parallel_executor.cc 19.8 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
qingqing01 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
C
chengduo 已提交
22
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
23

X
clean  
Xin Pan 已提交
24
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
25

Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/all_reduce_deps_pass.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
28
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
29
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
S
sneaxiy 已提交
30
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
31
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
33
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
34

Y
Yu Yang 已提交
35
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
36
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
37
#endif
Y
Yu Yang 已提交
38
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
39 40
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
41
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
42
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
43

Y
Yang Yang 已提交
44
namespace paddle {
Y
Yu Yang 已提交
45 46
namespace framework {

Y
Yu Yang 已提交
47
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
48
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
49
static bool gProfileStarted = false;
Y
Yu Yang 已提交
50
#endif
Y
Yu Yang 已提交
51 52 53
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
54
      : places_(places) {
Y
Yu Yang 已提交
55
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
56 57
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
58
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
59 60 61
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
62
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
63 64 65 66
#endif
      });
    }
  }
Y
Yu Yang 已提交
67

68 69 70 71 72 73 74 75 76 77 78
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
79

80
  ir::Graph *PrepareGCAndRefCnts(ir::Graph *graph, size_t max_memory_size);
S
sneaxiy 已提交
81 82 83 84 85 86 87 88 89 90 91 92

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
93
      }
S
sneaxiy 已提交
94
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
95 96 97
    }
  }

D
dzhwinter 已提交
98
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
99 100
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
101
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
102
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
103

P
peizhilin 已提交
104
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
105
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
106
#endif
C
chengduoZH 已提交
107 108
  bool own_local_scope_;
  bool use_cuda_;
109
  bool use_all_reduce_;
110
  size_t nranks_;
S
sneaxiy 已提交
111

S
sneaxiy 已提交
112 113 114 115 116 117
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
118 119
};

120 121
ir::Graph *ParallelExecutorPrivate::PrepareGCAndRefCnts(
    ir::Graph *graph, size_t max_memory_size) {
S
sneaxiy 已提交
122 123 124 125 126
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
127
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
128
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
129 130
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
131 132
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
133
      } else {
S
sneaxiy 已提交
134 135
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
136 137
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
138
    } else {
S
sneaxiy 已提交
139
#endif
S
sneaxiy 已提交
140 141 142 143 144 145 146
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
147 148 149 150
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
151
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
152 153
  }

S
sneaxiy 已提交
154
  if (!gcs_.empty()) {
S
sneaxiy 已提交
155 156 157 158 159 160 161 162
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
163
    graph = ref_cnt_pass->Apply(graph);
S
sneaxiy 已提交
164 165 166 167 168 169 170 171 172 173
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
174
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
175 176 177 178 179
    VLOG(10) << "EagerDeletionPass Applied";
  }
  return graph;
}

180 181 182 183
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yan Xu 已提交
184 185 186 187 188 189 190 191
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
Y
Yu Yang 已提交
192
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
193
  member_->global_scope_ = scope;
194
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
195
  member_->build_strategy_ = build_strategy;
196 197
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
198
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
199 200 201 202
  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
203 204
  }

205
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
206
  // Create local scopes
207
  if (local_scopes.empty()) {
C
chengduoZH 已提交
208
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
209 210
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
211
      member_->local_scopes_.emplace_back(&scope->NewScope());
212 213
    }
  } else {
C
chengduoZH 已提交
214
    member_->own_local_scope_ = false;
215 216
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
217
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
218
    }
Y
Yu Yang 已提交
219 220
  }

Y
Yancey1989 已提交
221 222 223
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
224 225
  build_strategy.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy, build_strategy);
Y
Yancey1989 已提交
226 227 228 229
  if (build_strategy.enable_parallel_graph_)
    VLOG(0) << "The Executor would execute the graph by ParallelGraph "
               "Execution which can get better performance,"
            << "you can force it off by env FLAGS_enable_parallel_graph=0";
Y
Yancey1989 已提交
230

C
chengduoZH 已提交
231
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
232
// Bcast Parameters to all GPUs
P
peizhilin 已提交
233
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
234 235 236
    ncclUniqueId *nccl_id = nullptr;
    // gen_nccl_id operator can broadcast the ncclUniqueId for nccl2 collective
    // distributed training
C
chengduoZH 已提交
237
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
238
    if (nccl_id_var != nullptr) {
Y
Yancey1989 已提交
239
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
Y
Yancey1989 已提交
240
    }
X
Xin Pan 已提交
241
    if (build_strategy.enable_parallel_graph_ && member_->nranks_ > 1UL) {
Y
Yancey1989 已提交
242 243 244 245
      if (nccl_id == nullptr) {
        local_nccl_id_.reset(new ncclUniqueId());
        platform::dynload::ncclGetUniqueId(local_nccl_id_.get());
        nccl_id = local_nccl_id_.get();
Y
Yancey1989 已提交
246
      }
C
chengduoZH 已提交
247
    }
Y
Yancey1989 已提交
248

C
chengduoZH 已提交
249
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
250 251
        member_->places_, nccl_id, build_strategy.num_trainers_,
        build_strategy.trainer_id_));
Q
qingqing01 已提交
252

W
Wu Yi 已提交
253 254 255
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
256
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
257 258 259 260 261 262 263
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
    std::unique_ptr<platform::NCCLContextMap> dev_nccl_ctxs;
    if (nccl_id == nullptr) {
      dev_nccl_ctxs.reset(new platform::NCCLContextMap(member_->places_));
    }
Q
qingqing01 已提交
264 265 266 267 268
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
W
Wu Yi 已提交
269 270 271 272 273 274 275
      if (nccl_id != nullptr) {
        auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[dev_id]);
        dev_ctx->set_nccl_comm(nccl_ctx.comm());
      } else {
        auto &nccl_ctx = dev_nccl_ctxs->at(member_->places_[dev_id]);
        dev_ctx->set_nccl_comm(nccl_ctx.comm());
      }
Q
qingqing01 已提交
276
    }
C
chengduoZH 已提交
277 278
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
279
#endif
C
chengduoZH 已提交
280
  }
Y
Yan Xu 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
    if (build_strategy.num_trainers_ > 1) {
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };

  if (need_broadcast()) {
    BCastParamsToDevices(bcast_vars, build_strategy.trainer_id_);
Y
Yu Yang 已提交
296
  }
Y
Yan Xu 已提交
297

X
Xin Pan 已提交
298
// Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
299

X
Xin Pan 已提交
300 301
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
P
peizhilin 已提交
302
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
303 304 305
  graph = build_strategy.Apply(graph, member_->places_, loss_var_name,
                               member_->local_scopes_, member_->nranks_,
                               member_->use_cuda_, member_->nccl_ctxs_.get());
X
Xin Pan 已提交
306
#else
307 308 309
  graph = build_strategy.Apply(graph, member_->places_, loss_var_name,
                               member_->local_scopes_, member_->nranks_,
                               member_->use_cuda_);
X
Xin Pan 已提交
310

Y
Yu Yang 已提交
311
#endif
Y
Yancey1989 已提交
312
  auto max_memory_size = GetEagerDeletionThreshold();
D
dzhwinter 已提交
313 314
  VLOG(10) << "Eager Deletion Threshold "
           << static_cast<float>(max_memory_size) / (1 << 30);
Y
Yancey1989 已提交
315
  if (max_memory_size >= 0) {
316 317
    graph = member_->PrepareGCAndRefCnts(graph,
                                         static_cast<size_t>(max_memory_size));
Y
Yancey1989 已提交
318 319
  }

320 321
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
322
  std::vector<details::VariableInfo> var_infos;
Y
Yancey1989 已提交
323 324 325 326 327 328
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
Y
Yancey1989 已提交
329 330
    }
  }
Y
Yancey1989 已提交
331

W
Wu Yi 已提交
332 333
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Y
Yancey1989 已提交
334
    size_t graph_num = ir::GraphNum(*graph);
C
chengduo 已提交
335 336 337 338
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Y
Yancey1989 已提交
339
          << ir::GraphNum(*graph)
C
chengduo 已提交
340 341 342 343 344
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
345 346
  }

Y
Yancey1989 已提交
347
  if (build_strategy.enable_parallel_graph_) {
Y
Yancey1989 已提交
348
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
349 350
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
Y
Yancey1989 已提交
351
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
X
Xin Pan 已提交
352
        exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
353 354 355 356
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
X
Xin Pan 已提交
357 358 359 360 361 362 363
  } else {
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_, graph));
    } else {
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
364
    }
C
chengduoZH 已提交
365
  }
Y
yuyang18 已提交
366 367

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
Y
Yancey1989 已提交
368
      exec_strategy, member_->local_scopes_, std::move(var_infos),
Y
yuyang18 已提交
369
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
370 371
}

Y
Yancey1989 已提交
372
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
373
    const std::vector<std::string> &vars, int trainer_id) const {
X
Xin Pan 已提交
374
  // the initializing bcast, all vars would be bcast from device(0).
375
  for (auto &var : vars) {
X
Xin Pan 已提交
376
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
377
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
378 379 380 381
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
382
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
383
      VLOG(3) << "one in var not inited, return!";
384 385
      continue;
    }
386 387
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
388
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
389
      std::vector<void *> buffers;
C
chengduo 已提交
390
      buffers.reserve(member_->places_.size());
391 392 393 394 395
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
396

Y
Yan Xu 已提交
397
        if (i == 0 && trainer_id == 0) {
398 399
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
400
          auto local_scope = member_->local_scopes_[i];
401
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
402
          t->Resize(dims);
403
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
404
        }
405
        buffers.push_back(buffer);
406
      }
407

408 409 410 411 412 413
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
414 415
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
416
        }
417
        member_->nccl_ctxs_->WaitAll();
418
      }
C
chengduoZH 已提交
419 420 421
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
422 423
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
424
      for (size_t i = 1; i < member_->places_.size(); ++i) {
425 426
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
427 428 429 430

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
431 432 433 434 435 436
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
437
      }
Y
Stash  
Yu Yang 已提交
438 439
    }
  }
Y
Yu Yang 已提交
440
}
Y
Yu Yang 已提交
441

Y
Yu Yang 已提交
442 443
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
444 445 446
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
447 448
  }
#endif
Y
Yu Yang 已提交
449

X
Xin Pan 已提交
450
  platform::RecordBlock b(0);
S
sneaxiy 已提交
451 452
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
453
  }
S
sneaxiy 已提交
454 455 456
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
457
}
Y
Yu Yang 已提交
458

Y
Yu Yang 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
478 479 480 481 482
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
483 484
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
485
      auto t =
Y
Yu Yang 已提交
486
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
487 488
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
489 490 491 492
    }
  }
}

X
Xin Pan 已提交
493 494 495 496 497 498 499
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

X
Xin Pan 已提交
500 501 502
bool ParallelExecutor::EnableParallelGraphExecution(
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
    const BuildStrategy &build_strategy) const {
Y
Yancey1989 已提交
503
  if (!FLAGS_enable_parallel_graph) return false;
504

Y
Yancey1989 已提交
505
  bool enable_parallel_graph = true;
506

X
Xin Pan 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
520 521 522
    }
  }

Y
Yancey1989 已提交
523
  if (!member_->use_all_reduce_ || !member_->use_cuda_)
524

Y
Yancey1989 已提交
525 526 527
    if (build_strategy.enable_sequential_execution_ ||
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental)
      enable_parallel_graph = false;
Y
Yancey1989 已提交
528
  return enable_parallel_graph;
529 530
}

Y
Yu Yang 已提交
531
}  // namespace framework
Y
Yang Yang 已提交
532
}  // namespace paddle
S
sneaxiy 已提交
533

S
sneaxiy 已提交
534
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
535
USE_PASS(eager_deletion_pass);