& attrs)
S
sneaxiy 已提交
437 438 439 440 441 442
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
443 444 445 446 447 448 449 450
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
451
  // In OperatorBase level, all attributes with VarDesc type will be considered
452 453 454 455 456 457
  // as Input.
  for (auto& attr : FilterAttrVar(attrs)) {
    VLOG(3) << "found Attribute with Variable type: " << attr.first;
    inputs_[attr.first] = std::move(AttrVarNames(attr.second));
    attrs_.erase(attr.first);
  }
Y
Yu Yang 已提交
458
}
459

Q
qijun 已提交
460 461
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
462
  for (auto& o : inputs_) {
Q
qijun 已提交
463 464 465 466 467 468
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
469 470 471 472 473 474 475 476 477 478
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
479
  auto& info = Info();
Y
Yu Yang 已提交
480 481

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
482
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
483 484 485 486 487 488 489 490 491
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
492 493
}

494
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
495
  if (info_ == nullptr || info_->proto_ == nullptr) return;
496

S
sneaxiy 已提交
497
  for (auto& in : info_->Proto().inputs()) {
498
    if (!in.dispensable() && !in.extra()) {
499
      PADDLE_ENFORCE_NE(
500 501 502 503
          inputs_.find(in.name()),
          inputs_.end(),
          platform::errors::NotFound(
              "Operator %s's input (%s) is not set.", Type(), in.name()));
504
    }
505 506
  }

S
sneaxiy 已提交
507
  for (auto& out : info_->Proto().outputs()) {
508
    if (!out.dispensable() && !out.extra()) {
509
      PADDLE_ENFORCE_NE(
510 511 512 513
          outputs_.find(out.name()),
          outputs_.end(),
          platform::errors::NotFound(
              "Operator %s's output (%s) is not set.", Type(), out.name()));
514
    }
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
530

C
chengduo 已提交
531
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
532 533
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
534 535
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
536
  } else {
537 538 539
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
540 541 542
  }
}

C
chengduo 已提交
543
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
544
  if (var->IsType<LoDTensor>()) {
545
    return var->GetMutable<LoDTensor>();
546 547
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
548
  } else {
549 550 551
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
552 553 554
  }
}

555
bool ExecutionContext::HasInput(const std::string& name) const {
556
  auto* var = InputVar(name);
557 558 559
  return var != nullptr;
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

574
bool ExecutionContext::HasOutput(const std::string& name) const {
575
  auto* var = OutputVar(name);
576 577 578
  return var != nullptr;
}

X
Xin Pan 已提交
579
const Variable* ExecutionContext::InputVar(const std::string& name) const {
580 581
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
582 583 584
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

585
  PADDLE_ENFORCE_LE(
586 587
      it->second.size(),
      1UL,
588
      platform::errors::InvalidArgument(
589
          "Operator %s's input %s should contain only one variable.",
590 591
          op_.Type(),
          name));
X
Xin Pan 已提交
592 593 594
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
595
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
596 597 598
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

599
  PADDLE_ENFORCE_LE(
600 601
      it->second.size(),
      1UL,
602 603
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
604 605
          op_.Type(),
          name));
X
Xin Pan 已提交
606 607 608
  return it->second.empty() ? nullptr : it->second[0];
}

609
template <>
610
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
611
    const std::string& name) const {
612 613
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
614 615
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
616 617 618 619
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
620 621 622
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
H
hong 已提交
623
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
624
                   if (var == nullptr) return nullptr;
625 626
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(),
                                     true,
627 628 629 630
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
631 632 633 634 635
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

636
template <>
637
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
638
    const std::string& name) const {
H
hong 已提交
639 640 641
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
642 643
    return {};
  }
644
  std::vector<Tensor*> res;
645
  res.reserve(vars.size());
646 647 648
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
649 650 651
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
652
                 });
653 654 655
  return res;
}

Y
Yu Yang 已提交
656
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
657
  // check in new Function kernel first
658
  bool has_phi_kernel = false;
659
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
660
  auto kernel_key_map =
661
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
662
  for (auto& kernel : kernel_key_map) {
663
    has_phi_kernel = true;
664
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
665 666 667 668
      return true;
    }
  }

Y
Yu Yang 已提交
669 670
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
671 672 673 674 675 676 677 678 679 680 681 682 683
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
684 685 686
      return true;
    }
  }
H
hong 已提交
687

Y
Yu Yang 已提交
688 689 690
  return false;
}

691 692
class RuntimeInferShapeContext : public InferShapeContext {
 public:
693
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
694
      : op_(op), ctx_(ctx) {}
695 696

  bool HasInput(const std::string& name) const override {
697
    // has only one input
X
Xin Pan 已提交
698
    const auto& ins = ctx_.inputs;
699 700
    auto it = ins.find(name);
    if (it == ins.end()) {
701 702
      return false;
    }
703
    const auto& in = it->second;
X
Xin Pan 已提交
704
    if (in.size() == 0) return false;
705
    PADDLE_ENFORCE_EQ(
706 707
        in.size(),
        1UL,
708 709
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
710
    return in[0] != nullptr;
711 712 713
  }

  bool HasOutput(const std::string& name) const override {
714
    // has only one output
X
Xin Pan 已提交
715
    const auto& outs = ctx_.outputs;
716 717
    auto it = outs.find(name);
    if (it == outs.end()) {
718 719
      return false;
    }
720
    const auto& out = it->second;
X
Xin Pan 已提交
721
    if (out.size() == 0) {
722 723
      return false;
    }
724
    PADDLE_ENFORCE_EQ(
725 726
        out.size(),
        1UL,
727 728
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
729
    return out[0] != nullptr;
730 731
  }

732 733 734 735
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

736
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
737 738
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
739
    if (it == ins.end() || it->second.empty()) {
740 741
      return false;
    }
X
Xin Pan 已提交
742 743
    for (auto& input : it->second) {
      if (input == nullptr) {
744 745 746 747 748 749
        return false;
      }
    }
    return true;
  }

750 751
  bool HasOutputs(const std::string& name,
                  bool allow_null = false) const override {
X
Xin Pan 已提交
752 753
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
754
    if (it == outs.end() || it->second.empty()) {
755 756
      return false;
    }
757 758 759 760 761 762 763 764
    if (allow_null) {
      for (auto& output : it->second) {
        if (output != nullptr) return true;
      }
      return false;
    } else {
      for (auto& output : it->second) {
        if (output == nullptr) return false;
765
      }
766
      return true;
767 768 769 770 771
    }
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
772
  std::vector<std::string> Inputs(const std::string& name) const override {
773 774 775
    return op_.Inputs(name);
  }

H
hong 已提交
776
  std::vector<std::string> Outputs(const std::string& name) const override {
777 778 779
    return op_.Outputs(name);
  }

780 781 782
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
783 784
    PADDLE_ENFORCE_LT(idx,
                      op_proto->inputs().size(),
785 786 787
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
788 789 790
                          op_.Type(),
                          idx,
                          op_proto->inputs().size()));
791 792 793 794 795 796 797
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
798 799
        idx,
        op_proto->outputs().size(),
800 801 802
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
803 804 805
            op_.Type(),
            idx,
            op_proto->outputs().size()));
806 807 808
    return op_proto->outputs()[idx].name();
  }

809 810 811
  void ShareDim(const std::string& in,
                const std::string& out,
                size_t i = 0,
812
                size_t j = 0) override {
X
Xin Pan 已提交
813 814
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
815
    PADDLE_ENFORCE_NE(
816 817
        in_it,
        ctx_.inputs.end(),
818 819
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
820 821
        out_it,
        ctx_.outputs.end(),
822
        platform::errors::NotFound("Output %s does not exist.", out));
823 824
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
825 826 827
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
828 829 830 831
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
832 833 834
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
835 836
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
837 838 839

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
840

841
    PADDLE_ENFORCE_EQ(
842 843
        in_var->Type(),
        out_var->Type(),
844
        platform::errors::InvalidArgument(
845 846
            "The type of input (%s) and output (%s) are inconsistent.",
            in,
847
            out));
848

849 850 851
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
852 853 854 855 856 857 858 859
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
860
      PADDLE_THROW(platform::errors::Unimplemented(
861
          "Currently, the input type of ShareDim only can be LoDTensor "
862
          "or SelectedRows."));
863 864 865
    }
  }

H
hong 已提交
866 867 868 869
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
870 871
    PADDLE_ENFORCE_NE(in_it,
                      ctx_.inputs.end(),
H
hong 已提交
872 873 874
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
875 876 877 878
        out_it,
        ctx_.outputs.end(),
        platform::errors::NotFound(
            "Output [%s] found error in Op [%s]", out, op_.Type()));
H
hong 已提交
879 880 881 882 883

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
884 885
        in_var_list.size(),
        out_var_list.size(),
H
hong 已提交
886
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
887
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
888 889 890 891 892 893 894 895 896 897 898 899
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
900 901
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(),
                        true,
H
hong 已提交
902 903
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
904 905
                            i,
                            out_var_names[i]));
H
hong 已提交
906 907 908 909 910 911 912 913 914 915
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

916 917 918
  void ShareLoD(const std::string& in,
                const std::string& out,
                size_t i = 0,
Q
Qiao Longfei 已提交
919
                size_t j = 0) const override {
X
Xin Pan 已提交
920 921
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
922
    PADDLE_ENFORCE_NE(
923 924
        in_it,
        ctx_.inputs.end(),
925 926
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
927 928
        out_it,
        ctx_.outputs.end(),
929
        platform::errors::NotFound("Output %s does not exist.", out));
930 931
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
932 933 934
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
935 936 937 938
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
939 940 941
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
942 943
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
944 945

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
946
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
947
    Variable* out_var = out_it->second.at(j);
948
    PADDLE_ENFORCE_EQ(
949 950
        out_var->IsType<LoDTensor>(),
        true,
951 952
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
953
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
954 955
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
956

M
mozga-intel 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
976 977
  }

978
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
979
    PADDLE_THROW(platform::errors::PreconditionNotMet(
980
        "GetLoDLevel is only used in compile time. The calculation of "
981
        "output's actual lod is different among operators so that should be "
982
        "set in the runtime kernel."));
983 984
  }

985 986
  void SetLoDLevel(const std::string& out,
                   int32_t lod_level,
987
                   size_t j = 0) const override {
988
    PADDLE_THROW(platform::errors::PreconditionNotMet(
989
        "SetLoDLevel is only used in compile time. The calculation of "
990
        "output's actual lod is different among operators so that should be "
991
        "set in the runtime kernel."));
C
chengduo 已提交
992 993
  }

994 995
  bool IsRuntime() const override { return true; }

996 997 998 999 1000 1001
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
1002
    } catch (const std::bad_cast& exp) {
1003 1004 1005 1006
      return false;
    }
  }

1007
  // TODO(paddle-dev): Can this be template?
C
Chen Weihang 已提交
1008
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
1009
  GetInputVarPtrs(const std::string& name) const override {
1010
    const std::vector<Variable*>& vars = InputVars(name);
C
Chen Weihang 已提交
1011
    paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
1012 1013 1014 1015 1016
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

C
Chen Weihang 已提交
1017
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
1018
  GetOutputVarPtrs(const std::string& name) const override {
1019
    const std::vector<Variable*>& vars = OutputVars(name);
C
Chen Weihang 已提交
1020
    paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
1021 1022 1023 1024 1025
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
1026 1027
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
1028
    PADDLE_ENFORCE_EQ(
1029 1030
        vars.size(),
        1UL,
1031 1032
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
1033 1034
            name,
            vars.size()));
X
Xin Pan 已提交
1035 1036 1037 1038 1039 1040 1041 1042
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

1043 1044 1045 1046
  proto::VarType::Type GetInputVarType(const std::string& name) const override {
    return GetVarType(InputVars(name).at(0));
  }

X
Xin Pan 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
1057 1058
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
1059
    PADDLE_ENFORCE_EQ(
1060 1061
        vars.size(),
        1UL,
1062 1063
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
1064 1065
                                          name,
                                          vars.size()));
X
Xin Pan 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

1075 1076 1077 1078 1079 1080 1081 1082
  const phi::ArgumentMappingFn* GetPhiArgumentMappingFn() const override {
    return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
  }

  const phi::KernelSignature* GetPhiDefaultKernelSignature() const override {
    return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
  }

1083
 protected:
X
Xin Pan 已提交
1084
  DDim GetDim(Variable* var) const {
1085 1086
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
1087 1088
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
1089 1090
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1091
    } else {
1092 1093 1094 1095
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1096 1097 1098
    }
  }

X
Xin Pan 已提交
1099 1100 1101
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
1102 1103 1104
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(ret),
X
Xin Pan 已提交
1105 1106 1107 1108
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1109
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1110 1111
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1112 1113
  }

X
Xin Pan 已提交
1114
  void SetDim(Variable* var, const DDim& dim) {
1115 1116
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
1117 1118
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1119
    } else {
1120 1121 1122 1123
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1124 1125 1126 1127 1128 1129
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1130 1131
    PADDLE_ENFORCE_EQ(length,
                      dims.size(),
1132 1133 1134 1135
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
1136 1137
                          length,
                          dims.size()));
X
Xin Pan 已提交
1138 1139 1140 1141 1142
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1143 1144 1145
    }
  }

F
fengjiayi 已提交
1146 1147
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1148 1149
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1150 1151
  }

X
Xin Pan 已提交
1152 1153 1154 1155
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
1156 1157 1158
    std::transform(vars.begin(),
                   vars.end(),
                   retv.begin(),
X
Xin Pan 已提交
1159
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
1160 1161
                             this,
                             std::placeholders::_1));
X
Xin Pan 已提交
1162 1163 1164 1165
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1166 1167 1168
    return ToVarType(var->Type());
  }

1169 1170 1171
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1172
    PADDLE_ENFORCE_NE(
1173 1174
        it,
        ctx_.inputs.end(),
1175 1176
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1177 1178 1179 1180 1181
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1182
    PADDLE_ENFORCE_NE(
1183 1184
        it,
        ctx_.outputs.end(),
1185 1186
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1187
    return it->second;
F
fengjiayi 已提交
1188 1189
  }

1190
  const OperatorBase& op_;
X
Xin Pan 已提交
1191
  const RuntimeContext& ctx_;
1192 1193
};

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
struct OperatorWithKernel::CacheImpl {
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
                     RuntimeInferShapeContext* infer_shape_ctx)
      : kernel_ctx_(kernel_ctx), infer_shape_ctx_(infer_shape_ctx) {}

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

 private:
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
};

1209 1210
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1211 1212 1213 1214
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
1215 1216
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1217 1218
    return;
  }
1219
  PADDLE_ENFORCE_NE(
1220 1221 1222 1223
      framework::TensorContainsInf(tensor),
      true,
      platform::errors::Fatal(
          "Operator %s output Tensor %s contains Inf.", op_type, name));
1224
  PADDLE_ENFORCE_NE(
1225 1226 1227 1228
      framework::TensorContainsNAN(tensor),
      true,
      platform::errors::Fatal(
          "Operator %s output Tensor %s contains NAN.", op_type, name));
C
chengduoZH 已提交
1229 1230
}

1231 1232 1233 1234
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1235 1236
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1249 1250
          op_kernels.begin(),
          op_kernels.end(),
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1262 1263
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1276 1277
          op_kernels.begin(),
          op_kernels.end(),
1278 1279 1280 1281 1282 1283 1284
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
bool OperatorWithKernel::SupportXPU() const {
#ifdef PADDLE_WITH_XPU
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::XPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_xpu_place(kern_pair.first.place_) &&
                   paddle::platform::is_xpu_support_op(type_,
                                                       kern_pair.first) &&
                   !paddle::platform::is_in_xpu_black_list(type_);
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportXPU() when not compiled with "
      "XPU support."));
  return false;
#endif
}

1322 1323
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::ONEDNN;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [data_type](OpKernelMap::const_reference kern_pair) {
            return platform::is_cpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kMKLDNN &&
                   kern_pair.first.data_type_ == data_type;
          });
    }
1349
  }
1350 1351
}

1352 1353 1354 1355
bool OperatorWithKernel::SupportsKernelType(
    const OpKernelType& kernel_type) const {
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1356 1357 1358 1359 1360
  if (kernels_iter == all_op_kernels.end()) return false;
  OpKernelMap& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(kernel_type);

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1361
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
1362 1363 1364
    return kernel_iter != kernels.end() &&
           paddle::platform::is_xpu_support_op(type_, kernel_type) &&
           !paddle::platform::is_in_xpu_black_list(type_);
1365 1366
  }
#endif
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

#ifdef PADDLE_WITH_XPU_KP
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, kernel_type);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
      auto tmp_kernel_type = kernel_type;
      tmp_kernel_type.library_type_ = LibraryType::kKP;
      return kernels.find(tmp_kernel_type) != kernels.end();
    }
    return kernel_iter != kernels.end() &&
           paddle::platform::is_xpu_support_op(type_, kernel_type) &&
           !paddle::platform::is_in_xpu_black_list(type_);
  }
#endif

  return kernel_iter != kernels.end();
1388 1389
}

1390 1391
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1392 1393 1394
  const auto& attrs_map = ctx.Attrs();
  auto iter = attrs_map.find("use_mkldnn");
  bool use_mkldnn_ctx = iter != attrs_map.end() &&
R
Ruibiao Chen 已提交
1395
                        PADDLE_GET_CONST(bool, iter->second) &&
1396
                        platform::is_cpu_place(ctx.GetPlace());
1397
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1398 1399
}

1400 1401 1402 1403 1404 1405 1406
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1407
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1408 1409
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1410
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1411
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1412 1413
}

L
luotao1 已提交
1414 1415
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1416 1417
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1418 1419 1420
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1421
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1422
    all_kernels_must_compute_runtime_shape_ = true;
1423
  const Scope* cur_scope = &scope;
1424
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1425 1426
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1427
    pre_scope_ = cur_scope;
1428 1429 1430 1431 1432
  } else if (run_phi_kernel_ && impl_ != nullptr && !need_prepare_data_ &&
             !need_prepare_phi_data_) {
    if (!all_kernels_must_compute_runtime_shape_)
      this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
    (*phi_kernel_)(impl_->getKernelContext());
L
luotao1 已提交
1433
  } else {
1434 1435 1436 1437 1438 1439
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1440
    }
1441
    RunImpl(scope, place, runtime_ctx_.get());
L
luotao1 已提交
1442 1443 1444 1445 1446 1447
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1448
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1449
  auto* dev_ctx = pool.Get(place);
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1461
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1462 1463 1464 1465
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1466

1467 1468 1469 1470 1471 1472
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1473 1474 1475 1476 1477
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1478 1479
  phi::KernelKey phi_kernel_key;
  std::string phi_kernel_name;
1480
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1481
    if (kernel_signature_ == nullptr || phi_kernel_ == nullptr) {
1482 1483 1484
      kernel_signature_.reset(new phi::KernelSignature(
          std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      VLOG(6) << *kernel_signature_.get();
1485 1486 1487 1488 1489

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

1490
      phi_kernel_name = kernel_signature_->name;
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1513
                  << phi_kernel_name
1514
                  << ", using_kernel_key:" << *kernel_type_.get();
1515
          auto try_phi_kernel_key =
1516
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1517 1518
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1519 1520
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1521
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1522 1523 1524
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1525
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1526 1527 1528 1529
          }
        }
      }
#endif
1530 1531
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
      phi_kernel_.reset(
1532
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1533
              phi_kernel_name, phi_kernel_key)));
1534

1535
      if (phi_kernel_->IsValid()) {
1536
        VLOG(6) << "Static mode ChoosePhiKernel - kernel name: "
1537 1538
                << phi_kernel_name << " | kernel key: " << phi_kernel_key
                << " | kernel: " << *phi_kernel_;
1539
      } else {
1540
        VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << phi_kernel_name
1541 1542
                << "` not found.";
      }
1543
    } else {
1544
      phi_kernel_name = kernel_signature_->name;
1545 1546 1547
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1566
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1567
                  << phi_kernel_name
1568
                  << ", using_kernel_key:" << *kernel_type_.get();
1569
          auto try_phi_kernel_key =
1570
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1571 1572
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1573
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1574
            VLOG(3) << "modify XPU KP kernel in static graph: "
1575
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1576 1577 1578
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1579
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1580 1581 1582 1583
          }
        }
      }
#endif
1584
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1585
    }
1586 1587 1588 1589

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1590
#if defined(PADDLE_WITH_XPU)
1591 1592 1593 1594 1595
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
            !paddle::platform::is_xpu_support_op(type_, *kernel_type_.get()) ||
        paddle::platform::is_in_xpu_black_list(type_);
#endif
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1607
    if (phi_kernel_->IsValid()
1608
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1609 1610
        && !is_xpu_unsupport
#endif
1611 1612 1613
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
1614
    ) {
1615
      run_phi_kernel_ = true;
1616 1617 1618
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif

1629 1630 1631
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1632
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1633
          || is_xpu_unsupport
1634
#endif
1635 1636 1637
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
#endif
1638
      ) {
1639 1640 1641
        auto phi_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), phi_kernel_key, *this);
        phi_kernel_.reset(
1642
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1643
                phi_kernel_name, phi_cpu_kernel_key)));
1644 1645

        dev_ctx = pool.Get(platform::CPUPlace());
1646 1647 1648 1649
        if (phi_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: "
                  << phi_kernel_name << " | kernel key: " << phi_cpu_kernel_key
                  << " | kernel: " << *phi_kernel_;
1650
          run_phi_kernel_ = true;
1651 1652
        }
      }
1653 1654
    }
  }
1655
  if (!run_phi_kernel_) {
1656 1657
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1658
      dev_ctx = pool.Get(kernel_type_->place_);
1659
    }
1660 1661
  }

Y
yuyang18 已提交
1662 1663
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1664 1665
  Scope* transfer_scope = nullptr;
  {
1666
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1667
                                       platform::TracerEventType::OperatorInner,
1668 1669
                                       1,
                                       platform::EventRole::kInnerOp);
1670
    if (need_prepare_data_) {
1671 1672
      transfer_scope = PrepareData(
          scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
1673
    }
1674
  }
Y
yuyang18 已提交
1675 1676 1677 1678
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1679
  if (!all_kernels_must_compute_runtime_shape_) {
1680
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1681
                                       platform::TracerEventType::OperatorInner,
1682 1683
                                       1,
                                       platform::EventRole::kInnerOp);
1684
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1685
    this->Info().infer_shape_(&infer_shape_ctx);
1686 1687 1688
    record_event.End();
    platform::RecordOpInfoSupplement(
        Type(), Attrs(), infer_shape_ctx, *runtime_ctx);
1689
  }
1690 1691 1692 1693 1694

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1695 1696
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1697
  {
1698
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1699
                                       platform::TracerEventType::OperatorInner,
1700 1701
                                       1,
                                       platform::EventRole::kInnerOp);
1702
    if (run_phi_kernel_) {
1703
      phi::KernelContext phi_kernel_context;
1704 1705
      if (enable_cache_runtime_context_ && !need_prepare_phi_data_ &&
          !need_prepare_data_) {
1706 1707 1708
        impl_ =
            new CacheImpl(new phi::KernelContext(),
                          new RuntimeInferShapeContext(*this, *runtime_ctx));
1709
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, impl_->getKernelContext());
1710
        (*phi_kernel_)(impl_->getKernelContext());
1711
      } else {
1712
        phi::KernelContext phi_kernel_context;
1713 1714
        // Do data transform before building KernelContext
        // TODO(zhiqiu): support TransferInplaceVarsBack
1715 1716
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, &phi_kernel_context);
        (*phi_kernel_)(&phi_kernel_context);
1717
      }
1718 1719 1720 1721
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1722
  }
D
dzhwinter 已提交
1723

Y
yuyang18 已提交
1724
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1725
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1726
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1727
  }
1728 1729 1730 1731 1732 1733 1734

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1735 1736 1737 1738 1739 1740 1741 1742
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1743

D
dzhwinter 已提交
1744
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1745
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1746
    dev_ctx->Wait();
1747 1748
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1749 1750
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1751
  }
C
chengduoZH 已提交
1752 1753

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1754
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1755
  }
1756 1757 1758 1759 1760 1761 1762

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1763
}
X
Xin Pan 已提交
1764

1765 1766 1767
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1768 1769 1770
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1781 1782 1783
      // when the Op that does not have GPUKernel is assigned to GPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
1784 1785
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1786
      if (SupportGPU()) {
1787
        auto& dev_ctx = ctx.device_context();
1788
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1789 1790
      }
#endif
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("npu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have NPUKernel is assigned to NPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
1810 1811 1812
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
1813
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1814 1815 1816
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
1817 1818
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
            << ") has no NPU implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("xpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have XPUKernel is assigned to XPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
#ifdef PADDLE_WITH_XPU
      if (SupportXPU()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no XPU implementation. It will be assigned to CPUPlace.";
1845 1846 1847
      }
    }
  }
C
cc 已提交
1848 1849
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1850 1851 1852
  return expected_kernel_key;
}

1853
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
1854
    const ExecutionContext& ctx) const {
1855 1856 1857
  kernel_signature_.reset(
      new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  VLOG(6) << *kernel_signature_.get();
1858 1859 1860 1861

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

1862 1863 1864 1865
  auto phi_kernel_name = kernel_signature_->name;
  auto phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
  phi_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      phi_kernel_name, phi_kernel_key)));
1866

1867 1868 1869 1870
  if (phi_kernel_->IsValid()) {
    VLOG(6) << "Static mode ChoosePhiKernel - kernel name: " << phi_kernel_name
            << " | kernel key: " << phi_kernel_key
            << " | kernel: " << *phi_kernel_;
1871
  } else {
1872
    VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << phi_kernel_name
1873 1874
            << "` not found.";
  }
1875
  return phi_kernel_key;
1876 1877 1878 1879 1880 1881 1882
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
1883 1884
      kernels_iter,
      all_op_kernels.end(),
1885 1886 1887 1888 1889 1890 1891
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1892 1893

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
1894

L
Liu Yiqun 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1904
#endif
1905 1906

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1907
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1908 1909 1910
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1911
    VLOG(3) << "fluid missing XPU kernel: " << type_
1912 1913 1914 1915 1916
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1917
#endif
L
Liu-xiandong 已提交
1918 1919

#ifdef PADDLE_WITH_XPU_KP
1920 1921 1922 1923 1924 1925 1926
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
1927
      VLOG(3) << "fluid xpu_kp using rt mode ";
1928 1929
    }
    if (use_xpu_kp_kernel_debug) {
1930
      VLOG(3) << "fluid xpu_kp using debug mode ";
1931 1932 1933
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
1934 1935
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
1936 1937
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
1938 1939 1940 1941 1942 1943 1944 1945 1946
      // if can't find corresponding kernel when is_xpu_kp_support is on
      // if the fluid do not register related kernel, it can't work and hava
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
1947
        VLOG(3) << "fluid using XPU KP kernel: " << type_
1948 1949
                << ", using_kernel_key:" << expected_kernel_key;
      }
1950 1951 1952 1953 1954 1955
    }
    bool is_xpu_unsupport =
        (!paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
         paddle::platform::is_in_xpu_black_list(type_));
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
1956
      VLOG(3) << "fluid missing XPU kernel: " << type_
1957 1958 1959 1960 1961
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
1962 1963 1964
  }
#endif

A
Allen Guo 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
1975 1976
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
1977
      platform::is_npu_place(expected_kernel_key.place_)) {
1978 1979 1980 1981 1982 1983
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1984 1985 1986
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
1987
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
1988 1989 1990
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
2002 2003 2004
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
2005
#endif
2006 2007 2008 2009 2010 2011
  PADDLE_ENFORCE_NE(
      kernel_iter,
      kernels.end(),
      platform::errors::NotFound("Operator (%s) does not have kernel for %s.",
                                 type_,
                                 KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
2012

2013 2014 2015 2016 2017
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
2018 2019
}

Y
yuyang18 已提交
2020
void OperatorWithKernel::TransferInplaceVarsBack(
2021 2022
    const Scope& scope,
    const std::vector<std::string>& inplace_vars,
Y
yuyang18 已提交
2023 2024
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
2025
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
2026
    auto* origin_var = scope.FindVar(var_name);
2027 2028 2029
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2030
    auto* original_tensor =
C
chengduo 已提交
2031
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
2032
    auto* var = transfer_scope.FindVar(var_name);
2033 2034 2035
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2036
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2037
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
2038
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
2039 2040 2041 2042 2043
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
2044 2045 2046
  }
}

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
2076
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
2096
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
2114
Scope* OperatorWithKernel::PrepareData(
2115 2116
    const Scope& scope,
    const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
2117 2118
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
2119
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
2120

2121
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
2122 2123 2124 2125
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
2126 2127
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
2128 2129 2130
    }
  }

2131 2132 2133 2134 2135 2136 2137 2138 2139
  const auto& name_map = Inputs();
  auto prepare_input_data = [&](const std::string& in_name,
                                std::vector<Variable*>* in_vars,
                                const phi::TensorArgDef* in_def,
                                bool should_skip_input) -> void {
    auto& name_vec = name_map.at(in_name);
    for (size_t i = 0; i < in_vars->size(); ++i) {
      const auto& var_name = name_vec[i];
      auto* var = in_vars->at(i);
X
Xin Pan 已提交
2140

Y
yuyang18 已提交
2141
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
2142
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
2143 2144 2145
        continue;
      }

C
chengduo 已提交
2146
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
2162
            (paddle::platform::MKLDNNDeviceContext::tls()
2163 2164
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC) &&
            (tensor_in->dims().size() >= 3)) {
2165 2166 2167 2168 2169
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
2170
          in_vars->at(i) = trans_var;
2171 2172
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
2173 2174
          platform::MatchShapeToLayout(
              out, tensor_in->layout(), DataLayout::kNHWC);
2175 2176
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
2177
                  << in_name << " in Operator " << type_;
2178
        } else {
2179 2180
          VLOG(7) << "Skip scanning input " << in_name << " in Operator "
                  << type_;
2181 2182 2183 2184 2185
        }
#endif
        continue;
      }

Y
yuyang18 已提交
2186 2187 2188 2189
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
      auto kernel_type_for_var =
          GetKernelTypeForVar(in_name, *tensor_in, expected_kernel_key);
      bool need_trans_dtype =
          kernel_type_for_var.data_type_ != expected_kernel_key.data_type_;
      bool need_trans_layout = NeedTransformLayout(
          kernel_type_for_var.data_layout_, expected_kernel_key.data_layout_);
      if (!need_trans_dtype && !need_trans_layout) {
        if (!run_phi_kernel_ &&
            platform::places_are_same_class(kernel_type_for_var.place_,
                                            expected_kernel_key.place_)) {
          continue;
        }
      }
Y
yuyang18 已提交
2203

2204 2205 2206 2207 2208
      std::unique_ptr<OpKernelType> new_expected_kernel_key = nullptr;
      if (run_phi_kernel_ && in_def->backend != phi::Backend::ALL_BACKEND) {
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if ((in_def->backend != tensor_backend &&
             (in_def->backend != phi::Backend::GPUDNN ||
2209 2210
              tensor_backend != phi::Backend::GPU) &&
             (in_def->backend != phi::Backend::KPS ||
2211 2212 2213
              tensor_backend != phi::Backend::XPU) &&
             (in_def->backend != phi::Backend::ONEDNN ||
              tensor_backend != phi::Backend::CPU)) ||
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
            tensor_in->place().GetType() == AllocationType::GPUPINNED) {
          new_expected_kernel_key = std::make_unique<OpKernelType>(
              expected_kernel_key.data_type_,
              phi::TransToPhiPlace(in_def->backend),
              expected_kernel_key.data_layout_,
              expected_kernel_key.library_type_,
              expected_kernel_key.customized_type_value_);
        }
      }

      if (!need_trans_dtype && !need_trans_layout) {
        if (run_phi_kernel_ && new_expected_kernel_key == nullptr) {
          continue;
        }
Y
yuyang18 已提交
2228 2229
      }

M
minqiyang 已提交
2230
      VLOG(3) << "Transform Variable " << var_name << " from "
2231 2232 2233
              << kernel_type_for_var << " to "
              << (new_expected_kernel_key ? *new_expected_kernel_key
                                          : expected_kernel_key);
Y
yuyang18 已提交
2234

2235 2236 2237
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
2238
      // We use a thread_local cache to fix that issue, the key in the cache is
2239 2240 2241 2242 2243
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
2244 2245
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
2246
      // variables, that behavior a lot different.
2247 2248 2249 2250 2251 2252
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
      if (!run_by_executor_) {
        if (new_expected_kernel_key) {
          if ((platform::is_gpu_place(kernel_type_for_var.place_) ||
               platform::is_gpu_place(new_expected_kernel_key->place_))) {
            new_scope = TryCreateTransferScope(
                kernel_type_for_var, *new_expected_kernel_key, &scope);
            enable_cache_transfer_scope_ = true;
          }
        } else if ((platform::is_gpu_place(kernel_type_for_var.place_) ||
                    platform::is_gpu_place(expected_kernel_key.place_))) {
          new_scope = TryCreateTransferScope(
              kernel_type_for_var, expected_kernel_key, &scope);
          enable_cache_transfer_scope_ = true;
        }
2267
      }
2268

2269
      if (!new_scope) {
Y
yuyang18 已提交
2270 2271
        new_scope = &scope.NewScope();
      }
2272 2273 2274 2275
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
2276
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
2277 2278
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
2279
      if (enable_cache_runtime_context_) {
2280 2281
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
2282 2283

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2284
      auto* trans_var = new_scope->Var(var_name);
2285
      in_vars->at(i) = trans_var;
L
Leo Chen 已提交
2286 2287 2288 2289 2290 2291 2292

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
2293
            VLOG(4) << "Found inplace between input(" << in_name
L
Leo Chen 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
2303
      Tensor out;
2304 2305 2306 2307 2308
      TransformData(new_expected_kernel_key ? *new_expected_kernel_key
                                            : expected_kernel_key,
                    kernel_type_for_var,
                    *tensor_in,
                    &out);
Y
yuyang18 已提交
2309 2310
      SetTensorToVariable(*var, out, trans_var);
    }
2311 2312 2313 2314
  };

  if (run_phi_kernel_) {
    const auto& input_names = kernel_signature_->input_names;
2315
    const auto& input_defs = phi_kernel_->args_def().input_defs();
2316 2317 2318 2319 2320 2321 2322 2323
    PADDLE_ENFORCE_EQ(input_names.size(),
                      input_defs.size(),
                      platform::errors::InvalidArgument(
                          "The size of inputs_args names (%d) must be equal to "
                          "the size of kernel input_defs (%d).",
                          input_names.size(),
                          input_defs.size()));
    for (size_t i = 0; i < input_defs.size(); ++i) {
2324
      const auto& input_defs = phi_kernel_->args_def().input_defs();
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
      auto& in_def = input_defs.at(i);
      std::string input_name = input_names[i];
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      auto& ins_vector = iter->second;
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      prepare_input_data(input_name, &ins_vector, &in_def, should_skip_input);
    }
  } else {
    for (auto& var_name_item : Inputs()) {
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

      std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];
      prepare_input_data(
          var_name_item.first, &input_vars, nullptr, should_skip_input);
    }
Y
yuyang18 已提交
2345
  }
L
Leo Chen 已提交
2346

2347 2348 2349 2350 2351 2352
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
2353 2354 2355 2356 2357 2358

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
2359 2360
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2361 2362 2363

  return new_scope;
}
Q
Qiao Longfei 已提交
2364

2365
void OperatorWithKernel::ParseInputDataType(
2366 2367
    const Variable* var,
    const std::string& name,
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
    const Tensor* t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      PADDLE_ENFORCE_EQ(
2387 2388
          t->IsInitialized(),
          true,
2389 2390
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
2391 2392
                                            Type(),
                                            name));
2393 2394 2395 2396 2397 2398
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2399 2400
    const std::vector<Variable*>& vars,
    const std::string& name,
2401
    proto::VarType::Type* data_type) const {
2402
  proto::VarType::Type default_data_type =
2403 2404 2405 2406 2407 2408 2409 2410 2411
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
2412 2413
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2414
      } else if (var->IsType<LoDTensorArray>()) {
2415 2416 2417 2418
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2419 2420
          }
        }
2421 2422
      }
      if (t != nullptr) {
2423
        PADDLE_ENFORCE_EQ(
2424 2425
            t->IsInitialized(),
            true,
2426 2427
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
2428 2429
                                              Type(),
                                              name));
2430 2431
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2432 2433 2434 2435 2436 2437 2438
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
2439 2440 2441
                           Type(),
                           name,
                           DataTypeToString(tmp),
2442
                           DataTypeToString(*data_type)));
2443 2444 2445 2446 2447 2448
        *data_type = tmp;
      }
    }
  }
}

2449
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2450
    const ExecutionContext& ctx) const {
2451 2452 2453
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2454 2455 2456 2457 2458 2459
  for (auto* name : ctx.InNameList()) {
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2460
  }
2461
  PADDLE_ENFORCE_NE(
2462 2463
      data_type,
      dafault_data_type,
2464 2465
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2466 2467 2468 2469 2470 2471 2472 2473
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2474 2475 2476 2477 2478
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2479
  PADDLE_ENFORCE_NE(
2480 2481
      data_type,
      dafault_data_type,
2482 2483 2484 2485
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
2486 2487
          name,
          Type()));
2488
  return data_type;
Y
Yu Yang 已提交
2489
}
2490

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
2509 2510
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2511 2512 2513 2514 2515 2516 2517 2518
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
2519 2520
  PADDLE_ENFORCE_EQ(t->IsInitialized(),
                    true,
2521 2522 2523
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
2524 2525 2526
                        Type(),
                        name,
                        ctx.InputName(name)));
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
2538 2539
    const ExecutionContext& ctx,
    const std::string& name1,
2540 2541 2542 2543 2544 2545
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2546 2547
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2548 2549 2550 2551 2552 2553 2554

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2555 2556 2557 2558 2559 2560
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
2561 2562
    const std::string& var_name,
    const Tensor& tensor,
2563
    const OpKernelType& expected_kernel_type) const {
2564 2565
  return OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
2566 2567
}

2568
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2569
    const ExecutionContext& ctx) const {
2570
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2571
  if (arg_map_fn_ == nullptr) {
2572 2573 2574 2575
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2576 2577 2578
      auto func =
          [this](
              const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2579 2580 2581 2582
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2583 2584
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2585 2586
}

2587
void OperatorWithKernel::BuildPhiKernelContext(
2588 2589
    const RuntimeContext& ctx,
    platform::DeviceContext* dev_ctx,
2590 2591
    phi::KernelContext* phi_kernel_context) const {
  phi_kernel_context->SetDeviceContext(dev_ctx);
2592

2593 2594 2595
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
2596

2597 2598 2599
  auto input_defs = phi_kernel_->args_def().input_defs();
  auto attr_defs = phi_kernel_->args_def().attribute_defs();
  auto output_defs = phi_kernel_->args_def().output_defs();
2600

2601 2602
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
2603 2604 2605
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
2606 2607
                        input_names.size(),
                        input_defs.size()));
2608

2609 2610
  PADDLE_ENFORCE_EQ(output_names.size(),
                    output_defs.size(),
2611 2612 2613
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
2614 2615
                        output_names.size(),
                        output_defs.size()));
2616

2617 2618
  PADDLE_ENFORCE_EQ(attr_names.size(),
                    attr_defs.size(),
2619 2620 2621
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
2622 2623
                        attr_names.size(),
                        attr_defs.size()));
2624 2625

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2626
    auto it = ctx.inputs.find(input_names[i]);
2627 2628 2629

    // calcute the start and end index of the input tensors
    size_t start_idx =
2630
        (i == 0 ? 0 : phi_kernel_context->InputRangeAt(i - 1).second);
H
hong 已提交
2631
    // deal with optional here
2632
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
2633
        (input_defs[i].type_index ==
2634
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
2635
         input_defs[i].type_index ==
2636
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
2637
         input_defs[i].type_index ==
2638 2639
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
2640
      phi_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
H
hong 已提交
2641
      auto end_idx = start_idx + 1;
2642 2643
      phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                           i);
2644

H
hong 已提交
2645 2646 2647 2648
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2649
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2650
      const phi::TensorBase* tensor_in = nullptr;
2651
      auto* var = ins_vector[offset];
H
hong 已提交
2652 2653
      if (var->IsType<framework::LoDTensor>()) {
        tensor_in = &(var->Get<framework::LoDTensor>());
2654
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2655 2656
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
2657
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2658
      } else if (var->IsType<framework::LoDTensorArray>()) {
2659
        need_prepare_phi_data_ = true;
C
Chen Weihang 已提交
2660
        paddle::small_vector<const phi::TensorBase*> tensor_vector;
2661 2662 2663 2664
        auto& tensor_array = var->Get<framework::LoDTensorArray>();
        for (auto& t : tensor_array) {
          tensor_vector.emplace_back(&t);
        }
2665
        phi_kernel_context->EmplaceBackInputsWithoutSetRange(tensor_vector);
2666
        end_idx += tensor_array.size() - 1;
2667 2668 2669 2670
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2671
      }
2672
    }
2673
    // Note: here cannot deal with vector<LoDTensorArray> input
2674
    phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2675
  }
2676
  VLOG(4) << "Done inputs";
2677 2678

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2679
    auto it = ctx.outputs.find(output_names[i]);
2680
    size_t start_idx =
2681
        (i == 0 ? 0 : phi_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2682 2683 2684 2685 2686 2687

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
2688
      phi_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
H
hong 已提交
2689
      auto end_idx = start_idx + 1;
2690 2691
      phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                            i);
H
hong 已提交
2692 2693 2694 2695
      continue;
    }
    auto& outs_vector = it->second;

2696
    size_t end_idx = start_idx + outs_vector.size();
2697 2698

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2699
      phi::TensorBase* tensor_out = nullptr;
2700
      auto* var = outs_vector[offset];
2701 2702 2703
      if (var) {
        if (var->template IsType<framework::LoDTensor>()) {
          tensor_out = var->template GetMutable<framework::LoDTensor>();
2704
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2705 2706
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
2707
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2708
        } else if (var->template IsType<framework::LoDTensorArray>()) {
C
Chen Weihang 已提交
2709
          paddle::small_vector<phi::TensorBase*> tensor_vector;
2710 2711 2712 2713 2714 2715 2716
          auto* tensor_array =
              var->template GetMutable<framework::LoDTensorArray>();
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
          for (auto& t : *tensor_array) {
            tensor_vector.emplace_back(&t);
          }
2717
          phi_kernel_context->EmplaceBackOutputsWithoutSetRange(tensor_vector);
2718
          end_idx += tensor_array->size() - 1;
2719 2720 2721 2722 2723
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
2724
      } else {
2725
        phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2726
      }
2727
    }
2728 2729
    phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
2730
  }
2731
  VLOG(4) << "Done outputs";
2732 2733

  for (size_t i = 0; i < attr_names.size(); ++i) {
2734 2735
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
2736 2737
    // attribute with Variable type has been placed into Inputs(), and
    // we can parse them from RuntimeContext.inputs.
2738 2739 2740 2741 2742 2743 2744
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
2745
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
2746
                  phi::Scalar(PADDLE_GET_CONST(float, attr_iter->second))));
2747 2748
              break;
            case proto::AttrType::INT:
2749
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
2750
                  phi::Scalar(PADDLE_GET_CONST(int, attr_iter->second))));
2751 2752
              break;
            case proto::AttrType::STRING:
2753
              phi_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
R
Ruibiao Chen 已提交
2754
                  PADDLE_GET_CONST(std::string, attr_iter->second))));
2755
              break;
2756 2757 2758 2759
            case proto::AttrType::BOOLEAN:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(bool, attr_iter->second))));
              break;
2760 2761 2762 2763 2764 2765 2766
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
2767
          need_prepare_phi_data_ = true;
2768
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
2769
          phi_kernel_context->EmplaceBackAttr(std::move(
2770
              experimental::MakePhiScalarFromVar(*ins_vector.front())));
2771
        }
2772 2773 2774 2775 2776
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
2777
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2778
                  PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second))));
2779 2780
              break;
            case proto::AttrType::LONGS:
2781
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2782
                  PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second))));
2783 2784
              break;
            case proto::AttrType::INT:
2785
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2786
                  &PADDLE_GET_CONST(int32_t, attr_iter->second), 1)));
2787 2788
              break;
            case proto::AttrType::LONG:
2789
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2790
                  &PADDLE_GET_CONST(int64_t, attr_iter->second), 1)));
2791 2792 2793 2794 2795 2796 2797 2798
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
2799
          need_prepare_phi_data_ = true;
2800 2801
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
2802
            phi_kernel_context->EmplaceBackAttr(std::move(
2803 2804
                experimental::MakePhiIntArrayFromVar(*ins_vector.front())));
          } else {  // ShapeTensorList
2805
            phi_kernel_context->EmplaceBackAttr(std::move(
2806 2807
                experimental::MakePhiIntArrayFromVarList(ins_vector)));
          }
2808
        }
2809 2810 2811
        break;
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
2812 2813
            attr_iter,
            Attrs().end(),
2814 2815 2816 2817 2818 2819
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2820
                PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second);
2821 2822 2823 2824 2825
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2826
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2827 2828 2829
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2830
                PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second);
2831 2832 2833 2834 2835
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2836
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2837 2838 2839
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2840
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second);
2841 2842 2843 2844 2845
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2846
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2847 2848 2849
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
R
Ruibiao Chen 已提交
2850
                PADDLE_GET_CONST(std::vector<double>, attr_iter->second);
2851 2852 2853 2854 2855
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2856
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2857 2858 2859
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2860
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second);
2861 2862 2863 2864 2865
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2866
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2867 2868 2869 2870 2871
          } break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
2872 2873
                attr_names[i]));
        }
2874 2875 2876
      } break;
      default: {
        PADDLE_ENFORCE_NE(
2877 2878
            attr_iter,
            Attrs().end(),
2879 2880 2881 2882 2883
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
2884
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2885
                PADDLE_GET_CONST(float, attr_iter->second));
2886 2887
            break;
          case phi::AttributeType::INT32:
2888
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2889
                PADDLE_GET_CONST(int, attr_iter->second));
2890 2891
            break;
          case phi::AttributeType::BOOL:
2892
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2893
                PADDLE_GET_CONST(bool, attr_iter->second));
2894 2895
            break;
          case phi::AttributeType::INT64:
2896
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2897
                PADDLE_GET_CONST(int64_t, attr_iter->second));
2898 2899
            break;
          case phi::AttributeType::INT32S:
2900
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2901
                PADDLE_GET_CONST(std::vector<int>, attr_iter->second));
2902 2903 2904 2905
            break;
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
2906
                    PADDLE_GET_CONST(int, attr_iter->second)));
2907
            phi_kernel_context->EmplaceBackAttr(data_type);
2908 2909
          } break;
          case phi::AttributeType::STRING:
2910
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2911
                std::move(PADDLE_GET_CONST(std::string, attr_iter->second)));
2912 2913 2914 2915
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
2916
                phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2917
                    PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second));
2918 2919 2920
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
R
Ruibiao Chen 已提交
2921
                    PADDLE_GET_CONST(std::vector<int>, attr_iter->second);
2922 2923
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
2924
                phi_kernel_context->EmplaceBackAttr(vector_int64_attr);
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
2935
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2936
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second));
2937 2938
            break;
          case phi::AttributeType::STRINGS:
2939
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2940
                PADDLE_GET_CONST(std::vector<std::string>, attr_iter->second));
2941 2942 2943 2944 2945 2946
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
2947
        }
2948 2949 2950
      }
    }
  }
2951
  VLOG(4) << "Done attributes";
2952 2953
}

Q
Qiao Longfei 已提交
2954
}  // namespace framework
L
liaogang 已提交
2955
}  // namespace paddle