nn.py 223.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
25 26 27
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
Y
ying 已提交
32 33 34
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
35
    'dynamic_lstmp',
G
guosheng 已提交
36
    'dynamic_gru',
Y
ying 已提交
37 38 39 40 41 42 43 44 45
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
46
    'conv3d',
Y
ying 已提交
47
    'sequence_pool',
48 49
    'sequence_softmax',
    'softmax',
Y
ying 已提交
50
    'pool2d',
Y
yuyang18 已提交
51
    'pool3d',
Y
ying 已提交
52 53 54
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
55
    'conv3d_transpose',
Y
ying 已提交
56
    'sequence_expand',
C
chengduo 已提交
57
    'sequence_expand_as',
F
fengjiayi 已提交
58
    'sequence_pad',
Y
ying 已提交
59 60 61 62 63
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
64
    'reduce_prod',
Y
ying 已提交
65 66 67 68
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
69 70
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
71 72
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
73
    'topk',
Y
ying 已提交
74 75
    'warpctc',
    'sequence_reshape',
76
    'transpose',
77
    'im2sequence',
78
    'nce',
W
weixing02 已提交
79
    'hsigmoid',
Q
Qiao Longfei 已提交
80
    'beam_search',
81
    'row_conv',
82
    'multiplex',
G
guosheng 已提交
83
    'layer_norm',
84 85
    'softmax_with_cross_entropy',
    'smooth_l1',
86
    'one_hot',
Y
Yu Yang 已提交
87
    'autoincreased_step_counter',
C
caoying03 已提交
88
    'reshape',
Y
Yibing Liu 已提交
89 90
    'squeeze',
    'unsqueeze',
Y
yangyaming 已提交
91
    'lod_reset',
D
dragonwarrior 已提交
92
    'lrn',
G
guosheng 已提交
93
    'pad',
C
chengduo 已提交
94
    'pad_constant_like',
95
    'label_smooth',
96
    'roi_pool',
W
whs 已提交
97
    'dice_loss',
F
fengjiayi 已提交
98 99
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
100
    'resize_bilinear',
W
whs 已提交
101
    'gather',
102
    'scatter',
Q
Qingsheng Li 已提交
103
    'sequence_scatter',
104
    'random_crop',
Y
yuyang18 已提交
105 106 107
    'mean_iou',
    'relu',
    'log',
108
    'crop',
109
    'rank_loss',
J
jerrywgz 已提交
110
    'prelu',
111
    'flatten',
Q
qingqing01 已提交
112
    'sequence_mask',
S
sneaxiy 已提交
113
    'stack',
W
whs 已提交
114
    'pad2d',
D
dzhwinter 已提交
115
    'unstack',
116
    'sequence_enumerate',
W
whs 已提交
117
    'expand',
C
add api  
chengduoZH 已提交
118
    'sequence_concat',
Y
Yu Yang 已提交
119 120 121 122 123 124 125 126
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
127
       use_mkldnn=False,
Y
Yu Yang 已提交
128
       act=None,
J
Jacek Czaja 已提交
129
       is_test=False,
130
       name=None):
Y
Yu Yang 已提交
131
    """
132
    **Fully Connected Layer**
Y
Yu Yang 已提交
133

134 135 136 137 138 139 140 141
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
142
    to the output as well.
C
caoying03 已提交
143

C
caoying03 已提交
144
    This process can be formulated as follows:
145 146 147

    .. math::

148
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
149 150 151

    In the above equation:

C
caoying03 已提交
152 153 154 155
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
156
    * :math:`Act`: The activation function.
C
caoying03 已提交
157
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
158 159

    Args:
R
ranqiu 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
175 176
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
177
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
178
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
179 180
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
181
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
182

183
    Returns:
F
fengjiayi 已提交
184
        Variable: The transformation result.
185 186

    Raises:
C
caoying03 已提交
187
        ValueError: If rank of the input tensor is less than 2.
188 189 190 191

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
192
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
193
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
194
    """
C
caoying03 已提交
195

C
caoying03 已提交
196
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
197 198 199 200

    dtype = helper.input_dtype()

    mul_results = []
201 202
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
203 204 205
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
206

Y
Yu Yang 已提交
207
        w = helper.create_parameter(
208 209
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
210
        helper.append_op(
211 212 213
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
214
            outputs={"Out": tmp},
M
mozga-intel 已提交
215 216
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
217 218 219 220
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
221
    else:
222 223
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
224 225 226 227
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
228 229 230 231
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
232 233


234 235 236
def embedding(input,
              size,
              is_sparse=False,
237
              is_distributed=False,
238 239 240
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
241
    """
242 243
    **Embedding Layer**

244
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
245 246
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
247 248 249

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
250 251

    Args:
252 253 254 255 256
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
257
        is_distributed(bool): Whether to run lookup table from remote parameter server.
258 259
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
260
            with zeros whenever lookup encounters it in :attr:`input`. If
261
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
262 263
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
264
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
265

266 267 268
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
269

270 271
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
272

C
chengduoZH 已提交
273
          dict_size = len(dataset.ids)
274
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
275
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
276 277 278 279 280 281
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
282 283
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
284 285 286 287 288
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
289 290 291 292 293
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
294 295 296
    return tmp


Y
yi.wu 已提交
297
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
298 299
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
300 301
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
302 303 304 305 306 307 308
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
309 310
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
311
    """
Y
yi.wu 已提交
312
    ${comment}
Y
Yibing Liu 已提交
313 314

    Args:
Y
yi.wu 已提交
315 316
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
317 318 319 320 321 322 323
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

324
        param_attr(ParamAttr|None): The parameter attribute for the learnable
325
                               hidden-hidden weights.
Y
Yibing Liu 已提交
326 327 328

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
329 330
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
331
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
332 333 334
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
335

336
                              1. `use_peepholes = False`
Y
yi.wu 已提交
337 338
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
339
                              2. `use_peepholes = True`
Y
yi.wu 已提交
340
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
341
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
342
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
343 344 345 346 347 348 349 350
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
351 352

    Returns:
Y
Yibing Liu 已提交
353 354
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
355

Y
Yibing Liu 已提交
356
    Examples:
Y
Yibing Liu 已提交
357 358
        .. code-block:: python

Y
Yibing Liu 已提交
359 360
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
361
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
362 363
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
364
    """
365

Y
Yu Yang 已提交
366
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
367
    size = size // 4
Y
Yu Yang 已提交
368 369 370 371 372 373 374 375 376 377 378 379
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
380 381 382 383 384 385 386 387 388 389
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
390 391 392

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
393
        inputs=inputs,
Y
Yu Yang 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
410 411 412 413 414 415 416 417 418 419 420
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
421 422
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
423 424 425
    """
    **Dynamic LSTMP Layer**

426 427 428 429 430 431
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
432 433 434 435 436

    The formula is as follows:

    .. math::

437
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
438

439
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
440

441
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
442

443
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
444

445
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
446

447
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
448

449
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
450

Y
Yibing Liu 已提交
451 452 453 454 455 456
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
457
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
458
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
459
          bias vector).
Y
Yibing Liu 已提交
460 461 462
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
463
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
464
    * :math:`h`: The hidden state.
465
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
466 467
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
468
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
469
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
470
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
471 472
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
473 474 475 476

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
477

Y
Yibing Liu 已提交
478 479 480 481 482 483 484 485 486 487 488 489
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
490
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
491 492
                               hidden-hidden weight and projection weight.

493 494
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
495 496
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
497 498
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
499 500
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
501 502 503 504 505 506
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
507
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
508 509 510
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
511
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
512 513 514 515 516 517 518 519 520
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
521
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
522 523
                              default "tanh".
        proj_activation(str): The activation for projection output.
524
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
525 526
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
527 528
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
529 530

    Returns:
531 532 533 534
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
535 536

    Examples:
537

Y
Yibing Liu 已提交
538 539
        .. code-block:: python

540 541 542 543
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
544
            hidden_dim, proj_dim = 512, 256
545
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
546
                                     act=None, bias_attr=None)
547 548 549
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
550 551 552 553
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
554
    """
555

Y
Yibing Liu 已提交
556
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
557
    size = size // 4
Y
Yibing Liu 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
602 603 604 605 606 607 608 609 610
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
611
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
612

613
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
614
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
615

G
guosheng 已提交
616 617 618 619 620 621 622 623 624
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
625

G
guosheng 已提交
626
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
627

G
guosheng 已提交
628
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
629 630
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
631 632 633 634
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
635
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
636 637

    Args:
638 639
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
640
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
641
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
642 643
            is the hidden size.
        size(int): The dimension of the gru cell.
644
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
645 646
            hidden-hidden weight matrix. Note:

647
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
648
              :math:`D` is the hidden size.
649
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
650
              The first part are weights of the update gate and reset gate with
651
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
652
              candidate hidden state with shape :math:`(D \\times D)`.
653
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
654
            hidden-hidden bias.
655
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
656 657 658
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
659
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
660
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
661 662 663 664
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
665 666

    Returns:
G
guosheng 已提交
667
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
668
            and sequence length is the same with the input.
669

G
guosheng 已提交
670
    Examples:
671

G
guosheng 已提交
672 673
        .. code-block:: python

674 675 676 677
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
678
            hidden_dim = 512
679
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
680 681 682 683 684 685 686 687 688 689
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
690
    batch_size = input.shape[0]
G
guosheng 已提交
691 692 693
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
694 695 696
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
720 721 722
def gru_unit(input,
             hidden,
             size,
723 724
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
725
             activation='tanh',
726
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
727
    """
728
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
729

730 731
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
732

733
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
734

735
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
736

737
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
738 739

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
740 741 742
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
743 744
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

745 746
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
747 748 749
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
750 751 752 753 754

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
755 756
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
757 758 759 760
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
761

762 763 764 765 766 767
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
768

769
             # assuming we have x_t_data and prev_hidden of size=10
770
             x_t = fluid.layers.fc(input=x_t_data, size=30)
771 772
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
773 774 775 776 777 778 779 780 781 782 783 784

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
785
    size = size // 3
Y
Yu Yang 已提交
786 787

    # create weight
788 789
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
790

791 792 793 794
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
795
    # create bias
796
    if helper.bias_attr:
Y
Yu Yang 已提交
797 798 799
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
800
        inputs['Bias'] = bias
Y
Yu Yang 已提交
801 802 803

    helper.append_op(
        type='gru_unit',
804
        inputs=inputs,
Y
Yu Yang 已提交
805 806 807 808 809 810
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
811 812
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
813 814 815 816 817
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
818
@templatedoc()
819
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
820 821 822 823 824 825 826
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
827
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
828 829 830 831
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
832 833 834
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
835 836

    """
Y
Yu Yang 已提交
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
862
@templatedoc()
863
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
864 865 866 867 868
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
869

Y
yuyang18 已提交
870
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
871

Y
yuyang18 已提交
872 873 874
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
875
        Variable: ${viterbi_path_comment}
876

Y
yi.wu 已提交
877 878 879 880 881
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
882
    """
Y
Yu Yang 已提交
883 884 885 886 887 888 889 890 891 892 893 894 895
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
896
@templatedoc()
F
fengjiayi 已提交
897
def cos_sim(X, Y):
Y
Yu Yang 已提交
898
    """
Y
yi.wu 已提交
899 900 901
    ${comment}

    Args:
902 903
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
904

Y
yi.wu 已提交
905
    Returns:
906
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
907
    """
F
fengjiayi 已提交
908
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


922
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
923 924 925 926 927
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
928
    training. The dropout operator randomly sets (according to the given dropout
929 930 931 932
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
933 934
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
935 936 937 938 939 940 941
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
942 943

    Returns:
944
        Variable: A tensor variable is the shape with `x`.
945 946

    Examples:
947

948 949
        .. code-block:: python

950 951
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
952 953
    """

F
fengjiayi 已提交
954
    helper = LayerHelper('dropout', **locals())
955 956
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
957 958 959 960

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

961 962 963 964 965
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
966 967 968 969 970 971
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
972 973 974
    return out


975
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
976
    """
Y
Yibing Liu 已提交
977 978
    **Cross Entropy Layer**

979 980 981
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
982 983

    1) One-hot cross-entropy:
F
fengjiayi 已提交
984
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
985

Y
Yibing Liu 已提交
986
        .. math::
Y
yangyaming 已提交
987

Y
Yibing Liu 已提交
988 989 990
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
991 992
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
993 994 995 996 997

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
998
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
999 1000 1001
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1002 1003
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1004
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1005

Y
Yibing Liu 已提交
1006
    Args:
Y
yangyaming 已提交
1007
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1008 1009 1010 1011
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1012
        label (Variable|list): the ground truth which is a 2-D tensor. When
1013 1014 1015 1016
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1017
        soft_label (bool): a flag indicating whether to
1018
                                           interpretate the given labels as soft
1019 1020 1021 1022
                                           labels. Default: `False`.
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1023 1024 1025 1026 1027

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1028 1029 1030 1031 1032
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1033 1034 1035 1036 1037 1038

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1039
    """
F
fengjiayi 已提交
1040
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1041 1042 1043 1044 1045 1046
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1047 1048
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1049 1050 1051
    return out


F
fengjiayi 已提交
1052
def square_error_cost(input, label):
Y
Yu Yang 已提交
1053
    """
1054 1055
    **Square error cost layer**

1056 1057
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1058

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1072 1073
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1074 1075

    Returns:
G
guosheng 已提交
1076
        Variable: The tensor variable storing the element-wise squared error \
1077
                  difference of input and label.
1078 1079 1080 1081 1082 1083 1084 1085

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1086
    """
F
fengjiayi 已提交
1087
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1097 1098
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1099 1100 1101
    return square_out


Y
yi.wu 已提交
1102
@templatedoc()
Y
Yu Yang 已提交
1103 1104 1105 1106
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1107
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1108
    """
Y
yi.wu 已提交
1109
    **Chunk Evaluator**
Y
yi.wu 已提交
1110

Y
yangyaming 已提交
1111
    This function computes and outputs the precision, recall and
1112
    F1-score of chunk detection.
Y
yi.wu 已提交
1113

Y
yi.wu 已提交
1114 1115 1116 1117 1118 1119 1120 1121
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1122

Y
yi.wu 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1148

Y
yi.wu 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1173
    Args:
1174 1175 1176 1177 1178
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1179

Y
yi.wu 已提交
1180
    Returns:
Y
update  
yi.wu 已提交
1181 1182 1183
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1184

Y
yi.wu 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1197
    """
F
fengjiayi 已提交
1198
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1199 1200 1201 1202 1203

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1204 1205 1206
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1207 1208 1209 1210 1211 1212 1213 1214

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1215 1216 1217 1218
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1219 1220 1221
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1222 1223
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1224
        })
1225 1226
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1227 1228


1229
@templatedoc()
Y
Yu Yang 已提交
1230 1231 1232 1233 1234 1235 1236
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1237
                  act=None):
Y
Yu Yang 已提交
1238 1239 1240 1241
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1252

1253 1254
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1273
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1274 1275 1276 1277 1278 1279
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1280
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False):
1281 1282 1283
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1284
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1303
        library is installed. Default: False
1304

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1327
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1328
    """
1329
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1330
    has the same shape as the input.
Q
qiaolongfei 已提交
1331

1332 1333 1334 1335 1336 1337
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1338
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1339 1340 1341 1342 1343 1344 1345

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1346
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1381 1382 1383
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1384 1385
           stride=1,
           padding=0,
1386
           dilation=1,
Y
Yu Yang 已提交
1387 1388 1389
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1390
           use_cudnn=True,
1391
           use_mkldnn=False,
1392 1393
           act=None,
           name=None):
Y
Yu Yang 已提交
1394
    """
C
chengduoZH 已提交
1395
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1396 1397
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1398
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1399 1400 1401 1402 1403 1404 1405
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1406 1407 1408
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1409

1410
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1411

C
chengduoZH 已提交
1412 1413
    .. math::

C
refine  
chengduoZH 已提交
1414
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1415

T
tensor-tang 已提交
1416
    Where:
C
chengduoZH 已提交
1417

1418 1419 1420 1421 1422
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1423
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1424 1425 1426

    Example:

1427 1428
        - Input:

W
weixing02 已提交
1429
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1430

W
weixing02 已提交
1431
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1432

1433
        - Output:
T
tensor-tang 已提交
1434

W
weixing02 已提交
1435
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1436

C
chengduoZH 已提交
1437
        Where
1438 1439

        .. math::
C
chengduoZH 已提交
1440

W
weixing02 已提交
1441 1442
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1443 1444

    Args:
1445
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1446
        num_filters(int): The number of filter. It is as same as the output
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1469 1470
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1471 1472 1473
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1474 1475

    Returns:
G
guosheng 已提交
1476
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1477 1478
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1479
    Raises:
1480 1481
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1482

C
chengduoZH 已提交
1483 1484 1485
    Examples:
        .. code-block:: python

1486 1487
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1488 1489 1490
    """

    num_channels = input.shape[1]
1491 1492

    l_type = 'conv2d'
X
xzl 已提交
1493 1494
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1495
        l_type = 'depthwise_conv2d'
1496 1497 1498 1499

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1500 1501 1502 1503 1504
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1505
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1506

C
chengduoZH 已提交
1507 1508 1509
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1510
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1511

C
chengduoZH 已提交
1512 1513
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1514 1515

    input_shape = input.shape
M
minqiyang 已提交
1516
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1531
        type=l_type,
Y
Yu Yang 已提交
1532 1533 1534 1535 1536
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1537 1538 1539
        attrs={
            'strides': stride,
            'paddings': padding,
1540
            'dilations': dilation,
C
chengduoZH 已提交
1541
            'groups': groups,
1542 1543
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1544
        })
Y
Yu Yang 已提交
1545 1546 1547 1548 1549 1550

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1569 1570 1571 1572 1573 1574
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1584 1585
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1586 1587 1588
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1589
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1615
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1616 1617
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1618
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1619 1620
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1621
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1622 1623
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1624
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1651 1652
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1667
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1708
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1709 1710 1711 1712

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1713
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1714
    """
Y
yangyaming 已提交
1715 1716 1717
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1729
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1730 1731 1732 1733 1734
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1735
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1736 1737 1738 1739 1740 1741 1742

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1743 1744
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1745

L
Luo Tao 已提交
1746 1747
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1748
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1749 1750 1751 1752 1753 1754 1755 1756
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1757

Y
yangyaming 已提交
1758
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1759 1760 1761 1762 1763
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1764 1765
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1766
    """
F
fengjiayi 已提交
1767
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1779 1780 1781 1782 1783
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1784 1785 1786
    return pool_out


C
add doc  
chengduoZH 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1812
def sequence_first_step(input):
L
Luo Tao 已提交
1813
    """
L
Luo Tao 已提交
1814
    This function gets the first step of sequence.
L
Luo Tao 已提交
1815 1816 1817 1818

    .. code-block:: text

       x is a 1-level LoDTensor:
1819
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1820 1821 1822 1823 1824
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1825
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1826
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1827

L
Luo Tao 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1837

Y
yangyaming 已提交
1838
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1839 1840 1841
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1842 1843 1844
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1845
def sequence_last_step(input):
L
Luo Tao 已提交
1846
    """
L
Luo Tao 已提交
1847
    This function gets the last step of sequence.
L
Luo Tao 已提交
1848 1849 1850 1851

    .. code-block:: text

       x is a 1-level LoDTensor:
1852
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1853 1854 1855 1856 1857
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1858
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1859
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1860

L
Luo Tao 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1870

Y
yangyaming 已提交
1871
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1872 1873 1874
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1875 1876 1877
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1878
@templatedoc()
Y
Yu Yang 已提交
1879
def pool2d(input,
C
chengduoZH 已提交
1880 1881
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1882 1883
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1884
           global_pooling=False,
C
chengduoZH 已提交
1885
           use_cudnn=True,
1886
           ceil_mode=False,
1887
           use_mkldnn=False,
C
caoying03 已提交
1888
           name=None):
Y
Yu Yang 已提交
1889
    """
F
fengjiayi 已提交
1890
    ${comment}
1891 1892

    Args:
1893 1894 1895
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1896
                          feature, and W is the width of the feature.
1897
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1898
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1899
        pool_type: ${pooling_type_comment}
1900 1901
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1902 1903 1904 1905
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1906
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1907 1908
                        layer will be named automatically.

1909
    Returns:
F
fengjiayi 已提交
1910
        Variable: The pooling result.
F
fengjiayi 已提交
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1924 1925 1926 1927
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1928
                            global_pooling=False)
Y
Yu Yang 已提交
1929 1930 1931 1932 1933
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1934

C
chengduoZH 已提交
1935 1936 1937 1938 1939
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1940 1941 1942 1943
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1944 1945
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1946

C
Add doc  
chengduoZH 已提交
1947
    l_type = 'pool2d'
1948 1949

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1950 1951 1952 1953
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1983
    pooling configurations mentioned in input parameters.
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1997

1998
    Returns:
1999
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2000 2001 2002 2003 2004
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2005

C
chengduoZH 已提交
2006 2007 2008 2009 2010
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2011 2012 2013
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2014

C
chengduoZH 已提交
2015 2016
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2017

2018 2019
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2020 2021 2022 2023
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2024
        type=l_type,
Y
Yu Yang 已提交
2025 2026 2027 2028 2029 2030 2031
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2032
            "paddings": pool_padding,
2033
            "use_cudnn": use_cudnn,
2034 2035
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2048
               data_layout='NCHW',
Y
Yang Yang 已提交
2049
               in_place=False,
2050
               use_mkldnn=False,
2051 2052
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2053
               moving_variance_name=None,
2054 2055
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2056
    """
Q
qiaolongfei 已提交
2057 2058 2059 2060
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2061

Q
qiaolongfei 已提交
2062
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2063

Q
qiaolongfei 已提交
2064 2065
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2066 2067 2068
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2081 2082

    Args:
Q
qiaolongfei 已提交
2083
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2084 2085 2086 2087
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2088 2089 2090
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2091
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2092 2093 2094 2095 2096
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2097
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2098
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2099 2100

    Returns:
Q
qiaolongfei 已提交
2101
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2102 2103 2104 2105 2106 2107 2108

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2132
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2133

2134 2135
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2136 2137 2138
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2139
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2140
        shape=param_shape,
2141 2142 2143 2144 2145 2146 2147
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2148
            trainable=False,
W
wanghaoshuang 已提交
2149
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2150
        shape=param_shape,
2151 2152
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2153 2154 2155 2156 2157 2158

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2159 2160
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2161

2162
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2180 2181 2182 2183
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2184 2185
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2186
        })
Y
Yu Yang 已提交
2187 2188 2189 2190

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2191
@templatedoc()
G
guosheng 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2202
    ${comment}
G
guosheng 已提交
2203 2204 2205

    The formula is as follows:

Y
yuyang18 已提交
2206
    ..  math::
G
guosheng 已提交
2207 2208 2209 2210 2211 2212 2213

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2214 2215 2216 2217 2218 2219 2220 2221
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2222

G
guosheng 已提交
2223 2224
    Args:
        input(Variable): The input tensor variable.
2225
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2226
            normalization.
2227
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2228
            normalization.
2229
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2230
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2231
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2232 2233 2234 2235 2236 2237
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2238
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2239 2240

    Returns:
Y
yuyang18 已提交
2241
        ${y_comment}
G
guosheng 已提交
2242 2243 2244

    Examples:

Y
yuyang18 已提交
2245 2246 2247
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2263
    if shift:
G
guosheng 已提交
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2288 2289 2290 2291
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2292 2293 2294
                     padding=0,
                     stride=1,
                     dilation=1,
2295
                     groups=None,
C
caoying03 已提交
2296
                     param_attr=None,
2297
                     bias_attr=None,
C
chengduoZH 已提交
2298
                     use_cudnn=True,
2299
                     act=None,
C
caoying03 已提交
2300
                     name=None):
Y
Yu Yang 已提交
2301
    """
2302 2303 2304 2305 2306 2307 2308 2309
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2310 2311
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2312 2313 2314
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2315 2316 2317 2318 2319

    For each input :math:`X`, the equation is:

    .. math::

2320
        Out = \sigma (W \\ast X + b)
2321

2322
    Where:
2323 2324 2325

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2326 2327 2328 2329
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2330

2331 2332 2333 2334
    Example:

        - Input:

2335
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2336

2337
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2338 2339 2340

        - Output:

2341
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2342 2343

        Where
Y
Yu Yang 已提交
2344

2345 2346
        .. math::

2347 2348 2349 2350
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2351 2352

    Args:
2353 2354 2355 2356
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2357 2358 2359 2360
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2388 2389

    Returns:
2390
        Variable: The tensor variable storing the convolution transpose result.
2391 2392

    Raises:
2393 2394
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2395 2396 2397 2398

    Examples:
       .. code-block:: python

2399 2400
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2401
    """
2402 2403 2404 2405 2406 2407 2408 2409 2410

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2411 2412 2413
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2414 2415 2416
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2417

C
chengduoZH 已提交
2418 2419
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2420

Y
Yu Yang 已提交
2421 2422 2423 2424 2425
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2426

Y
Yu Yang 已提交
2427 2428
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2429

C
chengduoZH 已提交
2430
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2431
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2432
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2433
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2434
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2435 2436 2437
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2438 2439 2440 2441 2442 2443 2444
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2445
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2446
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2447 2448 2449
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2450
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2451
    helper.append_op(
2452
        type=op_type,
Y
Yu Yang 已提交
2453 2454
        inputs={'Input': [input],
                'Filter': [img_filter]},
2455
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2456
        attrs={
2457
            'output_size': output_size,
2458 2459 2460 2461 2462
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2463 2464
        })

2465 2466 2467
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2468 2469


2470
def conv3d_transpose(input,
Y
Yu Yang 已提交
2471 2472 2473
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2474 2475 2476
                     padding=0,
                     stride=1,
                     dilation=1,
2477
                     groups=None,
C
caoying03 已提交
2478
                     param_attr=None,
2479
                     bias_attr=None,
C
chengduoZH 已提交
2480
                     use_cudnn=True,
2481
                     act=None,
C
caoying03 已提交
2482
                     name=None):
Y
Yu Yang 已提交
2483
    """
2484
    **Convlution3D transpose layer**
2485

2486
    The convolution3D transpose layer calculates the output based on the input,
2487
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2488 2489 2490 2491 2492 2493
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2494 2495 2496
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2497 2498 2499 2500 2501

    For each input :math:`X`, the equation is:

    .. math::

2502
        Out = \sigma (W \\ast X + b)
2503 2504 2505

    In the above equation:

2506 2507
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2508 2509 2510 2511
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2512

2513 2514 2515 2516
    Example:

        - Input:

2517
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2518

2519
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2520 2521 2522

        - Output:

2523
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2524 2525

        Where
Y
Yu Yang 已提交
2526

2527 2528
        .. math::

2529 2530 2531
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2532 2533

    Args:
2534
        input(Variable): The input image with [N, C, D, H, W] format.
2535 2536 2537
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2538
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2539 2540
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2541
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2542 2543 2544
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2545 2546
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2547
        stride(int|tuple): The stride size. If stride is a tuple, it must
2548 2549
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2550
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2551 2552 2553
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2554 2555 2556 2557 2558
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2559 2560 2561
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2562 2563 2564 2565 2566
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2567 2568

    Returns:
2569
        Variable: The tensor variable storing the convolution transpose result.
2570 2571

    Raises:
2572 2573
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2574 2575 2576 2577

    Examples:
       .. code-block:: python

2578 2579
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2580
    """
2581 2582
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2583
    if not isinstance(input, Variable):
2584
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2585 2586
    input_channel = input.shape[1]

2587 2588 2589
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2590

C
chengduoZH 已提交
2591 2592 2593
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2594 2595 2596 2597 2598 2599
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2600 2601 2602
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2603

2604
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2605
                         padding[0] - 1) // dilation[0] + 1
2606
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2607
                         padding[1] - 1) // dilation[1] + 1
2608
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2609
                         padding[2] - 1) // dilation[2] + 1
2610
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2611
    else:
2612 2613
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2614

2615
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2616
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2617 2618 2619
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2620
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2621
    helper.append_op(
2622
        type=l_type,
Y
Yu Yang 已提交
2623 2624
        inputs={'Input': [input],
                'Filter': [img_filter]},
2625
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2626 2627 2628 2629
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2630
            'groups': groups,
C
chengduoZH 已提交
2631 2632
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2633

2634 2635
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2636
    return out
Y
yangyaming 已提交
2637 2638


Y
yangyaming 已提交
2639
def sequence_expand(x, y, ref_level=-1, name=None):
2640
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2641 2642 2643 2644
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2645 2646 2647 2648 2649

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2650
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2651
                x.data = [[a], [b], [c], [d]]
2652 2653 2654
                x.dims = [4, 1]

            y is a LoDTensor:
2655 2656
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2657

Y
yangyaming 已提交
2658
            ref_level: 0
2659

Y
yangyaming 已提交
2660
            then output is a 1-level LoDTensor:
2661
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2662
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2663 2664 2665 2666
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2667
                x.data = [[a], [b], [c]]
2668 2669 2670
                x.dims = [3, 1]

            y is a LoDTensor:
2671
                y.lod = [[2, 0, 3]]
2672

Y
yangyaming 已提交
2673
            ref_level: -1
2674

Y
yangyaming 已提交
2675 2676 2677
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2678 2679 2680
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2681 2682
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2683
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2684
                        will be named automatically.
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2695
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2696
    """
Y
yangyaming 已提交
2697
    helper = LayerHelper('sequence_expand', input=x, **locals())
2698 2699 2700
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2701 2702 2703 2704 2705
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2706
    return tmp
2707 2708


C
chengduo 已提交
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
        pad_value(Variable): The Variable that holds values that will be fill 
            into padded steps. It can be a scalar or a tensor whose shape 
            equals to time steps in sequences. If it's a scalar, it will be 
            automatically broadcasted to the shape of time step.
        maxlen(int, default None): The length of padded sequences. It can be 
            None or any positive int. When it is None, all sequences will be 
            padded up to the length of the longest one among them; when it a 
            certain positive value, it must be greater than the length of the 
            longest original sequence."
    
    Returns:
2792 2793
        Variable: The padded sequence batch and the original lengths before 
                  padding. All sequences has the same length.
F
fengjiayi 已提交
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
    
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2809 2810 2811 2812 2813
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2814 2815 2816 2817 2818 2819
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2820 2821
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2822
        attrs={'padded_length': maxlen})
2823
    return out, length
F
fengjiayi 已提交
2824 2825


2826 2827 2828 2829 2830 2831 2832 2833 2834
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2835 2836
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2837 2838 2839

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2840 2841

    This layer does the search in beams for one time step. Specifically, it
2842 2843 2844 2845 2846 2847
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2848

2849 2850 2851 2852 2853 2854 2855 2856
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2857

2858
    Args:
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2884

2885
    Returns:
2886 2887
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2888 2889 2890 2891

    Examples:
        .. code-block:: python

2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2920
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2938 2939 2940 2941 2942 2943 2944
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2945

2946 2947 2948 2949 2950 2951 2952 2953 2954
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2955

2956 2957 2958 2959 2960 2961
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2962

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2988 2989 2990 2991
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2992
              param_attr=None,
C
caoying03 已提交
2993 2994
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2995 2996 2997 2998
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2999
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3000

3001
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3002

3003
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3004

3005
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3006 3007 3008

            h_t & = o_t tanh(c_t)

3009 3010 3011 3012 3013 3014
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3015 3016 3017

        .. math::

3018
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3019 3020 3021 3022 3023 3024 3025 3026

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3027
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3028 3029

    Args:
Y
yangyaming 已提交
3030 3031 3032 3033 3034 3035
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3036
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
3037 3038
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
3039 3040
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
3041 3042
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3043 3044

    Returns:
Y
yangyaming 已提交
3045
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3046 3047

    Raises:
3048 3049 3050 3051
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3052 3053 3054 3055 3056 3057

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3058
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3059
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3060
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3077
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3078 3079 3080 3081
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3082 3083
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3084 3085 3086
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3087
    size = cell_t_prev.shape[1]
3088
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3089 3090
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3091
                param_attr=param_attr,
3092
                bias_attr=bias_attr)
Y
yangyaming 已提交
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3105
    return h, c
G
guosheng 已提交
3106 3107


C
caoying03 已提交
3108
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3109
    """
Y
yangyaming 已提交
3110
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3111 3112 3113

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3114
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3115 3116
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3117 3118
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3119
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3120
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3121
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3122 3123
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3124 3125 3126

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3127

G
guosheng 已提交
3128 3129 3130 3131 3132 3133
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3134
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3135 3136 3137 3138
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3139 3140 3141 3142

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3143
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3144 3145 3146
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3147 3148 3149
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3150 3151
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3152 3153 3154 3155 3156
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3157
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3158 3159 3160 3161
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3162 3163


C
caoying03 已提交
3164
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3165
    """
Y
Yibing Liu 已提交
3166
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3167 3168 3169

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3170 3171 3172
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3173
            must be in the range :math:`[-rank(input), rank(input))`. If
3174
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3175
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3176 3177
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3178
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3179
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3180
                       will be named automatically.
G
guosheng 已提交
3181 3182

    Returns:
Y
Yibing Liu 已提交
3183
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3184

G
guosheng 已提交
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3195 3196
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3197 3198 3199 3200 3201 3202 3203

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3204 3205 3206
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3207 3208
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3209 3210 3211 3212 3213
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3214
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3215 3216 3217 3218
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3219 3220


C
caoying03 已提交
3221
def reduce_max(input, dim=None, keep_dim=False, name=None):
3222
    """
Y
yangyaming 已提交
3223
    Computes the maximum of tensor elements over the given dimension.
3224 3225 3226

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3227
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3228 3229 3230
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3231
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3232 3233
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3234
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3235 3236
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3237 3238 3239

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3240

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3252 3253 3254 3255 3256 3257 3258

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3259 3260 3261
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3262 3263
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3264 3265 3266 3267 3268
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3269
            'dim': dim if dim != None else [0],
3270 3271 3272 3273 3274 3275
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3276
def reduce_min(input, dim=None, keep_dim=False, name=None):
3277
    """
Y
yangyaming 已提交
3278
    Computes the minimum of tensor elements over the given dimension.
3279 3280 3281

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3282
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3283 3284 3285
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3286
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3287 3288
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3289
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3290 3291
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3292 3293 3294

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3295

3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3307 3308 3309 3310 3311 3312 3313

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3314 3315 3316
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3317 3318
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3319 3320 3321 3322 3323
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3324
            'dim': dim if dim != None else [0],
3325 3326 3327 3328
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3329 3330


3331 3332 3333 3334 3335 3336
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3337
        dim (list|int|None): The dimensions along which the product is performed. If
3338 3339
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3340 3341
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3342 3343 3344
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3345
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3346
            layer will be named automatically.
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3361
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3362
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3363 3364 3365 3366 3367 3368 3369

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3370 3371 3372
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3373 3374
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3375 3376 3377 3378 3379
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3380
            'dim': dim if dim != None else [0],
3381 3382 3383 3384 3385 3386
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3387
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3388
    """
C
caoying03 已提交
3389
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3390 3391 3392

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3393 3394 3395 3396 3397
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3398
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3399
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3400
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3401 3402
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3403 3404

    Returns:
D
dzhwinter 已提交
3405
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3406 3407 3408 3409 3410 3411 3412 3413 3414

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3415 3416
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3446 3447 3448 3449 3450 3451 3452 3453 3454


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3455
    .. math::
3456 3457

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3458 3459 3460 3461 3462

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3463
        x(Variable|list): The input tensor to l2_normalize layer.
3464
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3465 3466
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3467
        epsilon(float): The epsilon value is used to avoid division by zero, \
3468
            the defalut value is 1e-10.
3469
        name(str|None): A name for this layer(optional). If set None, the layer \
3470
            will be named automatically.
C
caoying03 已提交
3471 3472

    Returns:
3473
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3474 3475

    Examples:
3476

C
caoying03 已提交
3477 3478
        .. code-block:: python

3479 3480 3481 3482
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3483 3484
    """

F
fengjiayi 已提交
3485 3486
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3487 3488
    helper = LayerHelper("l2_normalize", **locals())

3489 3490
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3491
    helper.append_op(
3492 3493 3494 3495
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3496
        attrs={
3497 3498
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3499 3500
        })
    return out
3501 3502


S
sneaxiy 已提交
3503
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3504
    """
Y
ying 已提交
3505 3506 3507 3508
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3509

C
chengduoZH 已提交
3510
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3511
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3512

3513 3514 3515 3516 3517
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3518
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3519

C
chengduoZH 已提交
3520
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3521
      performs in the following way.
G
guosheng 已提交
3522

3523
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3524
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3525
        last two dimensions and a batched matrix multiply supporting broadcast
3526
        applies on the two tensors.
G
guosheng 已提交
3527

Y
ying 已提交
3528 3529
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3530
    removed after matrix multiplication.
G
guosheng 已提交
3531 3532 3533

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3534 3535 3536
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3537
        alpha (float): The scale of output. Default 1.0.
3538
        name(str|None): A name for this layer(optional). If set None, the layer
3539
            will be named automatically.
G
guosheng 已提交
3540 3541

    Returns:
3542
        Variable: The product Tensor variable.
G
guosheng 已提交
3543

G
guosheng 已提交
3544 3545 3546
    Examples:
        .. code-block:: python

3547
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3548 3549
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3550

3551 3552
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3553

3554 3555
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3556

3557 3558
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3559 3560 3561 3562

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3563 3564
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3565

Y
ying 已提交
3566
            # x: [M], y: [N]
3567
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3568
    """
Y
ying 已提交
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3581
            y_shape = y_shape + [1]
Y
ying 已提交
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3598
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3599
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3600
    helper.append_op(
3601 3602 3603 3604
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3605 3606 3607
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3608
            'alpha': alpha,
S
sneaxiy 已提交
3609
        })
3610
    return out
3611 3612


3613
def topk(input, k, name=None):
Q
qingqing01 已提交
3614 3615 3616 3617
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3618
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3619 3620 3621 3622 3623 3624
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3646 3647 3648
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3649
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3650
                 of input.
3651
        name(str|None): A name for this layer(optional). If set None, the layer
3652
                       will be named automatically.
F
fengjiayi 已提交
3653
                       Default: None
Q
qingqing01 已提交
3654 3655

    Returns:
3656 3657 3658
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3659
        within the last dimension of input.
Q
qingqing01 已提交
3660

F
fengjiayi 已提交
3661 3662
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3683
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3684
    """
Y
ying 已提交
3685 3686 3687 3688 3689 3690 3691 3692 3693
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3694

Y
ying 已提交
3695
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3696

3697
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3698 3699
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3700
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3701

3702
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3703 3704
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3705

3706 3707 3708
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3709
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3710
                          the length of reference string.
3711
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3712
                                     calculating edit distance.
3713
        name (str): The name of this layer. It is optional.
3714

W
wanghaoshuang 已提交
3715
    Returns:
W
wanghaoshuang 已提交
3716
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3717 3718 3719 3720 3721

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3722
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3723
            cost = fluid.layers.edit_distance(input=x,label=y)
3724
    """
3725
    helper = LayerHelper("edit_distance", **locals())
3726

3727
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3728
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3729 3730 3731 3732 3733 3734 3735
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3736
            attrs={"tokens": ignored_tokens})
3737 3738 3739 3740 3741
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3742
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3743
            attrs={"tokens": ignored_tokens})
3744 3745
        label = erased_label

3746 3747
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3748
    sequence_num = helper.create_tmp_variable(dtype="int64")
3749 3750 3751 3752
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3753 3754
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3755 3756
        attrs={"normalized": normalized})

3757
    return edit_distance_out, sequence_num
3758 3759 3760 3761 3762


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3763

Y
ying 已提交
3764 3765 3766 3767
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3785
        input.lod = [[4, 4]]
3786 3787 3788 3789 3790 3791 3792

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3793
        output.lod = [[2, 1]]
3794 3795 3796

    Args:

Y
ying 已提交
3797 3798 3799 3800 3801 3802 3803 3804 3805
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3806
        name (str): The name of this layer. It is optional.
3807 3808

    Returns:
3809
        Variable: CTC greedy decode result. If all the sequences in result were
3810
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3811 3812 3813 3814 3815

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3816

3817
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3818
    """
3819
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3820
    _, topk_indices = topk(input, k=1)
3821 3822 3823 3824 3825 3826

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3827
        outputs={"Output": [ctc_out]},
3828 3829
        attrs={"merge_repeated": True,
               "blank": blank})
3830
    return ctc_out
3831 3832


F
fengjiayi 已提交
3833
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3834
    """
3835 3836
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3837
    to compute Connectionist Temporal Classification (CTC) loss.
3838 3839
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3840 3841 3842
    input tensor.

    Args:
3843
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3844 3845 3846 3847
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3848
       label (Variable): The ground truth of variable-length sequence,
3849 3850 3851
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3852 3853
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3854 3855 3856
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3857
         follewed by a mean_op.
W
wanghaoshuang 已提交
3858 3859

    Returns:
3860 3861
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3862 3863

    Examples:
3864

W
wanghaoshuang 已提交
3865
        .. code-block:: python
3866

3867 3868 3869
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3870 3871

    """
F
fengjiayi 已提交
3872
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3899 3900 3901
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3902 3903 3904 3905 3906
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3907

3908
            out.lod  = [[0, 1, 3]]
3909 3910 3911 3912

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3913 3914 3915 3916 3917 3918 3919
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3920 3921 3922

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3923 3924

    Returns:
3925

3926 3927 3928 3929 3930
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3931
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3932
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3933 3934 3935 3936 3937 3938 3939 3940 3941
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3942 3943


3944 3945 3946 3947
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3948 3949 3950 3951 3952 3953 3954
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3955 3956 3957 3958 3959 3960 3961
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3962 3963
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3964
            sample is 1.0.
3965 3966 3967
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3968

3969
    Returns:
Y
Yibing Liu 已提交
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3997
    """
Y
Yang Yu 已提交
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
4017 4018 4019 4020 4021 4022 4023 4024 4025
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4042
    return cost / (num_neg_samples + 1)
4043 4044


G
guosheng 已提交
4045
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
4046 4047
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4048
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4049 4050 4051 4052 4053 4054 4055 4056 4057
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4058

W
weixing02 已提交
4059
    Args:
M
minqiyang 已提交
4060
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4061 4062 4063 4064 4065
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
4066 4067
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4068
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4069 4070
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4071 4072 4073 4074 4075 4076 4077 4078

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4079 4080 4081
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4082 4083 4084 4085 4086 4087 4088 4089
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4090
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4091 4092 4093 4094 4095
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4096 4097 4098 4099 4100 4101 4102 4103
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4104 4105
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4106
        inputs=inputs,
W
weixing02 已提交
4107 4108 4109 4110 4111 4112
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4113
def transpose(x, perm, name=None):
Y
ying 已提交
4114 4115 4116 4117 4118 4119 4120
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4121 4122 4123
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4124 4125 4126 4127 4128 4129 4130 4131

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4132
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4133 4134
    """

Y
fix ci.  
ying 已提交
4135
    if len(perm) != len(x.shape):
Y
ying 已提交
4136 4137 4138
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4139 4140 4141 4142 4143 4144
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4145 4146

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4147
    out = helper.create_tmp_variable(x.dtype)
4148
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4149
    helper.append_op(
4150
        type='transpose2',
Y
fix ci.  
ying 已提交
4151
        inputs={'X': [x]},
4152 4153
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4154 4155
        attrs={'axis': perm})
    return out
4156 4157


4158 4159 4160 4161 4162 4163 4164
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4165
    """
4166 4167 4168 4169 4170 4171 4172
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4201 4202 4203 4204 4205 4206 4207 4208 4209
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4210 4211 4212
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4213 4214 4215 4216 4217
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4245 4246 4247
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4260
            output.dims = {8, 8}
4261

4262
            output.lod = [[4, 4]]
4263

D
dzhwinter 已提交
4264
     Examples:
4265 4266 4267

        .. code-block:: python

4268 4269
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4270 4271

    """
W
wanghaoshuang 已提交
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4282 4283 4284 4285 4286 4287 4288
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4289
    helper = LayerHelper('im2sequence', **locals())
4290 4291
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4292
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4293
    return out
4294 4295


Y
yuyang18 已提交
4296
@templatedoc()
4297
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4298 4299
    """
    ${comment}
4300 4301

    Args:
Y
yuyang18 已提交
4302
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4303 4304
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4305 4306 4307 4308 4309
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4310
        ${out_comment}.
4311 4312

    Examples:
Y
yuyang18 已提交
4313 4314 4315 4316
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4329
    return helper.append_activation(out)
4330 4331


Y
yuyang18 已提交
4332
@templatedoc()
4333 4334
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4335 4336 4337 4338 4339 4340 4341
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4342 4343

    Args:
Y
yuyang18 已提交
4344 4345
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4346 4347

    Returns:
Y
yuyang18 已提交
4348
        ${out_comment}.
4349 4350
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4351 4352 4353 4354 4355 4356

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4357 4358 4359 4360 4361 4362
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4363 4364


4365 4366 4367 4368
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4369 4370
    """
    **Softmax With Cross Entropy Operator.**
4371

4372 4373 4374 4375
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4376

4377 4378 4379
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4380

4381 4382 4383
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4384

4385
    The equation is as follows:
4386

4387
    1) Hard label (one-hot label, so every sample has exactly one class)
4388

4389 4390 4391 4392
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4393

4394 4395 4396
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4397

4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
4410 4411 4412 4413
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100

4414 4415 4416 4417 4418 4419 4420 4421 4422
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4423 4424
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4435 4436
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4437 4438 4439 4440 4441
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4442 4443
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4444
    For each instance, it computes the smooth L1 loss element by element first
4445
    and then sums all the losses. So the shape of ouput Variable is
4446
    [batch_size, 1].
4447

4448 4449
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4450
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4451
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4452
            L1 loss op with same shape as :attr:`x`.
4453
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4454 4455
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4456
            by this tensor element by element.
4457
        outside_weight (Variable|None): A tensor with rank at least 2. This
4458 4459
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4460
            element by element.
4461
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4462 4463
           scalar with default value 1.0.

4464
    Returns:
4465
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4466 4467 4468 4469 4470

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4471 4472
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4473
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4474
            out = fluid.layers.smooth_l1(x=fc, y=label)
4475
    """
4476

4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4492 4493 4494 4495


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4496
    This layer creates the one-hot representations for input indices.
4497 4498

    Args:
Y
Yibing Liu 已提交
4499 4500
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4501 4502

    Returns:
Y
Yibing Liu 已提交
4503
        Variable: The one-hot representations of input.
4504 4505

    Examples:
C
caoying03 已提交
4506
        .. code-block:: python
4507

Y
Yibing Liu 已提交
4508 4509
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4510 4511 4512 4513 4514 4515 4516 4517 4518
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4519 4520


Y
Yu Yang 已提交
4521
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4522
    """
Y
yi.wu 已提交
4523 4524 4525
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4526 4527 4528 4529 4530 4531

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4532 4533
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4534 4535 4536 4537 4538 4539

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4540 4541
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4542 4543
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4544 4545 4546 4547 4548
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4549
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4550
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4551 4552
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4553 4554
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4555 4556 4557
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4558 4559


4560
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4561
    """
C
caoying03 已提交
4562 4563
    Gives a new shape to the input Tensor without changing its data.

4564 4565 4566 4567 4568
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4569

4570
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4571

4572 4573 4574 4575
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4576
    2. 0 means the actual dimension value is going to be copied from the
4577 4578 4579 4580
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4581 4582

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4583
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4584
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4585

4586
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4587 4588
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4589 4590
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4591
    dimensions.
C
caoying03 已提交
4592

4593
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4594 4595 4596 4597
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4598 4599

    Args:
4600
        x(variable): The input tensor.
C
caoying03 已提交
4601 4602
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4603 4604 4605 4606 4607
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4608
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4609 4610 4611 4612
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4613
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4614

4615 4616
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4617

X
Xin Pan 已提交
4618 4619 4620
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4621 4622
    Examples:
        .. code-block:: python
G
guosheng 已提交
4623

4624
            data = fluid.layers.data(
4625
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4626
            reshaped = fluid.layers.reshape(
4627
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4628 4629 4630
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4631
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4632 4633 4634 4635 4636
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4637

4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4653
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4654
    out = helper.create_tmp_variable(dtype=x.dtype)
4655
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4656
    helper.append_op(
4657
        type="reshape2",
X
Xin Pan 已提交
4658
        inputs=inputs,
D
dzhwinter 已提交
4659
        attrs={"shape": shape},
4660 4661
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4662

D
dzhwinter 已提交
4663
    return helper.append_activation(out)
4664

4665

4666
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
    """
    Remove single-dimensional entries from the shape of a tensor. Takes a 
    parameter axes with a list of axes to squeeze. If axes is not provided, all 
    the single dimensions will be removed from the shape. If an axis is 
    selected with shape entry not equal to one, an error is raised.
        
    Examples:
    Case 1:
      Given 
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
        and 
          axes = []
        we get:
          Out.shape = (3, 5)
    
    Args:
4690
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4691
        axes (list): List of integers, indicating the dimensions to be squeezed.
4692
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4693 4694 4695 4696 4697 4698 4699 4700

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4701
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4702 4703
    """
    helper = LayerHelper("squeeze", **locals())
4704
    out = helper.create_tmp_variable(dtype=input.dtype)
4705
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4706
    helper.append_op(
4707
        type="squeeze2",
4708
        inputs={"X": input},
Y
Yibing Liu 已提交
4709
        attrs={"axes": axes},
4710 4711
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4712

4713 4714 4715
    return out


4716
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
    """
    Insert single-dimensional entries to the shape of a tensor. Takes one 
    required argument axes, a list of dimensions that will be inserted. 
    Dimension indices in axes are as seen in the output tensor. 

    For example: 
      Given a tensor such that tensor with shape [3, 4, 5], 
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
    
    Args:
4727
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4728
        axes (list): List of integers, indicating the dimensions to be inserted.
4729
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4730 4731 4732 4733 4734 4735 4736 4737

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4738
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4739 4740
    """
    helper = LayerHelper("unsqueeze", **locals())
4741
    out = helper.create_tmp_variable(dtype=input.dtype)
4742
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4743
    helper.append_op(
4744
        type="unsqueeze2",
4745
        inputs={"X": input},
Y
Yibing Liu 已提交
4746
        attrs={"axes": axes},
4747 4748
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4749

4750 4751
    return out

4752

Y
yangyaming 已提交
4753
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4754
    """
Y
Yibing Liu 已提交
4755
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4756 4757 4758 4759
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4760
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4761 4762 4763 4764 4765 4766

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4767
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4768 4769 4770
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4771
            target_lod: [4, 2]
Y
yangyaming 已提交
4772 4773

            then we get a 1-level LoDTensor:
4774
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4775 4776 4777 4778 4779 4780
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4781
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4782 4783 4784 4785
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4786
                y.data = [[2, 4]]
Y
yangyaming 已提交
4787 4788 4789
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4790
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4791 4792 4793 4794 4795 4796
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4797
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4798 4799 4800 4801
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4802
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4803 4804 4805 4806
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4807
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4808 4809 4810 4811 4812
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4813
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4814
                           from :attr:`y`.
Y
yangyaming 已提交
4815
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4816
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4817 4818

    Returns:
Y
Yibing Liu 已提交
4819
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4820 4821

    Raises:
Y
Yibing Liu 已提交
4822
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4858
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4887 4888
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4916 4917 4918 4919


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4920
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4921
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4922

G
guosheng 已提交
4923 4924 4925 4926
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4949
                         The length of :attr:paddings must be
G
guosheng 已提交
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4960

G
guosheng 已提交
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4975 4976


C
chengduo 已提交
4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5057 5058 5059 5060 5061 5062 5063
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5064 5065
    called label-smoothing regularization (LSR).

5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5089
                              be :math:`(1, class\_num)`.
5090 5091
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5092
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5120 5121


Y
yi.wu 已提交
5122
@templatedoc()
5123 5124
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5125
    ${comment}
5126 5127

    Args:
Y
yi.wu 已提交
5128 5129
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5130 5131 5132
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5133 5134

    Returns:
Y
update  
yi.wu 已提交
5135
        Variable: ${out_comment}.
5136 5137

    Examples:
5138 5139
        .. code-block:: python

5140
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5186 5187
        .. code-block:: python

W
whs 已提交
5188 5189 5190 5191
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5192
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5193 5194 5195 5196 5197 5198
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5199 5200


5201 5202 5203 5204 5205
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5206
    """
Q
qiaolongfei 已提交
5207
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5208

5209
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5210 5211 5212
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5213

5214
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5215

5216
    Args:
5217
        input (Variable): The input tensor of image resize layer,
5218 5219
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5220
        out_shape(list|tuple|Variable|None): Output shape of image resize
5221 5222
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5223
        scale(float|None): The multiplier for the input height or width.
5224 5225 5226
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5227 5228
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5229 5230
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5231 5232

    Returns:
Q
update  
qiaolongfei 已提交
5233 5234
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5235

5236 5237 5238
    Examples:
        .. code-block:: python

5239
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5240
    """
5241 5242 5243 5244
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5245 5246
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5247 5248
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5249 5250 5251 5252

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5253 5254 5255
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5256
    if out_shape is not None:
B
baiyf 已提交
5257 5258 5259
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5260 5261 5262 5263 5264 5265
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5266 5267 5268 5269
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5270 5271
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5272
        type=resample_methods[resample],
5273
        inputs=inputs,
5274 5275 5276 5277
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5278 5279


Y
yuyang18 已提交
5280
@templatedoc(op_type="bilinear_interp")
5281 5282
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5283 5284 5285 5286 5287 5288
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5289

Y
yuyang18 已提交
5290 5291 5292 5293 5294 5295 5296 5297
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5298 5299 5300 5301 5302 5303 5304
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5305 5306 5307
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5308 5309 5310 5311 5312 5313 5314
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5315
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5316

5317
    Returns:
Q
update  
qiaolongfei 已提交
5318
        Variable: The output is a 4-D tensor of the shape
5319
        (num_batches, channls, out_h, out_w).
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5330 5331 5332
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5333 5334 5335
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5336 5337
def gather(input, index):
    """
Q
qiaolongfei 已提交
5338 5339
    **Gather Layer**

5340
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5341 5342 5343 5344
    of X indexed by `index` and concatenate them together.

    .. math::

5345
        Out = X[Index]
W
whs 已提交
5346 5347 5348 5349 5350 5351 5352


    .. code-block:: text


                Given:

5353 5354
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5365
        input (Variable): The source input with rank>=1.
W
whs 已提交
5366 5367 5368 5369 5370 5371
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5372

W
whs 已提交
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5502

5503 5504 5505
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5506
    """
F
stash  
fengjiayi 已提交
5507
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5508
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5509
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5510
    if seed is None:
5511
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5512
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5513
    if isinstance(seed, int):
F
fengjiayi 已提交
5514 5515 5516 5517 5518
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5519 5520 5521 5522
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5523
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5524 5525
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5526 5527
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5528
    return out
W
whs 已提交
5529 5530


5531
def log(x, name=None):
W
wanghaoshuang 已提交
5532 5533 5534 5535 5536
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5537
        Out = \\ln(x)
W
wanghaoshuang 已提交
5538 5539

    Args:
5540
        x (Variable): Input tensor.
5541 5542
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5543 5544 5545 5546 5547 5548 5549 5550

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5551
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5552 5553
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5554
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5555
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5556
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5557 5558 5559
    return out


5560
def relu(x, name=None):
W
wanghaoshuang 已提交
5561 5562
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5563
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5564 5565 5566 5567
    the tensor elementwise.

    .. math::

5568
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5569 5570

    Args:
5571
        x (Variable): The input tensor.
5572 5573
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5574 5575 5576 5577 5578 5579 5580 5581

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5582
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5583 5584
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5585
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5586
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5587
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5588
    return out
5589 5590


W
whs 已提交
5591 5592 5593
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5594 5595 5596 5597
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5598
    .. math::
5599 5600

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5601

5602
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5603 5604 5605 5606 5607
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5608
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5609
                           Its shape should be the same as input.
5610
        num_classes (int): The possible number of labels.
W
whs 已提交
5611 5612 5613 5614

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5615
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5616 5617 5618 5619

    Examples:

        .. code-block:: python
5620

W
whs 已提交
5621 5622 5623 5624 5625 5626 5627 5628 5629
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5630 5631
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5632
        outputs={
W
whs 已提交
5633 5634 5635
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5636 5637 5638
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5713
                    isinstance(shape, Variable)):
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5737 5738 5739 5740 5741 5742 5743 5744 5745 5746


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5747

5748 5749
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5750

5751 5752 5753 5754
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5755

5756 5757 5758 5759 5760
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5761 5762 5763

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5808 5809


W
whs 已提交
5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
      
      X = [[1, 2, 3],
           [4, 5, 6]]
      
      Case 0:
      
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
        
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
      
      Case 1:
      
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
        
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
        
      Case 2:
      
        paddings = [0, 1, 2, 1],
        mode = 'edge'
        
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
    
  
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


J
jerrywgz 已提交
5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
5912 5913
	name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 
J
jerrywgz 已提交
5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
5964

5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
5975 5976
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
5992
        ValueError: If axis is not in range [0, rank(x)].
5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6010
    x_shape = helper.create_tmp_variable(x.dtype)
6011
    helper.append_op(
6012
        type='flatten2',
6013
        inputs={"X": x},
6014 6015
        outputs={'Out': out,
                 'XShape': x_shape},
6016 6017
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6018 6019


C
chenweihang 已提交
6020
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6021
    """
C
chenweihang 已提交
6022
    Generate a new sequence for the input index sequence, which enumerates all the
C
chenweihang 已提交
6023 6024 6025
    sub-sequences with length `win_size` of the input. 
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
C
chenweihang 已提交
6026 6027 6028 6029 6030
    
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6031
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6032 6033 6034 6035 6036 6037
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6038
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6039 6040 6041
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6042 6043 6044
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6056
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6057 6058 6059 6060 6061 6062
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
6063

6064

S
sneaxiy 已提交
6065 6066 6067 6068 6069 6070 6071 6072 6073
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6074

S
sneaxiy 已提交
6075
    .. math::
6076

S
sneaxiy 已提交
6077 6078 6079
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6080
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6081 6082 6083 6084
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6085 6086 6087
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6088 6089
    Returns:
        Variable: The output sequence mask.
6090

S
sneaxiy 已提交
6091 6092
    """

Q
qingqing01 已提交
6093
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6094 6095 6096 6097 6098
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6099 6100 6101
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6102 6103
        outputs={'Y': out},
        attrs={
6104
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6105 6106 6107
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6108 6109


X
Xin Pan 已提交
6110
def stack(x, axis=0):
S
sneaxiy 已提交
6111 6112 6113 6114
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6115 6116 6117 6118 6119 6120 6121

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6122
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6123
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6124 6125

    Args:
6126
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6127
        axis (int|None): The axis along which all inputs are stacked.
6128

S
sneaxiy 已提交
6129 6130
    Returns:
        Variable: The stacked variable.
6131

S
sneaxiy 已提交
6132 6133
    """

X
Xin Pan 已提交
6134 6135 6136 6137 6138 6139 6140 6141
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6142 6143
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6144

X
Xin Pan 已提交
6145
    return out
D
dzhwinter 已提交
6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
   
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised. 

    Args:
        x (Variable): Input variable. 
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
    
    Returns:
        list(Variable): The unstacked variables.
    
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
        
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
        
        Attr(expand_times):  [1, 2, 2]
        
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
        
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
        
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out