math.py 186.9 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20 21 22 23 24 25
from paddle.common_ops_import import VarDesc
from paddle.common_ops_import import dygraph_only
from paddle.common_ops_import import OpProtoHolder
from paddle.common_ops_import import templatedoc
from paddle.common_ops_import import dygraph_utils

26 27 28 29
from .manipulation import cast
from .creation import _complex_to_real_dtype
from .layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn

30
import paddle
31
from ..static import Variable
32
from ..framework import core, in_dygraph_mode, _non_static_mode, LayerHelper, _in_legacy_dygraph
33
from ..fluid.framework import _in_legacy_dygraph
Z
zhiboniu 已提交
34
from ..framework import _varbase_creator, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
35
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
36
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
37
from ..fluid.layers import utils
38 39

# TODO: define math functions
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
from .ops import abs  # noqa: F401
from .ops import acos  # noqa: F401
from .ops import asin  # noqa: F401
from .ops import ceil  # noqa: F401
from .ops import ceil_  # noqa: F401
from .ops import cos  # noqa: F401
from .ops import tan  # noqa: F401
from .ops import sinh  # noqa: F401
from .ops import cosh  # noqa: F401
from .ops import exp  # noqa: F401
from .ops import exp_  # noqa: F401
from .ops import expm1  # noqa: F401
from .ops import floor  # noqa: F401
from .ops import floor_  # noqa: F401
from .ops import reciprocal  # noqa: F401
from .ops import reciprocal_  # noqa: F401
from .ops import round  # noqa: F401
from .ops import round_  # noqa: F401
from .ops import rsqrt  # noqa: F401
from .ops import rsqrt_  # noqa: F401
from .ops import square  # noqa: F401
from .ops import atan  # noqa: F401
from .ops import erf  # noqa: F401
from .ops import sqrt  # noqa: F401
from .ops import sqrt_  # noqa: F401
from .ops import sin  # noqa: F401
from .ops import asinh  # noqa: F401
from .ops import acosh  # noqa: F401
from .ops import atanh  # noqa: F401
69

Z
zhiboniu 已提交
70
from ..fluid.layers import elementwise_sub
71
from paddle import _C_ops, _legacy_C_ops
72

73 74
__all__ = []

75 76 77 78 79 80 81 82 83 84 85 86 87
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

88

89 90
def log(x, name=None):
    r"""
C
Chen Long 已提交
91
    Calculates the natural log of the given input Tensor, element-wise.
92 93 94

    .. math::

95
        Out = \ln(x)
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

            import paddle

            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
    """
    if in_dygraph_mode():
        return _C_ops.log(x)
118 119
    if _in_legacy_dygraph():
        return _legacy_C_ops.log(x)
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log")
    inputs = {'X': [x]}
    helper = LayerHelper('log', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
    return out


def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
147 148 149 150 151 152
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
        scale (float|Tensor): The scale factor of the input, it should be a float number or a Tensor with shape [1] and data type as float32.
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
153 154

    Returns:
C
Chen Long 已提交
155
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
156 157 158

    Examples:
        .. code-block:: python
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
            # scale as a float32 number
            import paddle

            data = paddle.randn(shape=[2,3], dtype='float32')
            res = paddle.scale(data, scale=2.0, bias=1.0)

        .. code-block:: python

            # scale with parameter scale as a Tensor
            import paddle

            data = paddle.randn(shape=[2, 3], dtype='float32')
            factor = paddle.to_tensor([2], dtype='float32')
            res = paddle.scale(data, scale=factor, bias=1.0)

    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
178 179 180
        out = _C_ops.scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out, act)
    elif _in_legacy_dygraph():
181
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
182 183 184
        out = _legacy_C_ops.scale(x, 'scale', float(_scale), 'bias',
                                  float(bias), 'bias_after_scale',
                                  bias_after_scale)
W
wanghuancoder 已提交
185
        return dygraph_utils._append_activation_in_dygraph(out, act)
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

    check_variable_and_dtype(x, "x", [
        'float16', 'uint16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], "scale")
    inputs = {'X': [x]}
    attrs = {
        'bias': float(bias),
        'bias_after_scale': bias_after_scale,
    }
    if isinstance(scale, Variable):
        inputs['ScaleTensor'] = [scale]
    else:
        attrs['scale'] = float(scale)
    helper = LayerHelper('scale', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

203 204 205 206
    helper.append_op(type='scale',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
207 208 209 210 211 212 213 214 215
    return helper.append_activation(out)


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
    """
    stanh activation.

    .. math::

216
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463]

    """

    if _non_static_mode():
239
        return _legacy_C_ops.stanh(x, 'scale_a', scale_a, 'scale_b', scale_b)
240 241 242 243 244

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'stanh')

    helper = LayerHelper('stanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
245 246 247 248 249 250 251
    helper.append_op(type='stanh',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'scale_a': scale_a,
                         'scale_b': scale_b
                     })
252 253
    return out

254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
286
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
287

288 289 290 291 292 293 294 295
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

            import paddle
296

297 298 299 300
            img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            inputs = [img1, img2]
            index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
301
            res = paddle.multiplex(inputs, index)
302
            print(res) # Tensor([[5., 6.], [3., 4.]], dtype=float32)
303 304

    """
305 306 307
    if in_dygraph_mode():
        return _C_ops.multiplex(inputs, index)
    elif _in_legacy_dygraph():
308
        return _legacy_C_ops.multiplex(index, inputs)
309

310 311 312 313 314 315 316 317 318 319 320 321 322
    helper = LayerHelper('multiplex', **locals())

    check_type(inputs, 'inputs', (list), 'multiplex')
    if len(inputs) < 2:
        raise ValueError(
            "inputs should be a list object with at least 2 elements.")
    for id, x in enumerate(inputs):
        check_variable_and_dtype(x, 'input[' + str(id) + ']',
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'multiplex')
    check_variable_and_dtype(index, "index", ['int32', 'int64'], 'multiplex')

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
323 324 325 326 327 328
    helper.append_op(type='multiplex',
                     inputs={
                         'X': inputs,
                         'Ids': index
                     },
                     outputs={'Out': [out]})
329 330
    return out

331

332 333 334 335 336 337
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
338
    if in_dygraph_mode():
339
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
340 341
    if _in_legacy_dygraph():
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
342 343 344
        return _legacy_C_ops.scale_(x, 'scale', float(_scale), 'bias',
                                    float(bias), 'bias_after_scale',
                                    bias_after_scale)
345 346


347
def pow(x, y, name=None):
348
    """
C
Chen Long 已提交
349
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
350

351
    .. math::
352
        out = x^{y}
353

354 355
    Note:
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
356 357


358
    Args:
359
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
360
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
361
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
362

363
    Returns:
364
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
365 366 367

    Examples:

368
        ..  code-block:: python
369 370 371

            import paddle

372 373 374 375 376 377 378 379 380 381 382 383
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

384
            # example 2: y is a Tensor
385
            y = paddle.to_tensor([2], dtype='float32')
386
            res = paddle.pow(x, y)
387 388 389
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
390 391

    """
392
    # in dynamic graph mode
393
    if in_dygraph_mode():
394
        if isinstance(y, (int, float)):
395
            return _C_ops.pow(x, y)
396
        elif isinstance(y, (paddle.Tensor, Variable)):
397
            return _C_ops.elementwise_pow(x, y)
398
        else:
399 400 401
            raise TypeError(
                'y must be scalar or tensor type, but received: %s ' %
                (y.dtype))
402
    if _in_legacy_dygraph():
403
        if isinstance(y, (int, float)):
404
            return _legacy_C_ops.pow(x, 'factor', y)
405
        elif isinstance(y, (paddle.Tensor, Variable)):
406 407 408 409 410
            return _elementwise_op_in_dygraph(x,
                                              y,
                                              axis=-1,
                                              act=None,
                                              op_name='elementwise_pow')
411
        else:
412 413 414
            raise TypeError(
                'y must be scalar or tensor type, but received: %s ' %
                (y.dtype))
415 416 417 418 419 420
    # in static graph mode
    if isinstance(y, (int, float)):
        helper = LayerHelper('pow', **locals())
        inputs = {'X': x}
        attrs = {'factor': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
421 422 423 424
        helper.append_op(type='pow',
                         inputs=inputs,
                         outputs={'Out': out},
                         attrs=attrs)
425 426 427 428 429 430 431
        return out
    elif isinstance(y, (paddle.Tensor, Variable)):
        # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
        helper = LayerHelper('elementwise_pow', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
    else:
432 433
        raise TypeError('y must be scalar or tensor type, but received: %s ' %
                        (type(y)))
434 435


436
OP_NAMEMAPPING = {
437 438 439 440 441 442 443 444
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
445
    'elementwise_mod': 'remainder',
446
}
447

448

449 450 451 452 453 454 455
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
456

457
    def is_inplace(op_name):
458
        return op_name[-1] == "_"
459

460
    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
461
        op = getattr(_legacy_C_ops, op_name)
462
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
W
wanghuancoder 已提交
463 464
    else:
        if in_dygraph_mode():
465 466 467
            op = getattr(
                _C_ops,
                OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name)
W
wanghuancoder 已提交
468 469 470
            out = op(x, y)

        if _in_legacy_dygraph():
471
            op = getattr(_legacy_C_ops, op_name)
W
wanghuancoder 已提交
472
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
473

474 475 476 477
    return dygraph_utils._append_activation_in_dygraph(out,
                                                       act,
                                                       use_mkldnn=use_mkldnn)

478 479 480 481 482 483 484

def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

485 486
    out = helper.kwargs.get('out', None)

487 488 489
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
490
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
491 492
        original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
493
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
494 495 496 497 498
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
499 500 501 502 503

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
504 505 506 507 508 509 510 511 512 513 514 515 516 517
            out = helper.create_variable(name=name,
                                         dtype=x.dtype,
                                         persistable=False)

    helper.append_op(type=op_type,
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs={
                         'axis': axis,
                         'use_mkldnn': use_mkldnn
                     })
518 519 520
    return helper.append_activation(out)


Y
Yang Zhang 已提交
521
def add(x, y, name=None):
522
    """
523 524 525 526 527 528 529 530
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

531 532
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
533 534

    There are two cases for this operator:
535 536 537 538

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

539
    For case 2:
540 541 542 543

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
    2. If $axis$ is -1 (default), $axis$=rank($X$)−rank($Y$).
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
544 545 546 547

        For example:

        ..  code-block:: python
548

549 550 551 552 553 554
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
555

556
    Args:
557 558 559
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
560 561

    Returns:
562
        N-D Tensor. A location into which the result is stored. It’s dimension equals with x.
563 564 565 566

    Examples:

        ..  code-block:: python
567

568
            import paddle
569

570 571 572 573
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.to_tensor([1, 5, 2], 'float64')
            z = paddle.add(x, y)
            print(z)  # [3., 8., 6. ]
574
    """
575

J
Jiabin Yang 已提交
576
    if in_dygraph_mode():
577
        return _C_ops.add(x, y)
J
Jiabin Yang 已提交
578 579
    else:
        if _in_legacy_dygraph():
580
            return _legacy_C_ops.elementwise_add(x, y)
J
Jiabin Yang 已提交
581 582
        else:
            return _elementwise_op(LayerHelper('elementwise_add', **locals()))
583 584


585 586 587 588 589 590 591 592 593 594 595
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """
    op_type = 'elementwise_add_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
596 597 598
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation."
            .format(out_shape, x.shape))
599

600
    if in_dygraph_mode():
601
        return _C_ops.add_(x, y)
602
    else:
603
        out = _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type)
604
        return out
605 606


607 608
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
609
    Substract two tensors element-wise. The equation is:
610 611 612 613

    .. math::
        out = x - y

614 615
    Note:
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
616 617 618 619 620 621 622 623 624 625 626 627

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
628

629 630 631 632 633 634
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
635 636 637
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[-4, -4],
            #         [ 4,  4]])
638 639 640 641 642

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
643 644 645
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[ 0,  2, -1],
            #          [ 0,  2, -1]]])
646

647 648
            x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
649 650
            res = paddle.subtract(x, y)
            print(res)
651 652
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
653

654
            x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
655 656 657
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
658 659
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 4.  ,  inf., -inf.])
660 661 662 663
    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
J
Jiabin Yang 已提交
664
    if in_dygraph_mode():
665
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
666 667
    else:
        if _in_legacy_dygraph():
668 669 670 671 672
            return _elementwise_op_in_dygraph(x,
                                              y,
                                              axis=axis,
                                              act=act,
                                              op_name=op_type)
J
Jiabin Yang 已提交
673 674
        else:
            return _elementwise_op(LayerHelper(op_type, **locals()))
675 676


677 678 679 680 681 682 683 684 685 686 687
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """
    axis = -1
    act = None

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
688 689 690
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation."
            .format(out_shape, x.shape))
691

692
    if in_dygraph_mode():
693
        return _C_ops.subtract_(x, y)
694
    else:
695 696 697 698 699
        out = _elementwise_op_in_dygraph(x,
                                         y,
                                         axis=axis,
                                         act=act,
                                         op_name='elementwise_sub_')
700
        return out
701 702


703
def divide(x, y, name=None):
704
    """
705
    Divide two tensors element-wise. The equation is:
706

707 708
    .. math::
        out = x / y
709

710 711
    Note:
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
712

713 714 715 716
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
717

718
    Returns:
719
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
720

721
    Examples:
722

723
        ..  code-block:: python
724

725
            import paddle
726

727 728
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
729
            z = paddle.divide(x, y)
730
            print(z)  # [2., 0.6, 2.]
731

732 733 734 735
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
J
Jiabin Yang 已提交
736
    if in_dygraph_mode():
737
        return _C_ops.divide(x, y)
J
Jiabin Yang 已提交
738 739
    else:
        if _in_legacy_dygraph():
740 741 742 743 744
            return _elementwise_op_in_dygraph(x,
                                              y,
                                              axis=axis,
                                              act=act,
                                              op_name=op_type)
J
Jiabin Yang 已提交
745 746
        else:
            return _elementwise_op(LayerHelper(op_type, **locals()))
747 748


749 750
def floor_divide(x, y, name=None):
    """
L
Lin Manhui 已提交
751
    Floor divide two tensors element-wise and rounds the quotinents to the nearest integer toward zero. The equation is:
752

753
    .. math::
L
Lin Manhui 已提交
754
        out = trunc(x / y)
755

756 757
    Note:
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
L
Lin Manhui 已提交
758
        Also note that the name ``floor_divide`` can be misleading, as the quotinents are actually rounded toward zero, not toward negative infinite.
759

760 761 762 763
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
764

765 766
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
767

768
    Examples:
769

770
        ..  code-block:: python
771

772
            import paddle
773

774 775
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
776
            z = paddle.floor_divide(x, y)
777
            print(z)  # [2, 0, 2, 2]
778

779 780 781
    """
    op_type = 'elementwise_floordiv'
    axis = -1
782 783 784
    if in_dygraph_mode():
        return _C_ops.floor_divide(x, y)
    elif _in_legacy_dygraph():
785
        return _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type)
786

787
    return _elementwise_op(LayerHelper(op_type, **locals()))
788 789


790
def remainder(x, y, name=None):
791
    r"""
792 793 794
    Mod two tensors element-wise. The equation is:

    .. math::
795

796 797
        out = x \% y

798 799
    Note:
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
800 801

    Args:
802 803
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
804 805 806
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
807
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
808 809 810 811 812 813 814

    Examples:

        ..  code-block:: python

            import paddle

815 816
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
817
            z = paddle.remainder(x, y)
W
WangXi 已提交
818
            print(z)  # [0, 3, 2, 1]
819 820 821

    """
    op_type = 'elementwise_mod'
822
    axis = -1
823 824 825 826

    if in_dygraph_mode():
        return _C_ops.remainder(x, y)
    elif _in_legacy_dygraph():
827
        return _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type)
828 829 830 831

    return _elementwise_op(LayerHelper(op_type, **locals()))


832 833 834 835 836 837 838 839 840 841 842 843
@inplace_apis_in_dygraph_only
def remainder_(x, y, name=None):
    r"""
    Inplace version of ``remainder`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_remainder`.
    """
    op_type = 'elementwise_mod_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
844 845
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation."
            .format(out_shape, x.shape))
846 847 848 849

    return _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type)


850 851
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
852 853


854
def multiply(x, y, name=None):
855
    """
856
    multiply two tensors element-wise. The equation is:
857

858 859
    .. math::
        out = x * y
860

861 862
    Note:
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.
863

864
    Args:
W
will-jl944 已提交
865 866
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
867
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
868

869
    Returns:
870
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
871

872 873 874 875 876 877
    Examples:

        ..  code-block:: python

            import paddle

878 879
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
880
            res = paddle.multiply(x, y)
881
            print(res) # [[5, 12], [21, 32]]
882

883
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
884 885 886
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
887 888 889 890

    """
    op_type = 'elementwise_mul'
    act = None
891
    axis = -1
892

J
Jiabin Yang 已提交
893
    if in_dygraph_mode():
894
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
895 896
    else:
        if _in_legacy_dygraph():
897 898 899 900 901
            return _elementwise_op_in_dygraph(x,
                                              y,
                                              axis=axis,
                                              act=act,
                                              op_name=op_type)
J
Jiabin Yang 已提交
902 903 904 905 906
        else:
            if x.dtype != y.dtype:
                raise TypeError(
                    'Input tensors must be same type, but received type of x: %s, type of y: %s '
                    % (x.dtype, y.dtype))
907

J
Jiabin Yang 已提交
908
            return _elementwise_op(LayerHelper(op_type, **locals()))
909

910

911
def maximum(x, y, name=None):
912
    """
W
Wei Shengyu 已提交
913
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
914

915 916
    .. math::
        out = max(x, y)
917

918 919
    Note:
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [ 2., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [  5.,   3., inf.]
961 962
    """
    op_type = 'elementwise_max'
963
    axis = -1
964
    act = None
965 966 967
    if in_dygraph_mode():
        return _C_ops.maximum(x, y)
    elif _in_legacy_dygraph():
968 969 970 971 972
        return _elementwise_op_in_dygraph(x,
                                          y,
                                          axis=axis,
                                          act=act,
                                          op_name=op_type)
973 974
    return _elementwise_op(LayerHelper(op_type, **locals()))

975

976
def minimum(x, y, name=None):
977
    """
C
Chen Long 已提交
978
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
979

980 981
    .. math::
        out = min(x, y)
982

983 984
    Note:
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
985 986 987 988 989 990 991

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
992
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.minimum(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.minimum(x, y)
            print(res)
            #       [   1., -inf.,    5.]
1026 1027
    """
    op_type = 'elementwise_min'
1028
    axis = -1
1029
    act = None
1030 1031 1032
    if in_dygraph_mode():
        return _C_ops.minimum(x, y)
    elif _in_legacy_dygraph():
1033 1034 1035 1036 1037
        return _elementwise_op_in_dygraph(x,
                                          y,
                                          axis=axis,
                                          act=act,
                                          op_name=op_type)
1038
    return _elementwise_op(LayerHelper(op_type, **locals()))
1039

1040

L
LJQ❤️ 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

1050 1051
    Note:
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
L
LJQ❤️ 已提交
1052 1053

    Args:
1054 1055
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.fmax(x, y)
            print(res)
            #    [ 2., 3., 5.]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.fmax(x, y)
            print(res)
            #    [  5.,   3., inf.]
    """
    op_type = 'elementwise_fmax'
    axis = -1
    act = None
1097
    if in_dygraph_mode():
1098
        return _C_ops.fmax(x, y, axis)
1099
    if _in_legacy_dygraph():
1100 1101 1102 1103 1104
        return _elementwise_op_in_dygraph(x,
                                          y,
                                          axis=axis,
                                          act=act,
                                          op_name=op_type)
L
LJQ❤️ 已提交
1105 1106
    return _elementwise_op(LayerHelper(op_type, **locals()))

1107

L
LJQ❤️ 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116
def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1117 1118
    Note:
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
L
LJQ❤️ 已提交
1119 1120

    Args:
1121 1122
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.fmin(x, y)
            print(res)
            #       [ 1., 3., 5.]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.fmin(x, y)
            print(res)
            #       [   1., -inf.,    5.]
    """
    op_type = 'elementwise_fmin'
    axis = -1
    act = None
1164
    if in_dygraph_mode():
1165
        return _C_ops.fmin(x, y, axis)
1166
    if _in_legacy_dygraph():
1167 1168 1169 1170 1171
        return _elementwise_op_in_dygraph(x,
                                          y,
                                          axis=axis,
                                          act=act,
                                          op_name=op_type)
L
LJQ❤️ 已提交
1172 1173
    return _elementwise_op(LayerHelper(op_type, **locals()))

Y
Yang Zhang 已提交
1174

1175
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1176 1177 1178 1179
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1180
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1181 1182
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1183
            Tensor with a single element, otherwise must be in the
1184 1185 1186 1187 1188 1189 1190
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1191
            value is False.
1192
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1193 1194

    Returns:
1195
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1196
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`,
1197
        otherwise it's data type is the same as `x`.
1198 1199 1200 1201 1202

    Examples:
        .. code-block:: python

            import paddle
1203

1204
            # x is a Tensor with following elements:
1205 1206 1207
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
1208 1209
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1210
            out1 = paddle.sum(x)  # [3.5]
1211 1212 1213
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
1214

1215
            # y is a Tensor with shape [2, 2, 2] and elements as below:
1216 1217 1218
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
1219
            y = paddle.to_tensor([[[1, 2], [3, 4]],
1220
                                  [[5, 6], [7, 8]]])
1221 1222
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
1223

1224 1225 1226 1227 1228 1229 1230 1231 1232
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
            out7 = paddle.sum(x)  # [4]
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
1233
    """
1234 1235 1236 1237 1238
    if isinstance(axis, Variable):
        reduce_all_flag = True if axis.shape[0] == len(x.shape) else False
    else:
        if axis is not None and not isinstance(axis, (list, tuple)):
            axis = [axis]
1239

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
        if not axis:
            axis = []

        if len(axis) == 0:
            reduce_all_flag = True
        else:
            if len(axis) == len(x.shape):
                reduce_all_flag = True
            else:
                reduce_all_flag = False
1250

1251 1252 1253 1254
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1255 1256

    if in_dygraph_mode():
1257
        return _C_ops.sum(x, axis, dtype, keepdim)
F
From00 已提交
1258

1259 1260 1261 1262
    if not isinstance(axis, Variable):
        axis = axis if axis != None and axis != [] and axis != () else [0]
        if utils._contain_var(axis):
            axis = utils._convert_to_tensor_list(axis)
1263

F
From00 已提交
1264
    if _in_legacy_dygraph():
1265
        if dtype_flag:
1266
            return _legacy_C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
1267 1268 1269
                                            'reduce_all', reduce_all_flag,
                                            'in_dtype', x.dtype, 'out_dtype',
                                            dtype)
1270
        else:
1271
            return _legacy_C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
1272
                                            'reduce_all', reduce_all_flag)
W
wanghuancoder 已提交
1273

1274
    attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all_flag}
W
wanghuancoder 已提交
1275

1276
    if dtype_flag:
1277
        attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype})
W
wanghuancoder 已提交
1278

1279 1280 1281 1282 1283
    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'complex64', 'complex128', u'bool', u'float16', u'float32', u'float64',
        u'int32', u'int64', u'complex64', u'complex128'
    ], 'sum')
1284

1285
    check_type(axis, 'axis', (int, list, tuple, type(None), Variable), 'sum')
1286

1287 1288
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
1289
        out = helper.create_variable_for_type_inference(dtype=dtype)
1290
    else:
1291
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1292 1293 1294 1295
    helper.append_op(type='reduce_sum',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs=attrs)
1296
    return out
1297

1298

W
wangguanqun 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1316
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            # x is a Tensor with following elements:
            #    [[nan, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, -nan, 0.7]]
            # Each example is followed by the corresponding output tensor.
            x = np.array([[float('nan'), 0.3, 0.5, 0.9],
                            [0.1, 0.2, float('-nan'), 0.7]]).astype(np.float32)
            x = paddle.to_tensor(x)
            out1 = paddle.nansum(x)  # [2.7]
            out2 = paddle.nansum(x, axis=0)  # [0.1, 0.5, 0.5, 1.6]
            out3 = paddle.nansum(x, axis=-1)  # [1.7, 1.0]
            out4 = paddle.nansum(x, axis=1, keepdim=True)  # [[1.7], [1.0]]

            # y is a Tensor with shape [2, 2, 2] and elements as below:
            #      [[[1, nan], [3, 4]],
            #      [[5, 6], [-nan, 8]]]
            # Each example is followed by the corresponding output tensor.
1343
            y = np.array([[[1, float('nan')], [3, 4]],
W
wangguanqun 已提交
1344 1345 1346 1347 1348
                            [[5, 6], [float('-nan'), 8]]])
            y = paddle.to_tensor(y)
            out5 = paddle.nansum(y, axis=[1, 2]) # [8, 19]
            out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18]
    """
1349 1350
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'nansum')
W
wangguanqun 已提交
1351 1352 1353 1354 1355 1356 1357
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                                  [0.1, 0.2, float('-nan'), 0.7]])
            out1 = paddle.nanmean(x)
            # [0.44999996]
            out2 = paddle.nanmean(x, axis=0)
            # [0.1, 0.25, 0.5, 0.79999995]
            out3 = paddle.nanmean(x, axis=0, keepdim=True)
            # [[0.1, 0.25, 0.5, 0.79999995]]
            out4 = paddle.nanmean(x, axis=1)
            # [0.56666666 0.33333334]
            out5 = paddle.nanmean(x, axis=1, keepdim=True)
            # [[0.56666666]
            #  [0.33333334]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
                                   [[5, 6], [float('-nan'), 8]]])
            out6 = paddle.nanmean(y, axis=[1, 2])
            # [2.66666675, 6.33333349]
            out7 = paddle.nanmean(y, axis=[0, 1])
            # [3., 6.]
    """
    if isinstance(axis, int):
        axis = [axis]
    check_variable_and_dtype(x, 'x/input',
                             ['uint16', 'float16', 'float32', 'float64'],
1417
                             'nanmean')
1418 1419 1420
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

1421 1422 1423 1424
    cnt = paddle.sum(~paddle.isnan(x), axis=axis, keepdim=keepdim)
    return paddle.divide(
        paddle.nansum(x, axis=axis, keepdim=keepdim, name=name),
        cnt.astype(x.dtype))
1425 1426


1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            out1 = paddle.count_nonzero(x)
            # [3]
            out2 = paddle.count_nonzero(x, axis=0)
            # [0, 1, 2]
            out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            # [[0, 1, 2]]
            out4 = paddle.count_nonzero(x, axis=1)
            # [2, 1, 0]
            out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            #[[2],
            # [1],
            # [0]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
                                  [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            out6 = paddle.count_nonzero(y, axis=[1, 2])
            # [3, 6]
            out7 = paddle.count_nonzero(y, axis=[0, 1])
            # [1, 3, 5]
    """

    if axis is not None:
        if isinstance(axis, int):
            axis = [axis]
        dims = len(x.shape)
        for i in range(len(axis)):
1481 1482
            if not isinstance(axis[i], int) or not (axis[i] < dims
                                                    and axis[i] >= -dims):
1483 1484 1485 1486 1487 1488 1489 1490 1491
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1492
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1493
def add_n(inputs, name=None):
1494
    """
1495
    Sum one or more Tensor of the input.
1496

S
Steffy-zxf 已提交
1497 1498 1499
    For example:

    .. code-block:: text
1500

S
Steffy-zxf 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
1514

S
Steffy-zxf 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1530 1531

    Args:
1532
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1533
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1534
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1535 1536

    Returns:
S
Steffy-zxf 已提交
1537
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1538 1539 1540

    Examples:
        .. code-block:: python
1541

1542 1543
            import paddle

S
Steffy-zxf 已提交
1544 1545 1546
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
1547
            # [[8., 10., 12.],
S
Steffy-zxf 已提交
1548
            #  [14., 16., 18.]]
1549
    """
1550 1551 1552
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
1553
        return _C_ops.add_n(inputs)
1554
    if _in_legacy_dygraph():
S
Steffy-zxf 已提交
1555 1556
        if isinstance(inputs, Variable):
            inputs = [inputs]
1557
        return _legacy_C_ops.sum(inputs, 'use_mkldnn', False)
1558

S
Steffy-zxf 已提交
1559 1560
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1561 1562 1563 1564
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
W
WangXi 已提交
1565
                   ['float16', 'float32', 'float64', 'int32', 'int64'], 'add_n')
1566 1567
    else:
        check_variable_and_dtype(inputs, "inputs", \
W
WangXi 已提交
1568
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'add_n')
1569

1570 1571
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
1572 1573 1574 1575
    helper.append_op(type='sum',
                     inputs={'X': inputs},
                     outputs={'Out': out},
                     attrs={'use_mkldnn': False})
1576 1577 1578 1579

    return out


1580 1581 1582
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
1583

1584 1585 1586
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1587

1588 1589
    Returns:
        Tensor: The output Tensor of trunc.
1590

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
J
Jiabin Yang 已提交
1608
    if in_dygraph_mode():
1609
        return _C_ops.trunc(input)
1610
    else:
J
Jiabin Yang 已提交
1611
        if _in_legacy_dygraph():
1612
            return _legacy_C_ops.trunc(input)
J
Jiabin Yang 已提交
1613 1614 1615
        else:
            inputs = {"X": input}
            attrs = {}
1616

J
Jiabin Yang 已提交
1617
            helper = LayerHelper("trunc", **locals())
1618 1619 1620
            check_variable_and_dtype(input, 'X',
                                     ['int32', 'int64', 'float32', 'float64'],
                                     'trunc')
J
Jiabin Yang 已提交
1621
            out = helper.create_variable_for_type_inference(dtype=input.dtype)
1622

1623 1624 1625 1626
            helper.append_op(type="trunc",
                             inputs=inputs,
                             attrs=attrs,
                             outputs={"Out": out})
J
Jiabin Yang 已提交
1627
            return out
1628 1629


W
WuHaobo 已提交
1630
def mm(input, mat2, name=None):
1631
    """
S
swtkiwi 已提交
1632

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1644
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1645
        mat2 (Tensor): The input tensor which is a Tensor.
1646
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1647 1648

    Returns:
N
Noel 已提交
1649
        Tensor: The product Tensor.
1650

W
wawltor 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

1683 1684 1685 1686
    Examples:
        .. code-block:: python

            import paddle
1687 1688 1689 1690 1691 1692 1693 1694
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1695

1696
    """
1697
    if in_dygraph_mode():
1698
        return _C_ops.matmul(input, mat2, False, False)
1699
    elif paddle.in_dynamic_mode():
1700
        return _legacy_C_ops.matmul_v2(input, mat2)
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
1738
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
1739 1740 1741 1742 1743 1744
    helper.append_op(type='matmul_v2',
                     inputs={
                         'X': input,
                         'Y': mat2
                     },
                     outputs={'Out': out})
1745
    return out
1746

1747

Y
yaoxuefeng 已提交
1748
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1749 1750 1751
    """
    **addmm**

1752
    Perform matrix multiplication for input $x$ and $y$.
1753 1754 1755 1756 1757 1758 1759 1760 1761
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1762 1763 1764
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1765 1766
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
1767
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1768 1769

    Returns:
1770
        Tensor: The output Tensor of addmm.
1771 1772 1773

    Examples:
        ..  code-block:: python
1774

1775 1776
            import paddle

Y
yaoxuefeng 已提交
1777 1778 1779
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1780

Y
yaoxuefeng 已提交
1781
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1782

N
Noel 已提交
1783
            print(out)
1784 1785 1786
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1787 1788 1789
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
1790
    if not len(x_shape) == len(y_shape) == 2:
1791 1792 1793
        raise ValueError(
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}"
            .format(x_shape, y_shape))
Y
yaoxuefeng 已提交
1794
    if x_shape[1] != y_shape[0]:
1795 1796 1797
        raise ValueError(
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}."
            .format(x_shape, y_shape))
1798 1799 1800
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
1801 1802 1803
                raise ValueError(
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}"
                    .format(input_shape[0]))
1804
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
1805 1806 1807
                raise ValueError(
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}"
                    .format(input_shape[1]))
1808 1809
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
1810 1811 1812
                raise ValueError(
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}"
                    .format(input_shape[1]))
1813 1814
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
1815 1816 1817
            raise ValueError(
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]"
                .format(input_shape, x_shape[0], y_shape[1]))
1818
    else:
1819 1820 1821
        raise ValueError(
            "The dimention of input should be 2 or 1 but receive input's shape: {}"
            .format(input_shape))
Y
yaoxuefeng 已提交
1822

J
Jiabin Yang 已提交
1823
    if in_dygraph_mode():
1824
        return _C_ops.addmm(input, x, y, alpha, beta)
J
Jiabin Yang 已提交
1825 1826
    else:
        if _in_legacy_dygraph():
1827
            out = _legacy_C_ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
J
Jiabin Yang 已提交
1828 1829 1830 1831
            return out
        else:
            inputs = {'Input': input, "X": x, "Y": y}
            attrs = {'Alpha': alpha, 'Beta': beta}
1832

J
Jiabin Yang 已提交
1833
            helper = LayerHelper("addmm", **locals())
1834 1835
            check_variable_and_dtype(input, 'Input', ['float32', 'float64'],
                                     'addmm')
J
Jiabin Yang 已提交
1836 1837 1838
            check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
            check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1839

1840 1841 1842 1843
            helper.append_op(type="addmm",
                             inputs=inputs,
                             attrs=attrs,
                             outputs={"Out": out})
J
Jiabin Yang 已提交
1844
            return out
1845

1846

S
seemingwang 已提交
1847 1848 1849 1850 1851 1852 1853
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
1854
    part, if the p-norm for part i is larger than max-norm, then each element
S
seemingwang 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
        ..  code-block:: python
1869

S
seemingwang 已提交
1870 1871 1872 1873
            import paddle
            input = [[[2.0,2,-2],[3,0.3,3]],[[2,-8,2],[3.1,3.7,3]]]
            x = paddle.to_tensor(input,dtype='float32')
            y = paddle.renorm(x, 1.0, 2, 2.05)
1874
            print(y)
S
seemingwang 已提交
1875 1876 1877 1878
    #        [[[ 0.40594056,  0.29285714, -0.41000000],
    #          [ 0.60891086,  0.04392857,  0.61500001]],
    #         [[ 0.40594056, -1.17142856,  0.41000000],
    #          [ 0.62920785,  0.54178572,  0.61500001]]])
1879

S
seemingwang 已提交
1880 1881 1882 1883
    """
    input_shape = x.shape
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
    if not axis < len(input_shape):
1884 1885 1886 1887
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
                axis, len(input_shape), input_shape))
    if not axis >= 0:
S
seemingwang 已提交
1888
        if not axis >= -1 * len(input_shape):
1889 1890 1891
            raise ValueError(
                "the axis:{} should not be less than -1 * length of input_shape:{}"
                .format(axis, -1 * len(input_shape)))
S
seemingwang 已提交
1892
        axis = axis + len(input_shape)
S
seemingwang 已提交
1893
    if in_dygraph_mode():
1894
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
1895 1896
        return out
    elif _in_legacy_dygraph():
1897 1898
        out = _legacy_C_ops.renorm(x, 'p', p, 'axis', axis, 'max_norm',
                                   max_norm)
S
seemingwang 已提交
1899 1900 1901
        return out

    inputs = {'X': x}
1902
    attrs = {'p': p, 'axis': axis, 'max_norm': max_norm}
S
seemingwang 已提交
1903 1904 1905 1906

    helper = LayerHelper("renorm", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1907 1908 1909 1910
    helper.append_op(type="renorm",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={"Out": out})
S
seemingwang 已提交
1911 1912
    return out

1913

Z
zhiboniu 已提交
1914 1915 1916 1917
def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
1918

Z
zhiboniu 已提交
1919 1920 1921 1922 1923
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
1924
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            out = paddle.inner(x, y)
            print(out)
            #        ([[14, 32, 50],
            #         [32, 77, 122]])


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
1947 1948
        dstshape = list(xshape[:-1]) + list(yshape[:-1])
        if len(dstshape) == 0:
Z
zhiboniu 已提交
1949 1950 1951 1952
            dstshape = [1]
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

1953
        if in_dygraph_mode():
1954
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
1955
        elif paddle.in_dynamic_mode():
1956
            return _legacy_C_ops.matmul_v2(nx, ny.T).reshape(dstshape)
Z
zhiboniu 已提交
1957 1958 1959 1960 1961

        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(val, name,
1962 1963
                                         ['float16', 'float32', 'float64'],
                                         'inner')
Z
zhiboniu 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
            x_shape = list(xshape)
            y_shape = list(yshape)

            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-1]:
                if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                    raise ValueError(
                        "After performing an optional transpose, Input X's last dim should be "
                        "equal to Y's last dim for multiplication "
                        "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                        % (x_shape, y_shape))

        __check_input(nx, ny)

        helper = LayerHelper('inner', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
1980 1981 1982 1983 1984 1985
        helper.append_op(type='matmul_v2',
                         inputs={
                             'X': nx,
                             'Y': ny.T
                         },
                         outputs={'Out': out})
Z
zhiboniu 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
        return out.reshape(dstshape)


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
1997 1998
        x (Tensor): An N-D Tensor or a Scalar Tensor.
        y (Tensor): An N-D Tensor or a Scalar Tensor.
1999
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 4).astype('float32')
            y = paddle.arange(1, 6).astype('float32')
            out = paddle.outer(x, y)
            print(out)
            #        ([[1, 2, 3, 4, 5],
            #         [2, 4, 6, 8, 10],
            #         [3, 6, 9, 12, 15]])


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

2021
    if in_dygraph_mode():
2022
        return _C_ops.matmul(nx, ny, False, False)
2023
    elif paddle.in_dynamic_mode():
2024
        return _legacy_C_ops.matmul_v2(nx, ny)
Z
zhiboniu 已提交
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'inner')

    __check_input(nx, ny)

    helper = LayerHelper('outer', **locals())
    out = helper.create_variable_for_type_inference(dtype=nx.dtype)
2036 2037 2038 2039 2040 2041
    helper.append_op(type='matmul_v2',
                     inputs={
                         'X': nx,
                         'Y': ny
                     },
                     outputs={'Out': out})
Z
zhiboniu 已提交
2042 2043 2044
    return out


2045
def logsumexp(x, axis=None, keepdim=False, name=None):
2046
    r"""
2047
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
2048

2049
    .. math::
2050
       logsumexp(x) = \log\sum exp(x)
2051

2052
    Args:
2053
        x (Tensor): The input Tensor with data type float32 or float64, which
S
Shang Zhizhou 已提交
2054
            have no more than 4 dimensions.
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2071

2072
    Returns:
2073 2074
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
2075

2076
    Examples:
2077

2078
    .. code-block:: python
2079

2080 2081
        import paddle

2082
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
2083 2084
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
2085 2086

    """
2087 2088 2089 2090 2091 2092 2093
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
2094

2095 2096 2097
    if in_dygraph_mode():
        if reduce_all:
            axis = range(len(x.shape))
2098
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
2099
    if _in_legacy_dygraph():
2100 2101
        return _legacy_C_ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim,
                                       'reduce_all', reduce_all)
2102

2103
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'logsumexp')
2104

2105
    helper = LayerHelper('logsumexp', **locals())
2106
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all': reduce_all}
2107
    out = helper.create_variable_for_type_inference(x.dtype)
2108 2109 2110 2111
    helper.append_op(type='logsumexp',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs=attrs)
2112
    return out
2113

S
swtkiwi 已提交
2114

2115 2116
def inverse(x, name=None):
    """
2117 2118 2119 2120 2121
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2122
        x (Tensor): The input tensor. The last two
2123 2124 2125
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2126
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2127 2128

    Returns:
2129
        Tensor: A Tensor holds the inverse of x. The shape and data type
2130
                        is the same as x.
2131 2132 2133 2134 2135

    Examples:
        .. code-block:: python

            import paddle
2136 2137

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
2138 2139
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
2140 2141

    """
2142
    if in_dygraph_mode():
W
wanghuancoder 已提交
2143
        return _C_ops.inverse(x)
2144 2145
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.inverse(x)
2146

2147
    def _check_input(x):
2148
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'inverse')
2149
        if len(x.shape) < 2:
2150 2151 2152
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
2153
                "x's shape: %s." % (len(x.shape), x.shape))
2154

2155
    _check_input(x)
2156
    helper = LayerHelper('inverse', **locals())
2157
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2158 2159 2160
    helper.append_op(type='inverse',
                     inputs={'Input': [x]},
                     outputs={'Output': [out]})
2161 2162
    return out

2163

2164 2165
def _get_reduce_axis(axis):
    """
2166
    Internal function for max, min, amax and amin.
2167 2168 2169 2170 2171 2172
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
2173
            axis = [axis]
2174 2175
        else:
            raise TypeError(
2176 2177
                "The type of axis must be int, list or tuple, but received {}".
                format(type(axis)))
2178 2179 2180 2181 2182
    reduce_all = True if axis == None or axis == [] else False
    if axis == None:
        axis = []
    return reduce_all, axis

2183

2184 2185 2186 2187 2188
def _get_reduce_axis_with_tensor(axis):
    if isinstance(axis, Variable):
        return False, axis
    return _get_reduce_axis(axis)

2189

T
Tao Luo 已提交
2190 2191
def _get_reduce_all_value(axis):
    """
2192
    Internal function for max, min, amax and amin.
T
Tao Luo 已提交
2193 2194 2195 2196 2197 2198
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
2199
            axis = [axis]
T
Tao Luo 已提交
2200 2201
        else:
            raise TypeError(
2202 2203
                "The type of axis must be int, list or tuple, but received {}".
                format(type(axis)))
T
Tao Luo 已提交
2204 2205 2206 2207

    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    return reduce_all, axis
2208

2209

2210
def max(x, axis=None, keepdim=False, name=None):
2211
    """
S
swtkiwi 已提交
2212

2213
    Computes the maximum of tensor elements over the given axis.
2214

T
Tao Luo 已提交
2215 2216
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2217
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2218 2219 2220
        while max propagates gradient to all of them.


2221
    Args:
2222 2223
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2224
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2225
            `x` and return a Tensor with a single element,
2226 2227
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2228
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2229
            output Tensor. The result tensor will have one fewer dimension
2230
            than the `x` unless :attr:`keepdim` is true, default
2231
            value is False.
2232
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2233 2234

    Returns:
2235
        Tensor, results of maximum on the specified axis of input tensor,
2236
        it's data type is the same as `x`.
2237 2238 2239

    Examples:
        .. code-block:: python
2240

2241
            import paddle
2242

N
Noel 已提交
2243
            # data_x is a Tensor with shape [2, 4]
2244
            # the axis is a int element
2245
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2246
                                  [0.1, 0.2, 0.6, 0.7]],
2247
                                 dtype='float64', stop_gradient=False)
2248
            result1 = paddle.max(x)
2249
            result1.backward()
2250
            print(result1, x.grad)
2251 2252 2253
            #[0.9], [[0., 0., 0., 1.], [0., 0., 0., 0.]]

            x.clear_grad()
2254
            result2 = paddle.max(x, axis=0)
2255
            result2.backward()
2256
            print(result2, x.grad)
2257 2258 2259
            #[0.2, 0.3, 0.6, 0.9], [[1., 1., 0., 1.], [0., 0., 1., 0.]]

            x.clear_grad()
2260
            result3 = paddle.max(x, axis=-1)
2261
            result3.backward()
2262
            print(result3, x.grad)
2263 2264 2265
            #[0.9, 0.7], [[0., 0., 0., 1.], [0., 0., 0., 1.]]

            x.clear_grad()
2266
            result4 = paddle.max(x, axis=1, keepdim=True)
2267
            result4.backward()
2268
            print(result4, x.grad)
2269
            #[[0.9], [0.7]], [[0., 0., 0., 1.], [0., 0., 0., 1.]]
2270

N
Noel 已提交
2271
            # data_y is a Tensor with shape [2, 2, 2]
2272
            # the axis is list
2273
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2274 2275
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2276
            result5 = paddle.max(y, axis=[1, 2])
2277
            result5.backward()
2278
            print(result5, y.grad)
2279 2280 2281
            #[4., 8.], [[[0., 0.], [0., 1.]], [[0., 0.], [0., 1.]]]

            y.clear_grad()
2282
            result6 = paddle.max(y, axis=[0, 1])
2283
            result6.backward()
2284
            print(result6, y.grad)
2285
            #[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
2286 2287
    """

2288
    reduce_all, axis = _get_reduce_axis_with_tensor(axis)
2289
    if in_dygraph_mode():
2290
        return _C_ops.max(x, axis, keepdim)
2291
    if _in_legacy_dygraph():
2292
        return _legacy_C_ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
2293
                                        'reduce_all', reduce_all)
2294

2295
    helper = LayerHelper('max', **locals())
2296 2297
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'max')
2298 2299
    if not isinstance(axis, Variable) and utils._contain_var(axis):
        axis = utils._convert_to_tensor_list(axis)
2300

2301 2302 2303 2304 2305 2306 2307 2308 2309
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='reduce_max',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'dim': axis,
                         'keep_dim': keepdim,
                         'reduce_all': reduce_all
                     })
2310 2311
    return out

2312

2313
def min(x, axis=None, keepdim=False, name=None):
2314
    """
S
swtkiwi 已提交
2315

2316
    Computes the minimum of tensor elements over the given axis
2317

T
Tao Luo 已提交
2318 2319
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2320
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2321 2322
        while min propagates gradient to all of them.

2323
    Args:
2324 2325
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2326
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2327
            `x` and return a Tensor with a single element,
2328 2329
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2330
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2331
            output Tensor. The result tensor will have one fewer dimension
2332
            than the `x` unless :attr:`keepdim` is true, default
2333
            value is False.
2334
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2335

2336
    Returns:
2337
        Tensor, results of minimum on the specified axis of input tensor,
2338
        it's data type is the same as input's Tensor.
2339

2340 2341 2342
    Examples:
        .. code-block:: python

2343
            import paddle
2344

2345
            # data_x is a Tensor with shape [2, 4]
2346
            # the axis is a int element
2347
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2348
                                  [0.1, 0.2, 0.6, 0.7]],
2349
                                 dtype='float64', stop_gradient=False)
2350
            result1 = paddle.min(x)
2351
            result1.backward()
2352
            print(result1, x.grad)
2353 2354 2355
            #[0.1], [[0., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2356
            result2 = paddle.min(x, axis=0)
2357
            result2.backward()
2358
            print(result2, x.grad)
2359 2360 2361
            #[0.1, 0.2, 0.5, 0.7], [[0., 0., 1., 0.], [1., 1., 0., 1.]]

            x.clear_grad()
2362
            result3 = paddle.min(x, axis=-1)
2363
            result3.backward()
2364
            print(result3, x.grad)
2365 2366 2367
            #[0.2, 0.1], [[1., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2368
            result4 = paddle.min(x, axis=1, keepdim=True)
2369
            result4.backward()
2370
            print(result4, x.grad)
2371
            #[[0.2], [0.1]], [[1., 0., 0., 0.], [1., 0., 0., 0.]]
2372

2373
            # data_y is a Tensor with shape [2, 2, 2]
2374
            # the axis is list
2375
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2376 2377
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2378
            result5 = paddle.min(y, axis=[1, 2])
2379
            result5.backward()
2380
            print(result5, y.grad)
2381 2382 2383
            #[1., 5.], [[[1., 0.], [0., 0.]], [[1., 0.], [0., 0.]]]

            y.clear_grad()
2384
            result6 = paddle.min(y, axis=[0, 1])
2385
            result6.backward()
2386
            print(result6, y.grad)
2387
            #[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
2388
    """
2389

2390
    reduce_all, axis = _get_reduce_axis_with_tensor(axis)
2391
    if in_dygraph_mode():
2392
        return _C_ops.min(x, axis, keepdim)
2393 2394

    if _in_legacy_dygraph():
2395
        return _legacy_C_ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
2396
                                        'reduce_all', reduce_all)
2397 2398

    helper = LayerHelper('min', **locals())
2399 2400
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'min')
2401 2402
    if not isinstance(axis, Variable) and utils._contain_var(axis):
        axis = utils._convert_to_tensor_list(axis)
2403

2404 2405 2406 2407 2408 2409 2410 2411 2412
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='reduce_min',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'dim': axis,
                         'keep_dim': keepdim,
                         'reduce_all': reduce_all
                     })
2413 2414
    return out

2415

T
Tao Luo 已提交
2416 2417 2418 2419 2420 2421
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2422
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2423 2424 2425
        while max propagates gradient to all of them.

    Args:
2426
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2427
            the dimension is no more than 4.
2428
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2429 2430 2431 2432
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2433
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2434 2435 2436
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2437
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
2451
                                  [0.9, 0.9, 0.6, 0.7]],
T
Tao Luo 已提交
2452
                                 dtype='float64', stop_gradient=False)
2453 2454
            # There are 5 maximum elements:
            # 1) amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2455
            #    thus the corresponding gradients are 1/5=0.2;
2456
            # 2) while max propagates gradient to all of them,
T
Tao Luo 已提交
2457
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2458 2459
            result1 = paddle.amax(x)
            result1.backward()
2460
            print(result1, x.grad)
T
Tao Luo 已提交
2461 2462
            #[0.9], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2463 2464 2465
            x.clear_grad()
            result1_max = paddle.max(x)
            result1_max.backward()
2466
            print(result1_max, x.grad)
T
Tao Luo 已提交
2467 2468 2469 2470
            #[0.9], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2471 2472 2473
            x.clear_grad()
            result2 = paddle.amax(x, axis=0)
            result2.backward()
2474
            print(result2, x.grad)
T
Tao Luo 已提交
2475 2476 2477 2478 2479
            #[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amax(x, axis=-1)
            result3.backward()
2480
            print(result3, x.grad)
T
Tao Luo 已提交
2481 2482 2483 2484 2485
            #[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amax(x, axis=1, keepdim=True)
            result4.backward()
2486
            print(result4, x.grad)
T
Tao Luo 已提交
2487 2488 2489
            #[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2490
            # the axis is list
T
Tao Luo 已提交
2491 2492 2493 2494 2495
            y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
                                  [[0.9, 0.9], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amax(y, axis=[1, 2])
            result5.backward()
2496
            print(result5, y.grad)
T
Tao Luo 已提交
2497 2498 2499 2500 2501
            #[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amax(y, axis=[0, 1])
            result6.backward()
2502
            print(result6, y.grad)
T
Tao Luo 已提交
2503 2504 2505
            #[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """

2506
    reduce_all, axis = _get_reduce_axis(axis)
2507
    if in_dygraph_mode():
2508
        return _C_ops.amax(x, axis, keepdim)
2509
    if _in_legacy_dygraph():
2510 2511
        return _legacy_C_ops.reduce_amax(x, 'dim', axis, 'keep_dim', keepdim,
                                         'reduce_all', reduce_all)
T
Tao Luo 已提交
2512 2513

    helper = LayerHelper('amax', **locals())
2514 2515
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'amax')
T
Tao Luo 已提交
2516

2517 2518 2519 2520 2521 2522 2523 2524 2525
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='reduce_amax',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'dim': axis,
                         'keep_dim': keepdim,
                         'reduce_all': reduce_all
                     })
T
Tao Luo 已提交
2526 2527
    return out

2528

T
Tao Luo 已提交
2529 2530 2531 2532 2533 2534 2535
def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2536
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2537 2538 2539
        while min propagates gradient to all of them.

    Args:
2540
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2541
            the dimension is no more than 4.
2542
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
2543 2544 2545 2546
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2547
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2548 2549 2550
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2551
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
2565
                                  [0.1, 0.1, 0.6, 0.7]],
T
Tao Luo 已提交
2566
                                 dtype='float64', stop_gradient=False)
2567 2568
            # There are 5 minimum elements:
            # 1) amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2569
            #    thus the corresponding gradients are 1/5=0.2;
2570
            # 2) while min propagates gradient to all of them,
T
Tao Luo 已提交
2571
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2572 2573
            result1 = paddle.amin(x)
            result1.backward()
2574
            print(result1, x.grad)
T
Tao Luo 已提交
2575 2576
            #[0.1], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2577 2578 2579
            x.clear_grad()
            result1_min = paddle.min(x)
            result1_min.backward()
2580
            print(result1_min, x.grad)
T
Tao Luo 已提交
2581 2582 2583 2584
            #[0.1], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2585 2586 2587
            x.clear_grad()
            result2 = paddle.amin(x, axis=0)
            result2.backward()
2588
            print(result2, x.grad)
T
Tao Luo 已提交
2589 2590 2591 2592 2593
            #[0.1, 0.1, 0.1, 0.1], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amin(x, axis=-1)
            result3.backward()
2594
            print(result3, x.grad)
T
Tao Luo 已提交
2595 2596 2597 2598 2599
            #[0.1, 0.1], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amin(x, axis=1, keepdim=True)
            result4.backward()
2600
            print(result4, x.grad)
T
Tao Luo 已提交
2601 2602 2603
            #[[0.1], [0.1]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2604
            # the axis is list
T
Tao Luo 已提交
2605 2606 2607 2608 2609
            y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
                                  [[0.1, 0.1], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amin(y, axis=[1, 2])
            result5.backward()
2610
            print(result5, y.grad)
T
Tao Luo 已提交
2611 2612 2613 2614 2615
            #[0.1., 0.1], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amin(y, axis=[0, 1])
            result6.backward()
2616
            print(result6, y.grad)
T
Tao Luo 已提交
2617 2618 2619
            #[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """

2620
    reduce_all, axis = _get_reduce_axis(axis)
2621
    if in_dygraph_mode():
2622
        return _C_ops.amin(x, axis, keepdim)
2623
    elif _in_legacy_dygraph():
2624 2625
        return _legacy_C_ops.reduce_amin(x, 'dim', axis, 'keep_dim', keepdim,
                                         'reduce_all', reduce_all)
T
Tao Luo 已提交
2626
    helper = LayerHelper('amin', **locals())
2627 2628
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'amin')
T
Tao Luo 已提交
2629

2630 2631 2632 2633 2634 2635 2636 2637 2638
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='reduce_amin',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'dim': axis,
                         'keep_dim': keepdim,
                         'reduce_all': reduce_all
                     })
T
Tao Luo 已提交
2639 2640
    return out

2641

W
WuHaobo 已提交
2642
def log1p(x, name=None):
2643
    r"""
2644
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
2645

2646
    .. math::
2647
        Out = \ln(x+1)
S
Steffy-zxf 已提交
2648

2649
    Args:
S
Steffy-zxf 已提交
2650
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
2651
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2652

2653
    Returns:
S
Steffy-zxf 已提交
2654
        Tensor, the natural log of the input Tensor computed element-wise.
2655

2656 2657
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
2658

2659
            import paddle
S
Steffy-zxf 已提交
2660 2661 2662 2663

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
2664 2665
    """

2666
    if in_dygraph_mode():
W
wanghuancoder 已提交
2667
        return _C_ops.log1p(x)
2668 2669
    if _in_legacy_dygraph():
        return _legacy_C_ops.log1p(x)
2670 2671 2672 2673 2674

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
2675
    out = helper.create_variable_for_type_inference(dtype)
2676 2677
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
2678

2679

J
joejiong 已提交
2680
def log2(x, name=None):
2681
    r"""
J
joejiong 已提交
2682 2683 2684 2685
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

2686
        Out = \log_2x
J
joejiong 已提交
2687 2688 2689

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2690
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2691 2692 2693 2694 2695 2696 2697 2698


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2699

J
joejiong 已提交
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
2718
    if in_dygraph_mode():
W
wanghuancoder 已提交
2719
        return _C_ops.log2(x)
2720 2721
    if _in_legacy_dygraph():
        return _legacy_C_ops.log2(x)
J
joejiong 已提交
2722 2723 2724 2725 2726 2727 2728 2729

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
2730

J
joejiong 已提交
2731 2732

def log10(x, name=None):
2733
    r"""
J
joejiong 已提交
2734 2735 2736 2737
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

2738
        Out = \log_10_x
J
joejiong 已提交
2739 2740 2741

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2742
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2743 2744 2745 2746 2747 2748 2749 2750


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2751

J
joejiong 已提交
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
2770
    if in_dygraph_mode():
W
wanghuancoder 已提交
2771
        return _C_ops.log10(x)
2772 2773
    if _in_legacy_dygraph():
        return _legacy_C_ops.log10(x)
J
joejiong 已提交
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


Y
Yang Zhang 已提交
2784
def clip(x, min=None, max=None, name=None):
2785
    """
Y
Yang Zhang 已提交
2786
    This operator clip all elements in input into the range [ min, max ] and return
2787 2788 2789 2790
    a resulting tensor as the following equation:

    .. math::

2791
        Out = MIN(MAX(x, min), max)
2792 2793

    Args:
2794
        x (Tensor): An N-D Tensor with data type float32, float64, int32 or int64.
2795
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``Tensor``
2796
            with shape [1] and type ``int32``, ``float32``, ``float64``.
2797
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``Tensor``
2798
            with shape [1] and type ``int32``, ``float32``, ``float64``.
2799
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2800 2801

    Returns:
Y
Yang Zhang 已提交
2802
        Tensor: A Tensor with the same data type and data shape as input.
2803 2804 2805 2806 2807

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
2808

2809
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
2810 2811
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
2812
            print(out1)
Y
Yang Zhang 已提交
2813 2814
            # [[3.5, 3.5]
            # [4.5, 5.0]]
2815
            print(out2)
Y
Yang Zhang 已提交
2816 2817
            # [[2.5, 3.5]
            # [[4.5, 6.4]
2818 2819
    """

2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
2830

C
chentianyu03 已提交
2831 2832 2833 2834 2835 2836 2837
    if in_dygraph_mode():
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
        min = min_ if min is None else min
        max = max_ if max is None else max
2838
        return _C_ops.clip(x, min, max)
C
chentianyu03 已提交
2839 2840

    if _in_legacy_dygraph():
2841 2842 2843 2844
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
2845 2846
        min = min_ if min is None else min
        max = max_ if max is None else max
2847
        return _legacy_C_ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
2848

2849
    if min is not None:
Y
Yang Zhang 已提交
2850
        check_type(min, 'min', (float, int, Variable), 'clip')
2851 2852
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
2853
                        'clip', '(When the type of min in clip is Variable.)')
2854
    if max is not None:
Y
Yang Zhang 已提交
2855
        check_type(max, 'max', (float, int, Variable), 'clip')
2856 2857
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
2858
                        'clip', '(When the type of max in clip is Variable.)')
2859

2860 2861
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'clip')
Y
Yang Zhang 已提交
2862 2863

    inputs = {'X': x}
2864
    attrs = {'min': min_, 'max': max_}
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
2878
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
2879
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
2880
        dtype=helper.input_dtype('x'))
2881 2882 2883 2884
    helper.append_op(type='clip',
                     inputs=inputs,
                     outputs={'Out': [output]},
                     attrs=attrs)
2885 2886

    return output
F
Feiyu Chan 已提交
2887

W
WuHaobo 已提交
2888

2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
        min = min.numpy().item(0)
    if isinstance(max, Variable):
        max = max.numpy().item(0)
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
2903 2904

    if in_dygraph_mode():
2905
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
2906 2907

    if _in_legacy_dygraph():
2908
        return _legacy_C_ops.clip_(x, "min", min, "max", max)
2909 2910


2911
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
2912
    """
S
swtkiwi 已提交
2913

2914
    Computes the sum along diagonals of the input tensor x.
2915 2916

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
2917

2918
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
2919
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
2920
    of the input tensor x.
L
Li Fuchen 已提交
2921

2922
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
2923 2924 2925 2926

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
2927
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
2928

L
Li Fuchen 已提交
2929
    Args:
2930 2931 2932 2933 2934
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
2935 2936

    Returns:
2937
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
2938 2939 2940 2941 2942

    Examples:
        .. code-block:: python

            import paddle
2943

2944 2945 2946
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
2947 2948 2949
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
2950
    """
2951

Z
zyfncg 已提交
2952
    def __check_input(x, offset, axis1, axis2):
2953
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
2954 2955 2956
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

2957
        input_shape = list(x.shape)
L
Li Fuchen 已提交
2958
        assert len(input_shape) >= 2,                     \
2959 2960
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
2961 2962
                len(input_shape)

2963 2964
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
2965

X
XiangGao 已提交
2966
        assert ((0 <= axis1_) and (axis1_ < len(input_shape))),     \
2967 2968
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
2969

X
XiangGao 已提交
2970
        assert ((0 <= axis2_) and (axis2_ < len(input_shape))),   \
2971 2972
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
2973 2974


2975 2976 2977
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
2978

H
hong 已提交
2979
    if in_dygraph_mode():
2980
        return _C_ops.trace(x, offset, axis1, axis2)
H
hong 已提交
2981 2982

    if _in_legacy_dygraph():
2983 2984
        return _legacy_C_ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2',
                                   axis2)
X
XiangGao 已提交
2985

Z
zyfncg 已提交
2986
    __check_input(x, offset, axis1, axis2)
L
Li Fuchen 已提交
2987

Z
zyfncg 已提交
2988
    helper = LayerHelper('trace', **locals())
2989
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
2990

2991 2992 2993 2994 2995 2996 2997 2998
    helper.append_op(type='trace',
                     inputs={'Input': [x]},
                     attrs={
                         'offset': offset,
                         'axis1': axis1,
                         'axis2': axis2
                     },
                     outputs={'Out': [out]})
L
Li Fuchen 已提交
2999 3000
    return out

3001

3002 3003 3004 3005 3006
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
    This OP computes the diagonals of the input tensor x.

    If ``x`` is 2D, returns the diagonal.
3007
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2.
3008 3009 3010 3011 3012 3013 3014
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3015

3016
    Args:
3017 3018 3019 3020 3021
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
3065

3066
    """
J
Jiabin Yang 已提交
3067
    if in_dygraph_mode():
3068
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
3069 3070
    else:
        if _in_legacy_dygraph():
3071 3072
            return _legacy_C_ops.diagonal(x, 'offset', offset, 'axis1', axis1,
                                          'axis2', axis2)
W
wanghuancoder 已提交
3073

Z
zyfncg 已提交
3074
    def __check_input(x, offset, axis1, axis2):
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
        check_dtype(x.dtype, 'Input',
                    ['bool', 'int32', 'int64', 'float16', 'float32', 'float64'],
                    'diagonal')

        input_shape = list(x.shape)
        assert len(input_shape) >= 2,                     \
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
                len(input_shape)

        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2

        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)

        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)

        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)

Z
zyfncg 已提交
3100
    __check_input(x, offset, axis1, axis2)
3101 3102 3103
    helper = LayerHelper('diagonal', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3104 3105 3106 3107 3108 3109 3110 3111
    helper.append_op(type='diagonal',
                     inputs={'Input': [x]},
                     attrs={
                         'offset': offset,
                         'axis1': axis1,
                         'axis2': axis2
                     },
                     outputs={'Out': [out]})
3112 3113 3114
    return out


F
Feiyu Chan 已提交
3115
@templatedoc(op_type="kron")
W
WuHaobo 已提交
3116
def kron(x, y, name=None):
S
swtkiwi 已提交
3117 3118
    """

3119
    ${comment}
F
Feiyu Chan 已提交
3120 3121

    Args:
3122 3123
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3124
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3125 3126

    Returns:
3127
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3128 3129 3130

    Examples:
        .. code-block:: python
3131

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3143
    """
3144
    if _in_legacy_dygraph():
3145
        return _legacy_C_ops.kron(x, y)
3146
    if in_dygraph_mode():
3147
        return _C_ops.kron(x, y)
F
Feiyu Chan 已提交
3148
    helper = LayerHelper('kron', **locals())
3149 3150 3151 3152
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
F
Feiyu Chan 已提交
3153

W
WuHaobo 已提交
3154
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
3155 3156
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
3157 3158 3159 3160


def cumsum(x, axis=None, dtype=None, name=None):
    """
3161 3162
    The cumulative sum of the elements along a given axis.

3163
    Note:
3164
        The first element of the result is the same as the first element of the input.
3165 3166

    Args:
3167
        x (Tensor): The input tensor needed to be cumsumed.
3168
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3169
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3170 3171 3172
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3173
        Tensor, the result of cumsum operator.
3174 3175 3176

    Examples:
        .. code-block:: python
3177

3178
            import paddle
3179

3180 3181
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
3182 3183 3184 3185 3186 3187 3188 3189

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
3190

3191 3192 3193 3194 3195 3196 3197
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
3198
            # paddle.float64
3199 3200 3201 3202 3203 3204
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3205
        x = cast(x, dtype)
3206

H
hong 已提交
3207
    if in_dygraph_mode():
3208
        if axis is None: axis = -1
3209
        return _C_ops.cumsum(x, axis, flatten, False, False)
H
hong 已提交
3210
    if _in_legacy_dygraph():
3211
        if axis is None:
3212
            return _legacy_C_ops.cumsum(x, 'flatten', flatten)
3213
        else:
3214
            return _legacy_C_ops.cumsum(x, 'axis', axis, 'flatten', flatten)
3215 3216 3217 3218 3219 3220 3221 3222 3223

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
3224

3225 3226 3227

def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
3228
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis.
3229 3230 3231 3232 3233 3234

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
3235

3236 3237 3238 3239 3240 3241
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3242
        dtype (str, optional): The data type of the output tensor, can be float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3243 3244 3245
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3246
        Tensor, the result of logcumsumexp operator.
3247 3248 3249

    Examples:
        .. code-block:: python
3250

3251
            import paddle
3252

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
            data = paddle.arange(12, dtype='float64')
            data = paddle.reshape(data, (3, 4))

            y = paddle.logcumsumexp(data)
            # [ 0.         1.3132617  2.4076061  3.4401898  4.4519143  5.4561934
            #   6.4577627  7.4583397  8.458551   9.45863   10.458658  11.458669 ]

            y = paddle.logcumsumexp(data, axis=0)
            # [[ 0.        1.        2.        3.      ]
            #  [ 4.01815   5.01815   6.01815   7.01815 ]
            #  [ 8.018479  9.018479 10.018479 11.018479]]
3264

3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
            y = paddle.logcumsumexp(data, axis=-1)
            # [[ 0.         1.3132617  2.4076061  3.4401898]
            #  [ 4.         5.3132615  6.407606   7.44019  ]
            #  [ 8.         9.313262  10.407606  11.440189 ]]

            y = paddle.logcumsumexp(data, dtype='float64')
            print(y.dtype)
            # paddle.float64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

    if in_dygraph_mode():
        if axis is None: axis = -1
3283
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
3284 3285
    if _in_legacy_dygraph():
        if axis is None:
3286
            return _legacy_C_ops.logcumsumexp(x, 'flatten', flatten)
3287
        else:
3288 3289
            return _legacy_C_ops.logcumsumexp(x, 'axis', axis, 'flatten',
                                              flatten)
3290 3291 3292 3293 3294

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "logcumsumexp")

    helper = LayerHelper('logcumsumexp', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
3295 3296 3297 3298 3299 3300 3301
    helper.append_op(type='logcumsumexp',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'axis': axis,
                         'flatten': flatten
                     })
3302 3303 3304
    return out


H
hlygit66666 已提交
3305 3306 3307 3308
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

3309 3310
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
3311 3312 3313 3314 3315

    Args:
        x (Tensor): the input tensor need to be cumproded.
        dim (int): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank), where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64, complex128. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
H
hlygit66666 已提交
3316
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3353
        x = cast(x, dtype)
H
hlygit66666 已提交
3354

3355
    if in_dygraph_mode():
3356
        return _C_ops.cumprod(x, dim)
3357
    if _in_legacy_dygraph():
3358
        return _legacy_C_ops.cumprod(x, 'dim', dim)
H
hlygit66666 已提交
3359

3360 3361 3362 3363
    check_variable_and_dtype(
        x, "x",
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
        'cumprod')
H
hlygit66666 已提交
3364 3365 3366 3367
    check_type(dim, 'dim', int, 'cumprod')

    helper = LayerHelper('cumprod', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
3368 3369 3370 3371
    helper.append_op(type='cumprod',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'dim': dim})
H
hlygit66666 已提交
3372 3373
    return out

3374

J
Jack Zhou 已提交
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3391

3392
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3393
            out = paddle.isfinite(x)
N
Noel 已提交
3394
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
3395
    """
H
hong 已提交
3396
    if in_dygraph_mode():
3397
        return _C_ops.isfinite(x)
H
hong 已提交
3398
    if _in_legacy_dygraph():
3399
        return _legacy_C_ops.isfinite_v2(x)
J
Jack Zhou 已提交
3400
    helper = LayerHelper("isfinite_v2", **locals())
3401 3402
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
J
Jack Zhou 已提交
3403 3404 3405 3406
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

3407

J
Jack Zhou 已提交
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3424

3425
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3426
            out = paddle.isinf(x)
N
Noel 已提交
3427
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
3428
    """
H
hong 已提交
3429
    if in_dygraph_mode():
3430
        return _C_ops.isinf(x)
H
hong 已提交
3431
    if _in_legacy_dygraph():
3432
        return _legacy_C_ops.isinf_v2(x)
J
Jack Zhou 已提交
3433
    helper = LayerHelper("isinf_v2", **locals())
3434 3435
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
J
Jack Zhou 已提交
3436 3437 3438 3439
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

3440

J
Jack Zhou 已提交
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
3457

3458
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3459
            out = paddle.isnan(x)
N
Noel 已提交
3460
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
3461
    """
H
hong 已提交
3462
    if in_dygraph_mode():
3463
        return _C_ops.isnan(x)
H
hong 已提交
3464 3465

    if _in_legacy_dygraph():
3466
        return _legacy_C_ops.isnan_v2(x)
J
Jack Zhou 已提交
3467
    helper = LayerHelper("isnan_v2", **locals())
3468 3469
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
J
Jack Zhou 已提交
3470 3471 3472 3473 3474
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
3475 3476 3477 3478 3479
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
3480
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
3481 3482 3483
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`,
            multiply all elements of `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
G
guofei 已提交
3484
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
3485
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
3486
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
3487 3488 3489
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
            int32, int64. If specified, the input tensor is casted to dtype before operator performed.
            This is very useful for avoiding data type overflows. The default value is None, the dtype
G
guofei 已提交
3490
            of output is the same as input Tensor `x`.
3491
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
3492 3493 3494

    Returns:
        Tensor, result of product on the specified dim of input tensor.
3495

G
guofei 已提交
3496 3497 3498 3499 3500 3501
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
3502 3503
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
3520 3521
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
3522 3523 3524 3525 3526 3527 3528 3529
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
3530 3531
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                    'prod')
G
guofei 已提交
3532
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3533
            x = cast(x, dtype)
G
guofei 已提交
3534

3535
    dim = axis
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
    if isinstance(dim, Variable):
        reduce_all = True if axis.shape[0] == len(x.shape) else False
    else:
        if dim is not None and not isinstance(dim, list):
            if isinstance(dim, tuple):
                dim = list(dim)
            elif isinstance(dim, int):
                dim = [dim]
            else:
                raise TypeError(
3546 3547
                    "The type of axis must be int, list or tuple, but received {}"
                    .format(type(dim)))
3548

3549 3550
        reduce_all = True if dim is None or len(dim) == 0 or len(dim) == len(
            x.shape) else False
3551 3552
        if dim is None or len(dim) == 0:
            dim = [0]
3553

3554
    if in_dygraph_mode():
3555
        return _C_ops.reduce_prod(x, dim, keepdim, reduce_all)
3556
    if _in_legacy_dygraph():
3557 3558
        return _legacy_C_ops.reduce_prod(x, 'dim', dim, 'keep_dim', keepdim,
                                         'reduce_all', reduce_all)
3559 3560

    helper = LayerHelper('reduce_prod', **locals())
3561 3562 3563
    check_variable_and_dtype(x, 'x/input',
                             ['float32', 'float64', 'int32', 'int64'],
                             'reduce_prod')
3564
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
3565 3566
    if not isinstance(dim, Variable) and utils._contain_var(dim):
        dim = utils._convert_to_tensor_list(dim)
3567 3568 3569 3570 3571 3572 3573 3574
    helper.append_op(type='reduce_prod',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'dim': dim,
                         'keep_dim': keepdim,
                         'reduce_all': reduce_all
                     })
3575
    return out
W
WangXi 已提交
3576 3577 3578 3579


def sign(x, name=None):
    """
3580
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
3581 3582

    Args:
3583 3584
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
3585 3586 3587 3588 3589 3590 3591 3592 3593

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

3594
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
3595 3596 3597
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
H
hong 已提交
3598
    if in_dygraph_mode():
3599
        return _C_ops.sign(x)
H
hong 已提交
3600 3601

    if _in_legacy_dygraph():
3602
        return _legacy_C_ops.sign(x)
W
WangXi 已提交
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
3614
    r"""
W
WangXi 已提交
3615 3616 3617
    Tanh Activation Operator.

    .. math::
3618
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

3633
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
3634
            out = paddle.tanh(x)
N
Noel 已提交
3635
            print(out)
W
WangXi 已提交
3636 3637
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
H
hong 已提交
3638
    if in_dygraph_mode():
3639
        return _C_ops.tanh(x)
H
hong 已提交
3640 3641

    if _in_legacy_dygraph():
3642
        return _legacy_C_ops.tanh(x)
W
WangXi 已提交
3643 3644

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
3645
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
3646 3647 3648 3649
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
3650

3651

3652
@inplace_apis_in_dygraph_only
3653 3654 3655 3656 3657
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
3658
    if in_dygraph_mode():
3659
        return _C_ops.tanh_(x)
3660
    return _legacy_C_ops.tanh_(x)
3661 3662


S
Steffy-zxf 已提交
3663 3664
def increment(x, value=1.0, name=None):
    """
3665
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
3666 3667 3668 3669
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
3670
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
H
hong 已提交
3686
    if in_dygraph_mode():
3687
        return _C_ops.increment_(x, value)
H
hong 已提交
3688 3689

    if _in_legacy_dygraph():
3690
        return _legacy_C_ops.increment(x, 'step', value)
S
Steffy-zxf 已提交
3691 3692 3693 3694

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
3695 3696 3697 3698
    helper.append_op(type='increment',
                     inputs={'X': [x]},
                     outputs={'Out': [x]},
                     attrs={'step': float(value)})
S
Steffy-zxf 已提交
3699
    return x
3700 3701 3702 3703


def all(x, axis=None, keepdim=False, name=None):
    """
3704
    Computes the ``logical and`` of tensor elements over the given dimension.
3705 3706 3707 3708 3709

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3710
            Tensor with a single element, otherwise must be in the
3711 3712 3713 3714 3715 3716
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3717
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3718 3719 3720 3721 3722 3723 3724 3725

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3726

N
Noel 已提交
3727
            # x is a bool Tensor with following elements:
3728 3729
            #    [[True, False]
            #     [True, True]]
C
Chen Long 已提交
3730
            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
3731
            print(x)
S
syyxsxx 已提交
3732
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3733

3734 3735 3736
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
C
Chen Long 已提交
3737

3738 3739 3740
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
C
Chen Long 已提交
3741 3742

            # keepdim=False, out3 should be [False, True], out.shape should be (2,)
3743 3744
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
C
Chen Long 已提交
3745 3746 3747

            # keepdim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keepdim=True) # [[False], [True]]
3748
            print(out4)
3749

3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

3762 3763 3764
    if in_dygraph_mode():
        if reduce_all_flag:
            axis = range(len(x.shape))
3765
        return _C_ops.all(x, axis, keepdim)
3766 3767

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3768
        axis = axis if axis != None and axis != [] else [0]
3769
        return _legacy_C_ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
3770
                                        'reduce_all', reduce_all_flag)
W
wanghuancoder 已提交
3771

3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    check_variable_and_dtype(x, 'x', ['bool'], 'all')

    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3783 3784 3785 3786
    helper.append_op(type='reduce_all',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs=attrs)
3787 3788 3789 3790 3791
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
3792
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
3793 3794 3795 3796 3797

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3798
            Tensor with a single element, otherwise must be in the
3799 3800 3801 3802 3803 3804
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3805
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3806 3807 3808 3809 3810 3811 3812 3813

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3814 3815 3816

            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            x = paddle.assign(x)
3817
            print(x)
S
syyxsxx 已提交
3818
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3819 3820 3821 3822
            # x is a bool Tensor with following elements:
            #    [[True, False]
            #     [True, True]]

3823 3824 3825
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
C
Chen Long 已提交
3826

3827 3828
            # out2 should be [True, True]
            out2 = paddle.any(x, axis=0)  # [True, True]
3829
            print(out2)
C
Chen Long 已提交
3830 3831

            # keepdim=False, out3 should be [True, True], out.shape should be (2,)
3832
            out3 = paddle.any(x, axis=-1)  # [True, True]
3833
            print(out3)
C
Chen Long 已提交
3834 3835 3836

            # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keepdim=True)  # [[True], [True]]
3837 3838
            print(out4)

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

3851 3852 3853
    if in_dygraph_mode():
        if reduce_all_flag:
            axis = range(len(x.shape))
3854
        return _C_ops.any(x, axis, keepdim)
3855 3856

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3857
        axis = axis if axis != None and axis != [] else [0]
3858
        return _legacy_C_ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
3859
                                        'reduce_all', reduce_all_flag)
W
wanghuancoder 已提交
3860

3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

    check_variable_and_dtype(x, 'x', ['bool'], 'any')

    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3873 3874 3875 3876
    helper.append_op(type='reduce_any',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs=attrs)
3877
    return out
L
Leo Chen 已提交
3878

3879

L
Leo Chen 已提交
3880 3881 3882 3883 3884 3885 3886
def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
3887

L
Leo Chen 已提交
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
3899

L
Leo Chen 已提交
3900 3901 3902 3903 3904 3905
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
3906

3907

3908 3909 3910 3911 3912
def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
3913
        x (Tensor): The input Tensor which hold the complex numbers.
3914
            Optional data types are: complex64, complex128, float32, float64, int32 or int64.
3915
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3916 3917

    Returns:
C
Chen Long 已提交
3918
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
3919 3920 3921 3922 3923

    Examples:
        .. code-block:: python

          import paddle
3924

3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
H
hong 已提交
3936
    if in_dygraph_mode():
3937
        return _C_ops.conj(x)
H
hong 已提交
3938

Z
zhiboniu 已提交
3939
    if paddle.in_dynamic_mode():
3940
        return _legacy_C_ops.conj(x)
3941

3942 3943 3944 3945
    check_variable_and_dtype(
        x, "x",
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
        'conj')
3946 3947

    helper = LayerHelper('conj', **locals())
3948
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
3949 3950 3951

    helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
    return out
3952

3953

Z
zyfncg 已提交
3954 3955 3956 3957 3958 3959 3960 3961 3962
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
3963
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

J
Jiabin Yang 已提交
3980
    if in_dygraph_mode():
3981
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
3982 3983
    else:
        if _in_legacy_dygraph():
3984
            return _legacy_C_ops.digamma(x)
Z
zyfncg 已提交
3985 3986 3987 3988 3989 3990 3991

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'digamma')
    helper = LayerHelper('digamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
    return out

3992

3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.lgamma(x)
            print(out)
            # [1.31452441, 1.76149750, 2.25271273, 1.09579802]
    """
    if in_dygraph_mode():
        return _C_ops.lgamma(x)
4020 4021
    elif _in_legacy_dygraph():
        return _legacy_C_ops.lgamma(x)
4022 4023 4024 4025 4026 4027 4028 4029

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lgamma')
    helper = LayerHelper('lgamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
    return out


4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

4052 4053 4054 4055 4056 4057 4058
    return scale(x,
                 scale=-1.0,
                 bias=0.0,
                 bias_after_scale=True,
                 act=None,
                 name=name)

R
ronnywang 已提交
4059

4060
def atan2(x, y, name=None):
R
ronnywang 已提交
4061
    r"""
4062
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
4063 4064 4065 4066

    Equation:
        .. math::

4067 4068 4069 4070 4071 4072 4073 4074
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
4075 4076

    Args:
4077 4078
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
4079 4080 4081 4082 4083 4084 4085 4086
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

4087
            import paddle
R
ronnywang 已提交
4088

4089 4090 4091
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
4092

4093 4094 4095
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
4096

4097 4098 4099
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
4100 4101 4102

    """

J
Jiabin Yang 已提交
4103
    if in_dygraph_mode():
4104
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
4105
    else:
J
Jiabin Yang 已提交
4106
        if _in_legacy_dygraph():
4107
            return _legacy_C_ops.atan2(x, y)
J
Jiabin Yang 已提交
4108
        else:
4109 4110 4111 4112 4113 4114
            check_variable_and_dtype(
                x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'],
                'atan2')
            check_variable_and_dtype(
                y, 'y', ['int32', 'int64', 'float16', 'float32', 'float64'],
                'atan2')
R
ronnywang 已提交
4115

J
Jiabin Yang 已提交
4116
            helper = LayerHelper('atan2', **locals())
4117
            inputs = {'X1': x, 'X2': y}
J
Jiabin Yang 已提交
4118
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
4119
            helper.append_op(type='atan2', inputs=inputs, outputs={'Out': out})
J
Jiabin Yang 已提交
4120
            return out
A
andyjpaddle 已提交
4121

4122

W
wangzhen38 已提交
4123 4124 4125 4126 4127
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
4128

W
wangzhen38 已提交
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
4160
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]
W
wangzhen38 已提交
4161 4162 4163 4164 4165

    """

    if eps == None:
        eps = 0.0
4166
    if _in_legacy_dygraph():
4167
        return _legacy_C_ops.logit(x, 'eps', eps)
4168
    if in_dygraph_mode():
4169
        return _C_ops.logit(x, eps)
W
wangzhen38 已提交
4170 4171 4172
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'logit')
    helper = LayerHelper("logit", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
4173 4174 4175 4176
    helper.append_op(type='logit',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'eps': eps})
W
wangzhen38 已提交
4177 4178
    return out

4179

4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
4190 4191 4192
        x (Tensor): An N-D Tensor with starting points, the data type is float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is float32, float64.
4193 4194 4195 4196 4197 4198 4199 4200 4201
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
4202

4203 4204 4205
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
4206
            out = paddle.lerp(x, y, 0.5)
4207
            # out: [5.5, 6., 6.5, 7.]
4208 4209

    """
H
hong 已提交
4210
    if in_dygraph_mode():
4211
        check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
H
hong 已提交
4212 4213 4214
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)

4215
        return _C_ops.lerp(x, y, weight)
H
hong 已提交
4216
    if _in_legacy_dygraph():
4217 4218
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)
4219
        return _legacy_C_ops.lerp(x, y, weight)
4220

4221 4222 4223
    if isinstance(weight, float):
        weight = paddle.full(shape=[1], fill_value=weight, dtype=x.dtype)

4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'], 'lerp')

    helper = LayerHelper('lerp', **locals())
    inputs = {'X': x, 'Y': y, 'Weight': weight}
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
    return out

4234

4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
4248 4249 4250
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation."
            .format(out_shape, x.shape))
4251
    if in_dygraph_mode():
4252
        return _C_ops.lerp_(x, y, weight)
4253
    return _legacy_C_ops.lerp_(x, y, weight)
4254

4255

W
wuhuanzhou 已提交
4256 4257
def erfinv(x, name=None):
    r"""
4258
    The inverse error function of x. Please refer to :ref:`api_paddle_erf`
W
wuhuanzhou 已提交
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268

        .. math::

            erfinv(erf(x)) = x.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4269
        out (Tensor), an N-D Tensor, the shape and data type is the same with input.
W
wuhuanzhou 已提交
4270 4271 4272 4273 4274

    Example:
        .. code-block:: python

            import paddle
4275

W
wuhuanzhou 已提交
4276 4277 4278 4279 4280
            x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            out = paddle.erfinv(x)
            # out: [0, 0.4769, -inf]

    """
H
hong 已提交
4281
    if in_dygraph_mode():
4282
        return _C_ops.erfinv(x)
H
hong 已提交
4283

W
wuhuanzhou 已提交
4284 4285
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'erfinv')

Z
zhiboniu 已提交
4286
    if paddle.in_dynamic_mode():
4287
        return _legacy_C_ops.erfinv(x)
W
wuhuanzhou 已提交
4288 4289 4290 4291 4292 4293

    helper = LayerHelper('erfinv', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
    return out

4294

W
wuhuanzhou 已提交
4295 4296 4297 4298 4299 4300 4301
@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
4302
    if in_dygraph_mode():
4303
        return _C_ops.erfinv_(x)
4304
    return _legacy_C_ops.erfinv_(x)
W
wuhuanzhou 已提交
4305

4306

4307
def rad2deg(x, name=None):
4308
    r"""
4309
    Convert each of the elements of input x from angles in radians to degrees.
4310

4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
4328

4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

            x2 = paddle.to_tensor(np.pi/2)
            result2 = paddle.rad2deg(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [90.])
4341

4342 4343 4344 4345 4346 4347 4348
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [57.29578018])
    """
    rad2deg_scale = 180 / np.pi
4349 4350 4351
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4352
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
4353
    elif paddle.in_dynamic_mode():
4354 4355
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4356
        return _legacy_C_ops.scale(x, 'scale', rad2deg_scale)
4357
    else:
4358 4359 4360
        check_variable_and_dtype(x, 'x',
                                 ['int32', 'int64', 'float32', 'float64'],
                                 'rad2deg')
4361 4362 4363
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4364 4365 4366 4367 4368 4369 4370 4371 4372
            out_cast = helper.create_variable_for_type_inference(
                dtype=paddle.float32)
            helper.append_op(type='cast',
                             inputs={'X': x},
                             outputs={'Out': out_cast},
                             attrs={
                                 'in_dtype': x.dtype,
                                 'out_dtype': paddle.float32
                             })
4373
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4374 4375 4376 4377
        helper.append_op(type='scale',
                         inputs={'X': out_cast},
                         outputs={'Out': out},
                         attrs={'scale': rad2deg_scale})
4378 4379
        return out

4380

4381
def deg2rad(x, name=None):
4382
    r"""
4383
    Convert each of the elements of input x from degrees to angles in radians.
4384

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4400

4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274])
    """
    deg2rad_scale = np.pi / 180.0
4415 4416 4417
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4418
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
4419
    elif paddle.in_dynamic_mode():
4420 4421
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4422
        return _legacy_C_ops.scale(x, 'scale', deg2rad_scale)
4423
    else:
4424 4425 4426
        check_variable_and_dtype(x, 'x',
                                 ['int32', 'int64', 'float32', 'float64'],
                                 'deg2rad')
4427 4428 4429
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4430 4431 4432 4433 4434 4435 4436 4437 4438
            out_cast = helper.create_variable_for_type_inference(
                dtype=paddle.float32)
            helper.append_op(type='cast',
                             inputs={'X': x},
                             outputs={'Out': out_cast},
                             attrs={
                                 'in_dtype': x.dtype,
                                 'out_dtype': paddle.float32
                             })
4439
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4440 4441 4442 4443
        helper.append_op(type='scale',
                         inputs={'X': out_cast},
                         outputs={'Out': out},
                         attrs={'scale': deg2rad_scale})
4444
        return out
A
andyjpaddle 已提交
4445

4446

T
Tao Luo 已提交
4447 4448 4449 4450
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
4451

T
Tao Luo 已提交
4452 4453 4454
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
4455 4456
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4457
    Args:
4458 4459
        x (Tensor): An N-D Tensor, the data type is int32,int64.
        y (Tensor): An N-D Tensor, the data type is int32,int64.
T
Tao Luo 已提交
4460 4461 4462 4463 4464 4465 4466 4467 4468
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4469

T
Tao Luo 已提交
4470 4471 4472 4473 4474 4475
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])

T
Tao Luo 已提交
4476
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20])

            paddle.gcd(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
4489

T
Tao Luo 已提交
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
        return paddle.any(y != 0)

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
        y_not_equal_0 = (y != 0)
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
        x, y = (paddle.where(y_not_equal_0, y, x),
4511 4512
                paddle.where(y_not_equal_0, paddle.mod(x, y_safe),
                             paddle.zeros(y.shape, y.dtype)))
T
Tao Luo 已提交
4513 4514
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

Z
zhiboniu 已提交
4515
    if paddle.in_dynamic_mode():
T
Tao Luo 已提交
4516 4517 4518 4519 4520
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
4521 4522
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
4523 4524 4525
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

4526

T
Tao Luo 已提交
4527 4528 4529 4530
def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
4531

T
Tao Luo 已提交
4532 4533 4534
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
4535 4536
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4537
    Args:
4538 4539
        x (Tensor): An N-D Tensor, the data type is int32,int64.
        y (Tensor): An N-D Tensor, the data type is int32,int64.
T
Tao Luo 已提交
4540 4541 4542 4543 4544 4545 4546 4547 4548
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4549

T
Tao Luo 已提交
4550 4551 4552 4553 4554 4555
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])

T
Tao Luo 已提交
4556
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])

            paddle.lcm(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
4569

T
Tao Luo 已提交
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
4581 4582
    out = paddle.where(d_equal_0, paddle.zeros(d.shape, d.dtype),
                       paddle.abs(x * y) // d_safe)
T
Tao Luo 已提交
4583 4584
    return out

4585

A
andyjpaddle 已提交
4586 4587 4588
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
4589
    The first-order differences is computed by using the following formula:
A
andyjpaddle 已提交
4590 4591 4592 4593

    .. math::

        out[i] = x[i+1] - x[i]
4594 4595

    Higher-order differences are computed by using paddle.diff() recursively.
A
andyjpaddle 已提交
4596 4597 4598
    Only n=1 is currently supported.

    Args:
4599
        x (Tensor): The input tensor to compute the forward difference on
4600
        n (int, optional): The number of times to recursively compute the difference.
A
andyjpaddle 已提交
4601
                          Only support n=1. Default:1
4602 4603
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
4604
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4605
                                   and its shapes must match x's shape except on axis.
4606 4607
        append (Tensor, optional): The tensor to append to input along axis before computing the difference,
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4608
                                   and its shapes must match x's shape except on axis.
4609
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4610

A
andyjpaddle 已提交
4611 4612 4613 4614 4615 4616 4617
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
4618

A
andyjpaddle 已提交
4619 4620 4621 4622 4623 4624 4625 4626 4627
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
4628
            # out:
A
andyjpaddle 已提交
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
    infer_flags = list(1 for i in range(len(axes)))
4651
    if in_dygraph_mode():
A
andyjpaddle 已提交
4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
4664
            new_input = _C_ops.concat(input_list, axis)
A
andyjpaddle 已提交
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4677 4678
        input_front = _C_ops.slice(new_input, axes, starts_1, ends_1,
                                   infer_flags, [])
A
andyjpaddle 已提交
4679 4680 4681 4682
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4683 4684
        input_back = _C_ops.slice(new_input, axes, starts_2, ends_2,
                                  infer_flags, [])
4685 4686

        if x.dtype == paddle.bool:
4687
            return _C_ops.logical_xor(input_back, input_front)
4688
        else:
4689
            return _C_ops.subtract(input_back, input_front)
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
    elif _in_legacy_dygraph():
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
            new_input = _varbase_creator()
4704
            _legacy_C_ops.concat(input_list, new_input, 'axis', axis)
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4717
        input_front = _legacy_C_ops.slice(new_input, None, None, None, None, 'axes', axes, \
4718 4719 4720 4721 4722
                'infer_flags', infer_flags, *attrs_1)
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4723
        input_back = _legacy_C_ops.slice(new_input, None, None, None, None, 'axes', axes, \
4724
                'infer_flags', infer_flags, *attrs_2)
A
andyjpaddle 已提交
4725 4726

        if x.dtype == paddle.bool:
4727
            return _legacy_C_ops.logical_xor(input_back, input_front)
A
andyjpaddle 已提交
4728
        else:
4729
            return elementwise_sub(input_back, input_front, axis=axis)
A
andyjpaddle 已提交
4730
    else:
4731 4732
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'bool', 'int32', 'int64'], 'diff')
A
andyjpaddle 已提交
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
4749 4750 4751 4752
            helper.append_op(type='concat',
                             inputs={'X': input_list},
                             outputs={'Out': [new_input]},
                             attrs={'axis': axis})
A
andyjpaddle 已提交
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
4763 4764 4765 4766
        helper.append_op(type='slice',
                         inputs={'Input': new_input},
                         attrs=attrs_1,
                         outputs={'Out': input_front})
A
andyjpaddle 已提交
4767 4768 4769 4770 4771 4772
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
4773 4774 4775 4776
        helper.append_op(type='slice',
                         inputs={'Input': new_input},
                         attrs=attrs_2,
                         outputs={'Out': input_back})
A
andyjpaddle 已提交
4777 4778 4779

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
4780 4781 4782 4783 4784 4785
            helper.append_op(type='logical_xor',
                             inputs={
                                 "X": input_back,
                                 "Y": input_front
                             },
                             outputs={"Out": out})
A
andyjpaddle 已提交
4786
        else:
Z
zhiboniu 已提交
4787
            out = elementwise_sub(input_back, input_front, axis=axis)
A
andyjpaddle 已提交
4788 4789

        return out
F
Feiyu Chan 已提交
4790

4791

F
Feiyu Chan 已提交
4792 4793
def angle(x, name=None):
    r"""
4794
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while
F
Feiyu Chan 已提交
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4807
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
            print(z.numpy())
            # [[-2.-2.j -2.-1.j -2.+0.j -2.+1.j]
            #  [-1.-2.j -1.-1.j -1.+0.j -1.+1.j]
            #  [ 0.-2.j  0.-1.j  0.+0.j  0.+1.j]
            #  [ 1.-2.j  1.-1.j  1.+0.j  1.+1.j]]

            theta = paddle.angle(z)
            print(theta.numpy())
            # [[-2.3561945 -2.6779451  3.1415927  2.6779451]
            #  [-2.0344439 -2.3561945  3.1415927  2.3561945]
            #  [-1.5707964 -1.5707964  0.         1.5707964]
            #  [-1.1071488 -0.7853982  0.         0.7853982]]
    """

W
WangZhen 已提交
4831
    if in_dygraph_mode():
F
Feiyu Chan 已提交
4832
        return _C_ops.angle(x)
4833 4834
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.angle(x)
F
Feiyu Chan 已提交
4835 4836

    check_variable_and_dtype(x, 'x',
4837 4838
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'angle')
F
Feiyu Chan 已提交
4839 4840 4841 4842 4843 4844 4845 4846
    op_type = "angle"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(x.dtype))
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
4847

4848

4849
def heaviside(x, y, name=None):
4850
    r"""
4851 4852 4853 4854 4855
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
4856 4857 4858 4859
                \begin{array}{lcl}
                0,& &\text{if} \ x < 0, \\
                y,& &\text{if} \ x = 0, \\
                1,& &\text{if} \ x > 0.
4860
                \end{array}
4861
            \right.
4862

4863
    Note:
4864 4865 4866
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
4867 4868
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-0.5, 0, 0.5])
            y = paddle.to_tensor([0.1])
            paddle.heaviside(x, y)
            #    [0.        , 0.10000000, 1.        ]
            x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            y = paddle.to_tensor([0.1, 0.2, 0.3])
            paddle.heaviside(x, y)
            #    [[0.        , 0.20000000, 1.        ],
            #     [0.        , 1.        , 0.30000001]]
4887
    """
4888 4889 4890 4891
    op_type = 'elementwise_heaviside'
    axis = -1
    act = None
    if _non_static_mode():
4892 4893 4894 4895 4896
        return _elementwise_op_in_dygraph(x,
                                          y,
                                          axis=axis,
                                          act=act,
                                          op_name=op_type)
4897 4898
    return _elementwise_op(LayerHelper(op_type, **locals()))

4899

4900 4901 4902 4903 4904 4905
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
4906
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4907 4908 4909 4910 4911

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
4912
        .. code-block:: python
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931

            import paddle
            import numpy as np

            input = paddle.rand([3, 3], 'float32')
            print(input.numpy())
            # [[ 1.2203873  -1.0035421  -0.35193074]
            #  [-0.00928353  0.58917075 -0.8407828 ]
            #  [-1.5131804   0.5850153  -0.17597814]]

            output = paddle.frac(input)
            print(output.numpy())
            # [[ 0.22038734 -0.00354207 -0.35193074]
            #  [-0.00928353  0.58917075 -0.8407828 ]
            #  [-0.5131804   0.5850153  -0.17597814]]
    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
4932 4933 4934
    if x.dtype not in [
            paddle.int32, paddle.int64, paddle.float32, paddle.float64
    ]:
4935
        raise TypeError(
4936 4937
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}"
            .format(x.dtype))
4938
    if in_dygraph_mode():
4939 4940
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
4941 4942
    else:
        if _in_legacy_dygraph():
4943
            y = _legacy_C_ops.trunc(x)
4944 4945 4946 4947 4948
            return _elementwise_op_in_dygraph(x,
                                              y,
                                              axis=axis,
                                              act=act,
                                              op_name=op_type)
4949 4950 4951 4952 4953
        else:
            inputs = {"X": x}
            attrs = {}

            helper = LayerHelper("trunc", **locals())
4954 4955 4956
            check_variable_and_dtype(x, "X",
                                     ['int32', 'int64', 'float32', 'float64'],
                                     'trunc')
4957
            y = helper.create_variable_for_type_inference(dtype=x.dtype)
4958 4959 4960 4961
            helper.append_op(type="trunc",
                             inputs=inputs,
                             attrs=attrs,
                             outputs={"Out": y})
4962
            return _elementwise_op(LayerHelper(op_type, **locals()))
4963

4964

4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989
def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
        .. code-block:: Python

            import paddle

            x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            print(paddle.sgn(x))
            #[[0.6+0.8j       0.28-0.96j      0.+0.j      0.4472136+0.8944272j]
            # [0.6+0.8j       1.+0.j          0.+0.j      -1.+0.j]]

    """
4990 4991 4992 4993
    if x.dtype not in [
            paddle.float16, paddle.float32, paddle.float64, paddle.complex64,
            paddle.complex128
    ]:
4994 4995
        raise TypeError(
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}"
4996
            .format(x.dtype))
4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)
5008

5009

5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076
def take(x, index, mode='raise', name=None):
    """
    Returns a new tensor with the elements of input tensor x at the given index.
    The input tensor is treated as if it were viewed as a 1-D tensor.
    The result takes the same shape as the index.

    Args:
        x (Tensor): An N-D Tensor, its data type should be int32, int64, float32, float64.
        index (Tensor): An N-D Tensor, its data type should be int32, int64.
        mode (str, optional): Specifies how out-of-bounds index will behave. the candicates are ``'raise'``, ``'wrap'`` and ``'clip'``.

            - ``'raise'``: raise an error (default);
            - ``'wrap'``: wrap around;
            - ``'clip'``: clip to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Tensor with the same shape as index, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x_int = paddle.arange(0, 12).reshape([3, 4])
            x_float = x_int.astype(paddle.float64)

            idx_pos = paddle.arange(4, 10).reshape([2, 3])  # positive index
            idx_neg = paddle.arange(-2, 4).reshape([2, 3])  # negative index
            idx_err = paddle.arange(-2, 13).reshape([3, 5])  # index out of range

            paddle.take(x_int, idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_neg)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 ],
            #         [1 , 2 , 3 ]])

            paddle.take(x_float, idx_pos)
            # Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[4., 5., 6.],
            #         [7., 8., 9.]])

            x_int.take(idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_err, mode='wrap')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 0 ]])

            paddle.take(x_int, idx_err, mode='clip')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 11]])

    """
    if mode not in ['raise', 'wrap', 'clip']:
        raise ValueError(
5077 5078
            "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}."
            .format(mode))
5079 5080 5081 5082

    if paddle.in_dynamic_mode():
        if not isinstance(index, (paddle.Tensor, Variable)):
            raise TypeError(
5083 5084
                "The type of 'index' must be Tensor, but got {}".format(
                    type(index)))
5085 5086
        if index.dtype not in [paddle.int32, paddle.int64]:
            raise TypeError(
5087 5088
                "The data type of 'index' must be one of ['int32', 'int64'], but got {}"
                .format(index.dtype))
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101

    else:
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take')

    input_1d = x.flatten()
    index_1d = index.flatten()
    max_index = input_1d.shape[-1]

    if mode == 'raise':
        # This processing enables 'take' to handle negative indexes within the correct range.
        index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d)
    elif mode == 'wrap':
        # The out of range indices are constrained by taking the remainder.
5102 5103 5104
        index_1d = paddle.where(index_1d < 0, index_1d % max_index, index_1d)
        index_1d = paddle.where(index_1d >= max_index, index_1d % max_index,
                                index_1d)
5105 5106 5107 5108 5109 5110 5111
    elif mode == 'clip':
        # 'clip' mode disables indexing with negative numbers.
        index_1d = clip(index_1d, 0, max_index - 1)

    out = input_1d.index_select(index_1d).reshape(index.shape)

    return out