manipulation.py 174.9 KB
Newer Older
L
Ligoml 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to manipulate a tensor

17
from collections import Counter
W
Wilber 已提交
18

myq406450149's avatar
myq406450149 已提交
19
import numpy as np
20

21
import paddle
22
from paddle import _C_ops, _legacy_C_ops
23
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only
24

25
from ..common_ops_import import _varbase_creator, fill_constant
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
from ..fluid.data_feeder import (
    check_dtype,
    check_type,
    check_variable_and_dtype,
    convert_dtype,
)
from ..fluid.framework import _in_legacy_dygraph, _non_static_mode
from ..fluid.layers import utils
from ..framework import (
    LayerHelper,
    convert_np_dtype_to_dtype_,
    core,
    dygraph_only,
    in_dygraph_mode,
)
from ..static import Variable
from .creation import _complex_to_real_dtype, _real_to_complex_dtype, zeros
43

44 45
__all__ = []

W
Wilber 已提交
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
def tensor_array_to_tensor(input, axis=1, use_stack=False, name=None):
    r"""
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]

    Args:
        input(TensorArray): A TensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Tensor: The concatenated or stacked tensor variable.
        Tensor: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.

    Examples:
        .. code-block:: python

            import numpy
            import paddle
            x0 = paddle.assign(numpy.random.rand(2, 2).astype("float32"))
            x1 = paddle.assign(numpy.random.rand(2, 2).astype("float32"))
            i = paddle.full(shape=[1], dtype="int64", fill_value=0)
            array = paddle.tensor.array.create_array(dtype='float32')
            paddle.tensor.array.array_write(x0, i, array)
            paddle.tensor.array.array_write(x1, i + 1, array)
            output, output_index = paddle.tensor.manipulation.tensor_array_to_tensor(input=array)
    """
    if _non_static_mode():
        assert isinstance(
            input, list
        ), "The 'input' in tensor_array_to_tensor must be list"
        from paddle import concat, stack

        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = paddle.to_tensor(
            np.array(list(map(lambda x: int(x.shape[axis]), input)))
        )
        return res, sizes

    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(
                input_x,
                'input[' + str(i) + ']',
                Variable,
                'tensor_array_to_tensor',
            )
    helper = LayerHelper('tensor_array_to_tensor', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
        type='tensor_array_to_tensor',
        inputs={'X': input},
        outputs={'Out': [out], 'OutIndex': [out_index]},
        attrs={'axis': axis, 'use_stack': use_stack},
    )
    return out, out_index


161 162 163
def cast(x, dtype):
    """

164
    Take in the Tensor :attr:`x` with :attr:`x.dtype` and cast it
165 166 167 168
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.

    Args:
169
        x (Tensor): An input N-D Tensor with data type bool, float16,
170
            float32, float64, int32, int64, uint8.
171
        dtype (np.dtype|str): Data type of the output:
172 173 174
            bool, float16, float32, float64, int8, int32, int64, uint8.

    Returns:
L
Ligoml 已提交
175
        Tensor, A Tensor with the same shape as input's.
176 177 178 179 180 181 182 183 184 185 186 187

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
    """
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
188
        return _C_ops.cast(x, dtype)
189 190 191 192

    if _non_static_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
193
        out = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
194 195
        return out

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'cast',
    )
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'cast',
    )
229 230 231

    helper = LayerHelper('cast', **locals())
    out = helper.create_variable_for_type_inference(
232 233 234 235 236 237 238 239
        dtype=dtype, stop_gradient=x.stop_gradient
    )
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype, 'out_dtype': out.dtype},
    )
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    return out


def slice(input, axes, starts, ends):
    """
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
    Following examples will explain how slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
            Then:
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
277

278 279 280 281 282 283 284 285 286 287 288
    Args:
        input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to .
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.

    Returns:
L
Ligoml 已提交
289
        Tensor, A ``Tensor``. The data type is same as ``input``.
290 291 292 293 294 295 296 297 298 299 300 301 302

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 5, 6], dtype='float32')
            # example 1:
            # attr starts is a list which doesn't contain tensor.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends)
Z
zyfncg 已提交
303
            # sliced_1 is input[1:3, 0:2, 2:4].
304 305 306 307 308

            # example 2:
            # attr starts is a list which contain tensor.
            minus_3 = paddle.full([1], -3, "int32")
            sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
Z
zyfncg 已提交
309
            # sliced_2 is input[1:3, 0:2, 2:4].
310 311 312 313 314 315 316 317 318 319
    """
    if in_dygraph_mode():
        attrs = ()
        starts_tensor = None
        ends_tensor = None

        if isinstance(axes, (list, tuple)):
            axes = list(axes)
            if len(axes) == 0:
                raise ValueError(
320 321
                    "Input axes should not be an empty list/tuple."
                )
322 323 324 325 326 327 328 329
            for i in range(len(axes)):
                if axes[i] < 0:
                    axes[i] = max(0, axes[i] + len(input.shape))
                else:
                    axes[i] = min(len(input.shape) - 1, axes[i])

        else:
            raise ValueError(
330 331 332 333
                "Input axes must be a python list or tuple, but reveived {}".format(
                    type(axes)
                )
            )
334 335 336 337 338 339 340 341

        infer_flags = list(1 for i in range(len(axes)))

        tmp_tensor_type = core.eager.Tensor

        if isinstance(starts, (list, tuple)):
            starts = [
                item.numpy().item(0)
342 343
                if isinstance(item, tmp_tensor_type)
                else item
344 345 346
                for item in starts
            ]
        elif isinstance(starts, tmp_tensor_type):
347 348
            tensor_t = starts.numpy()
            starts = [ele for ele in tensor_t]
349 350 351 352 353
            infer_flags = list(-1 for i in range(len(axes)))

        if isinstance(ends, (list, tuple)):
            ends = [
                item.numpy().item(0)
354 355 356
                if isinstance(item, tmp_tensor_type)
                else item
                for item in ends
357 358
            ]
        elif isinstance(ends, tmp_tensor_type):
359
            tensor_t = ends.numpy()
360
            ends = [ele for ele in tensor_t]
361
            infer_flags = list(-1 for i in range(len(axes)))
362

363
        return _C_ops.slice(input, axes, starts, ends, infer_flags, [])
364 365 366 367 368 369 370 371 372 373
    else:
        if _in_legacy_dygraph():
            attrs = ()
            starts_tensor = None
            ends_tensor = None

            if isinstance(axes, (list, tuple)):
                axes = list(axes)
                if len(axes) == 0:
                    raise ValueError(
374 375
                        "Input axes should not be an empty list/tuple."
                    )
376 377 378 379 380 381 382 383
                for i in range(len(axes)):
                    if axes[i] < 0:
                        axes[i] = max(0, axes[i] + len(input.shape))
                    else:
                        axes[i] = min(len(input.shape) - 1, axes[i])

            else:
                raise ValueError(
384 385 386 387
                    "Input axes must be a python list or tuple, but reveived {}".format(
                        type(axes)
                    )
                )
388 389 390 391 392 393 394 395

            infer_flags = list(1 for i in range(len(axes)))

            tmp_tensor_type = Variable

            if isinstance(starts, (list, tuple)):
                starts = [
                    item.numpy().item(0)
396 397
                    if isinstance(item, tmp_tensor_type)
                    else item
398 399 400 401 402 403 404 405 406 407 408
                    for item in starts
                ]
                attrs += ('starts', starts)
            elif isinstance(starts, tmp_tensor_type):
                starts_tensor = starts
                starts.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

            if isinstance(ends, (list, tuple)):
                ends = [
                    item.numpy().item(0)
409 410
                    if isinstance(item, tmp_tensor_type)
                    else item
411 412 413 414 415 416 417 418
                    for item in ends
                ]
                attrs += ('ends', ends)
            elif isinstance(ends, tmp_tensor_type):
                ends_tensor = ends
                ends_tensor.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

419 420 421 422 423 424 425 426 427 428 429 430
            return _legacy_C_ops.slice(
                input,
                starts_tensor,
                ends_tensor,
                None,
                None,
                'axes',
                axes,
                'infer_flags',
                infer_flags,
                *attrs,
            )
431 432 433

    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
434 435
            "Input starts must be an Variable, python list or tuple."
        )
436 437
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
438 439
            "Input ends must be an Variable, python list or tuple."
        )
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

    helper = LayerHelper('slice', **locals())

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
        if utils._contain_var(starts):
            inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        else:
            attrs['starts'] = starts

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
        if utils._contain_var(ends):
            inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        else:
            attrs['ends'] = ends

    # infer_flags
    attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
486 487 488 489 490
        dtype=helper.input_dtype('input')
    )
    helper.append_op(
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
    )
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

    return out


def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
L
Ligoml 已提交
508
        Tensor, A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
546
        return _C_ops.transpose(x, perm)
547 548
    else:
        if _in_legacy_dygraph():
549
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
550 551
            return out

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'transpose',
    )
567 568 569 570 571 572 573 574
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
575 576
            "the length of Input(perm) is %s." % (len(x.shape), len(perm))
        )
577 578 579 580 581
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
582 583
                "dimension %d." % (idx, perm[idx], len(x.shape))
            )
584 585 586 587

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
588 589 590 591 592 593
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
    return out


def unstack(x, axis=0, num=None):
    """
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.

    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised.

    Args:
        x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.

    Returns:
L
Ligoml 已提交
612
        list(Tensor), The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.
613 614 615 616 617 618 619 620 621

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = paddle.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]

    """
622
    if in_dygraph_mode():
623
        if num is None:
624 625 626
            num = x.shape[axis]
        if num == 0:
            return []
627
        return _C_ops.unstack(x, axis, num)
628

629
    if _non_static_mode():
630
        if num is None:
631 632 633
            num = x.shape[axis]
        if num == 0:
            return []
634
        return _legacy_C_ops.unstack(x, num, 'axis', int(axis), 'num', num)
635 636 637 638 639 640 641 642 643 644 645 646

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in range(num):
        outs.append(helper.create_variable_for_type_inference(x.dtype))

647 648 649 650 651 652
    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis, 'num': num},
    )
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
    return outs


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
    ::

        shard_size = (index_num + nshards - 1) // nshards

    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
674

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.

    Args:
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
        ignore_value (int): An integer value out of sharded index range.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
    """
    if in_dygraph_mode():
703 704 705
        return _C_ops.shard_index(
            input, index_num, nshards, shard_id, ignore_value
        )
706 707 708 709 710

    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
711 712 713
        raise ValueError(
            'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)
        )
714 715

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
716 717 718 719 720 721 722 723 724 725 726 727
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value,
        },
        stop_gradient=True,
    )
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
    return out


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1 (input is a 2-D Tensor):
            Input:
                X.shape = [3, 5]
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
                shape = [2, 2, -1]
                offsets = [0, 0, 1]
            Output:
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]

    Parameters:
        x (Tensor): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
771
        shape (list|tuple|Tensor, optional): The output shape is specified
772 773 774 775 776 777 778 779 780 781 782
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
            the same as the dimension size of `x`. If a Tensor, it should be a 1-D Tensor.
            When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
            must be the same as the dimension size of `x`. If a Tensor, it should be a 1-D
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
783
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
784 785

    Returns:
L
Ligoml 已提交
786
        Tensor, The cropped Tensor has same data type with `x`.
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816

    Examples:

        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
            # x.shape = [3, 3]
            # x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

            # shape can be a 1-D Tensor or list or tuple.
            shape = paddle.to_tensor([2, 2], dtype='int32')
            # shape = [2, 2]
            # shape = (2, 2)
            out = paddle.crop(x, shape)
            # out.shape = [2, 2]
            # out = [[1,2], [4,5]]

            # offsets can be a 1-D Tensor or list or tuple.
            offsets = paddle.to_tensor([0, 1], dtype='int32')
            # offsets = [1, 0]
            # offsets = (1, 1)
            out = paddle.crop(x, shape, offsets)
            # out.shape = [2, 2]
            # if offsets = [0, 0], out = [[1,2], [4,5]]
            # if offsets = [0, 1], out = [[2,3], [5,6]]
            # if offsets = [1, 0], out = [[4,5], [7,8]]
            # if offsets = [1, 1], out = [[5,6], [8,9]]

    """
817

818
    helper = LayerHelper('crop_tensor', **locals())
819 820 821 822 823 824 825 826 827
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'crop_tensor'
    )
    check_type(
        shape, 'shape', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
    check_type(
        offsets, 'offsets', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
828 829 830 831

    if offsets is None:
        offsets = [0] * len(x.shape)

P
PuQing 已提交
832 833 834
    if shape is None:
        shape = x.shape

835
    if in_dygraph_mode():
836
        return _C_ops.crop(x, shape, offsets)
837

838 839 840 841 842 843 844 845
    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
846 847
                % type(shape_val)
            )
848 849 850
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
851 852
                % str(shape_val)
            )
853 854 855
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
856 857
                % str(shape_val)
            )
858 859 860 861 862

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
863 864
                % type(offset_val)
            )
865 866 867
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
868 869
                % str(offset_val)
            )
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
        attrs['offsets'] = [-1] * len(x.shape)
    elif utils._contain_var(offsets):
        new_offsets_tensor = []
        offsets_attr = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
                offsets_attr.append(-1)
            else:
                _attr_offsets_check(dim)
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
                offsets_attr.append(dim)
        ipts['OffsetsTensor'] = new_offsets_tensor
        attrs['offsets'] = offsets_attr
    else:
        for offset in offsets:
            _attr_offsets_check(offset)
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
    elif utils._contain_var(shape):
        new_shape_tensor = []
        shape_attr = []
        for dim_size in shape:
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(0)
            else:
                _attr_shape_check(dim_size)
                temp_out = helper.create_variable_for_type_inference('int32')
910 911 912
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
913 914 915 916 917 918 919 920 921
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        for dim_size in shape:
            _attr_shape_check(dim_size)
        attrs['shape'] = shape

922 923 924 925 926 927
    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs,
    )
928 929 930
    return out


931 932 933 934 935 936 937 938 939
@dygraph_only
def fill_(x, value):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with value inplace.

    Args:
940 941
        x (Tensor): ``x`` is the Tensor we want to filled data inplace
        value (Scale): ``value`` is the value to be filled in x
942 943

    Returns:
L
Ligoml 已提交
944
        x(Tensor), Tensor x filled with value inplace
945 946 947 948 949 950 951 952 953 954 955 956 957 958

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.fill_(0)
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
    if not isinstance(value, (float, int)):
        raise TypeError(
959 960 961
            "The type of 'value'  must be int or float, but received %s."
            % (type(value))
        )
962
    if in_dygraph_mode():
963
        return _C_ops.fill_(x, value)
964
    else:
965 966 967
        return _legacy_C_ops.fill_any_(
            x, "value_float", float(value), "value_int", int(value)
        )
968 969 970 971 972 973 974 975 976 977 978


@dygraph_only
def zero_(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with zero inplace.

    Args:
979
        x (Tensor): ``x`` is the Tensor we want to filled with zero inplace
980 981

    Returns:
L
Ligoml 已提交
982
        x (Tensor), Tensor x filled with zero inplace
983 984 985 986 987 988 989 990 991 992 993 994

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.zero_()
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
995
    if in_dygraph_mode():
996
        return _C_ops.fill_(x, 0.0)
997
    else:
998 999 1000
        return _legacy_C_ops.fill_any_(
            x, "value_float", 0.0, "value_int", int(0)
        )
1001 1002


1003 1004 1005
@dygraph_only
def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
    """
1006 1007
    Note:
        This API is ONLY available in Dygraph mode.
1008

1009
    This function fill the value into the x Tensor's diagonal inplace.
1010

1011 1012 1013 1014 1015 1016
    Args:
        x(Tensor): ``x`` is the original Tensor
        value(Scale): ``value`` is the value to filled in x
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        wrap(bool,optional): the diagonal 'wrapped' after N columns for tall matrices.
        name(str,optional): Name for the operation (optional, default is None)
1017

1018
    Returns:
L
Ligoml 已提交
1019
        Tensor, Tensor with diagonal filled with value.
1020

1021 1022 1023 1024 1025 1026 1027
    Examples:
        .. code-block:: python
            import paddle
            x = paddle.ones((4, 3)) * 2
            x.fill_diagonal_(1.0)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
    """
Z
zhiboniu 已提交
1028

1029 1030 1031
    helper = LayerHelper("fill_diagonal_", **locals())
    check_type(x, 'X', (Variable), 'fill_diagonal_')
    dtype = helper.input_dtype('x')
1032 1033 1034 1035 1036 1037
    check_dtype(
        dtype,
        'X',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'fill_diagonal_',
    )
1038 1039 1040 1041 1042
    check_type(value, 'value', (bool, int, float), 'fill_diagonal_')
    check_type(wrap, 'wrap', (bool), 'fill_diagonal_')

    inshape = x.shape
    inshapeset = set(inshape)
1043
    assert len(inshape) >= 2, 'Tensor dims should >= 2 in fill_diagonal_ API'
1044
    if len(inshape) > 2:
1045 1046 1047
        assert (
            len(inshapeset) == 1
        ), 'Tensor dims should be equal while input dims > 2 in fill_diagonal_ API'
Z
zhiboniu 已提交
1048 1049
    if in_dygraph_mode():
        if len(inshape) == 2:
1050 1051
            return _C_ops.fill_diagonal_(x, value, offset, wrap)
        return _C_ops.fill_diagonal_(x, value, offset, True)
Z
zhiboniu 已提交
1052

1053
    if len(inshape) == 2:
1054 1055 1056 1057 1058 1059
        return _legacy_C_ops.fill_diagonal_(
            x, 'value', value, 'offset', offset, 'wrap', wrap
        )
    return _legacy_C_ops.fill_diagonal_(
        x, 'value', value, 'offset', offset, 'wrap', True
    )
1060 1061


1062 1063
def _fill_diagonal_tensor_impl(x, y, offset=0, dim1=0, dim2=1, inplace=False):
    inshape = x.shape
1064 1065 1066 1067 1068 1069 1070
    assert dim1 < len(inshape) and dim1 >= -len(
        inshape
    ), 'dim1 should between [-rank,rank) in fill_diagonal_tensor_'
    assert dim2 < len(inshape) and dim2 >= -len(
        inshape
    ), 'dim2 should between [-rank,rank) in fill_diagonal_tensor_'
    assert len(inshape) >= 2, 'Tensor dims should >= 2 in fill_diagonal_tensor_'
1071 1072 1073 1074 1075 1076 1077
    dim1 %= len(inshape)
    dim2 %= len(inshape)

    predshape = []
    for i in range(len(inshape)):
        if i != dim1 and i != dim2:
            predshape.append(inshape[i])
1078 1079 1080 1081
    diaglen = min(
        min(inshape[dim1], inshape[dim1] + offset),
        min(inshape[dim2], inshape[dim2] - offset),
    )
1082
    predshape.append(diaglen)
1083
    assert tuple(predshape) == tuple(
1084 1085
        y.shape
    ), "the y shape should be {}".format(predshape)
1086 1087 1088 1089
    if len(y.shape) == 1:
        y = y.reshape([1, -1])

    if inplace:
Z
zhiboniu 已提交
1090
        if in_dygraph_mode():
1091
            return _C_ops.fill_diagonal_tensor_(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
1092
        else:
1093 1094 1095
            return _legacy_C_ops.fill_diagonal_tensor_(
                x, y, 'offset', offset, 'dim1', dim1, 'dim2', dim2
            )
Z
zhiboniu 已提交
1096
    if in_dygraph_mode():
1097
        return _C_ops.fill_diagonal_tensor(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
1098
    else:
1099 1100 1101
        return _legacy_C_ops.fill_diagonal_tensor(
            x, y, 'offset', offset, 'dim1', dim1, 'dim2', dim2
        )
1102 1103 1104 1105


def fill_diagonal_tensor_(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
1106 1107
    Note:
        This API is ONLY available in Dygraph mode.
1108 1109 1110 1111

    This function fill the source Tensor y into the x Tensor's diagonal inplace.

    Args:
1112 1113 1114 1115 1116 1117
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1118 1119

    Returns:
L
Ligoml 已提交
1120
        Tensor, Tensor with diagonal filled with y.
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            x.fill_diagonal_tensor_(y)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
1133 1134 1135
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=True
    )
1136 1137 1138 1139 1140 1141 1142


def fill_diagonal_tensor(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    This function fill the source Tensor y into the x Tensor's diagonal.

    Args:
1143 1144 1145 1146 1147 1148
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1149 1150

    Returns:
L
Ligoml 已提交
1151
        Tensor, Tensor with diagonal filled with y.
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            nx = x.fill_diagonal_tensor(y)
            print(nx.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
1164 1165 1166
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=False
    )
1167 1168


Z
zhiboniu 已提交
1169 1170 1171
@dygraph_only
def tolist(x):
    """
1172 1173
    Note:
        This API is ONLY available in Dygraph mode.
Z
zhiboniu 已提交
1174 1175 1176 1177

    This function translate the paddle.Tensor to python list.

    Args:
1178
        x (Tensor): ``x`` is the Tensor we want to translate to list.
Z
zhiboniu 已提交
1179 1180

    Returns:
L
Ligoml 已提交
1181
        list, A list that contain the same value of current Tensor.
Z
zhiboniu 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199


    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
    return x.numpy().tolist()


1200 1201 1202
def concat(x, axis=0, name=None):
    """

1203
    Concatenates the input along the axis.
1204 1205

    Args:
1206
        x (list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
1207
            float32, float64, int32, int64, int8, uint8. All the Tensors in ``x`` must have same data type.
1208
        axis (int|Tensor, optional): Specify the axis to operate on the input Tensors.
1209
            It's a scalar with data type int or a Tensor with shape [1] and data type int32
1210 1211
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
1212
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1213 1214

    Returns:
L
Ligoml 已提交
1215
        Tensor, A Tensor with the same data type as ``x``.
1216 1217 1218

    Examples:
        .. code-block:: python
1219

1220
            import paddle
1221

1222 1223 1224 1225 1226 1227
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
1228 1229 1230
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
1231 1232 1233
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
1234 1235 1236 1237 1238 1239 1240 1241 1242
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
1243 1244 1245 1246 1247 1248 1249
    input = x
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
1250
        return _C_ops.concat(input, axis)
1251 1252 1253 1254 1255 1256 1257 1258

    if _in_legacy_dygraph():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
        out = _varbase_creator()
1259
        _legacy_C_ops.concat(input, out, 'axis', axis)
1260 1261 1262 1263 1264
        return out

    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                [
                    'bool',
                    'float16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'int8',
                    'unit8',
                ],
                'concat',
            )
1280 1281
            if x.dtype != input[0].dtype:
                raise TypeError(
1282 1283
                    "All the Tensors in the input must have the same data type."
                )
1284 1285 1286 1287 1288 1289
    else:
        input = [input]
    check_type(axis, 'axis', (int, Variable), 'concat')

    if isinstance(axis, Variable):
        check_dtype(
1290 1291 1292 1293 1294
            axis.dtype,
            'axis',
            ['int32', 'int64'],
            'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor",
1295
        )
1296 1297 1298 1299 1300 1301 1302 1303 1304

    helper = LayerHelper('concat', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

1305 1306 1307 1308
        assert len(input) == 1, (
            "If the elements of 'input' in concat are Variable(LoDTensorArray), "
            "number of the elements must be 1, but received %s." % len(input)
        )
1309
        out_index = helper.create_variable_for_type_inference(dtype="int32")
1310 1311 1312 1313 1314 1315
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': False},
        )
1316 1317 1318 1319 1320
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
1321 1322 1323
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis
1324

1325 1326 1327
        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs
        )
1328
    return out
1329 1330


1331 1332
def broadcast_tensors(input, name=None):
    """
1333
    Broadcast a list of tensors following broadcast semantics
1334

1335
    Note:
1336 1337 1338
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1339 1340

    Args:
1341
        input (list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
1342 1343
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.
1344
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1345 1346

    Returns:
L
Ligoml 已提交
1347
        list(Tensor), The list of broadcasted tensors following the same order as ``input``.
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
1361
    if paddle.framework.in_dygraph_mode():
1362
        return _C_ops.broadcast_tensors(input)
1363
    if paddle.framework._non_static_mode():
1364
        return _legacy_C_ops.broadcast_tensors(input, num_inputs)
1365 1366 1367 1368

    check_type(input, 'input', (list, tuple), 'broadcast_tensors')
    if num_inputs < 1:
        raise TypeError(
1369 1370
            "At least 1 tensor is needed to perform broadcast_tensors"
        )
1371 1372 1373 1374

    # Check input types
    for id, x in enumerate(input):
        check_variable_and_dtype(
1375 1376
            x,
            'input[' + str(id) + ']',
1377
            ['bool', 'float32', 'float64', 'int32', 'int64'],
1378 1379
            'broadcast_tensors',
        )
1380 1381
        if x.dtype != input[0].dtype:
            raise TypeError(
1382 1383
                "All the Tensors in the input must have the same data type."
            )
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400

    # Check bcast semantics
    output_shape_r_last_tensor_index = []
    output_shape_r = []

    # Use while loop due to weird behaviour of "range()"
    j = 0
    while j < len(input):
        tensor = input[j]
        shape = list(reversed(tensor.shape))

        i = 0
        while i < len(shape):
            if len(output_shape_r) <= i:
                output_shape_r.append(shape[i])
                output_shape_r_last_tensor_index.append(j)
            else:
1401 1402 1403 1404 1405
                invalid = (
                    output_shape_r[i] != shape[i]
                    and output_shape_r[i] != 1
                    and shape[i] != 1
                )
1406 1407 1408 1409
                if invalid:
                    last_index = output_shape_r_last_tensor_index[i]
                    raise TypeError(
                        "Input tensors to broadcast_tensors does not follow bcast semantics"
1410
                        "Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
                    )
                if output_shape_r[i] <= shape[i]:
                    output_shape_r[i] = shape[i]
                    output_shape_r_last_tensor_index[i] = j
            i += 1  # while i < len(shape)
        j += 1  # while j < len(input)

    helper = LayerHelper('broadcast_tensors', **locals())
    i = 0
    out = []
    while i < num_inputs:
        out.append(
1423
            helper.create_variable_for_type_inference(
1424 1425 1426
                dtype=helper.input_dtype()
            )
        )
1427 1428 1429
        i += 1

    inputs = {'X': input}
1430 1431 1432
    helper.append_op(
        type='broadcast_tensors', inputs=inputs, outputs={'Out': out}, attrs={}
    )
1433 1434 1435 1436

    return out


Y
yaoxuefeng 已提交
1437
def flip(x, axis, name=None):
W
Wilber 已提交
1438
    """
Y
yaoxuefeng 已提交
1439
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
1440 1441

    Args:
Y
yaoxuefeng 已提交
1442
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
1443
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
1444
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
1445
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
Wilber 已提交
1446 1447

    Returns:
L
Ligoml 已提交
1448
        Tensor, Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
1449 1450 1451 1452 1453

    Examples:
        .. code-block:: python

          import paddle
Y
yaoxuefeng 已提交
1454 1455

          image_shape=(3, 2, 2)
1456
          img = paddle.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
R
Roc 已提交
1457 1458
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
1459

R
Roc 已提交
1460 1461
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
1462
    """
R
Roc 已提交
1463 1464
    if isinstance(axis, int):
        axis = [axis]
H
hong 已提交
1465 1466

    if in_dygraph_mode():
1467
        return _C_ops.flip(x, axis)
H
hong 已提交
1468

Z
zhiboniu 已提交
1469
    if paddle.in_dynamic_mode():
1470
        return _legacy_C_ops.flip(x, "axis", axis)
R
Roc 已提交
1471

W
Wilber 已提交
1472
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
1473 1474
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
1475 1476 1477 1478 1479 1480
    check_dtype(
        dtype,
        'X',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'flip',
    )
Y
yaoxuefeng 已提交
1481
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
1482 1483 1484 1485 1486
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

1487 1488 1489
    helper.append_op(
        type="flip", inputs={"X": x}, outputs={"Out": out}, attrs={"axis": axis}
    )
W
Wilber 已提交
1490
    return out
1491 1492


Z
zmxdream 已提交
1493 1494
def rot90(x, k=1, axes=[0, 1], name=None):
    """
1495
    Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes and the absolute value of k. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
Z
zmxdream 已提交
1496 1497 1498

    Args:
        x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
Z
zmxdream 已提交
1499
            should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
Z
zmxdream 已提交
1500 1501
        k (int, optional): Direction and number of times to rotate, default value: 1.
        axes (list|tuple, optional): Axes to rotate, dimension must be 2. default value: [0, 1].
Z
zmxdream 已提交
1502 1503 1504 1505
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
1506
        Tensor, Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.
Z
zmxdream 已提交
1507 1508 1509 1510 1511 1512 1513 1514

    Examples:
        .. code-block:: python

          import paddle

          data = paddle.arange(4)
          data = paddle.reshape(data, (2, 2))
1515
          print(data)
Z
zmxdream 已提交
1516 1517 1518
          #[[0, 1],
          # [2, 3]]

Z
zmxdream 已提交
1519
          y = paddle.rot90(data, 1, [0, 1])
1520
          print(y)
Z
zmxdream 已提交
1521 1522 1523
          #[[1, 3],
          # [0, 2]]

Z
zmxdream 已提交
1524
          y= paddle.rot90(data, -1, [0, 1])
1525
          print(y)
Z
zmxdream 已提交
1526 1527 1528
          #[[2, 0],
          # [3, 1]]

Z
zmxdream 已提交
1529 1530
          data2 = paddle.arange(8)
          data2 = paddle.reshape(data2, (2,2,2))
1531
          print(data2)
Z
zmxdream 已提交
1532 1533 1534 1535 1536
          #[[[0, 1],
          #  [2, 3]],
          # [[4, 5],
          #  [6, 7]]]

Z
zmxdream 已提交
1537
          y = paddle.rot90(data2, 1, [1, 2])
Z
zmxdream 已提交
1538 1539 1540 1541 1542
          print(y)
          #[[[1, 3],
          #  [0, 2]],
          # [[5, 7],
          #  [4, 6]]]
Z
zmxdream 已提交
1543 1544 1545 1546 1547
    """

    helper = LayerHelper("rot90", **locals())
    check_type(x, 'X', (Variable), 'rot90')
    dtype = helper.input_dtype('x')
1548 1549 1550 1551 1552 1553
    check_dtype(
        dtype,
        'X',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'rot90',
    )
Z
zmxdream 已提交
1554 1555 1556 1557 1558
    check_type(axes, 'axes', (list, tuple), 'rot90')

    input_total_dims = len(x.shape)
    total_rot_dims = len(axes)
    if total_rot_dims != 2:
1559 1560
        raise ValueError(
            "expected total rotation axes == 2, but got axes = {}".format(
1561 1562 1563
                total_rot_dims
            )
        )
Z
zmxdream 已提交
1564
    if input_total_dims < 2:
1565 1566
        raise ValueError(
            "expected total dims >= 2, but got total dims = {}".format(
1567 1568 1569
                input_total_dims
            )
        )
Z
zmxdream 已提交
1570 1571 1572

    if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
        raise ValueError(
1573 1574 1575 1576
            "expected rotation axes to be different, but got axis0 = {}, and axis1 = {}".format(
                axes[0], axes[1]
            )
        )
Z
zmxdream 已提交
1577 1578

    if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
1579 1580 1581
        raise ValueError(
            "Rotation axis0 out of range, axis0 = {}".format(axes[0])
        )
Z
zmxdream 已提交
1582
    if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
1583 1584 1585
        raise ValueError(
            "Rotation axis1 out of range, axis1 = {}".format(axes[1])
        )
Z
zmxdream 已提交
1586

Z
zmxdream 已提交
1587
    k %= 4
Z
zmxdream 已提交
1588 1589 1590 1591 1592 1593
    if k == 0:
        return x
    if k == 2:
        return flip(flip(x, axes[0]), axes[1])

    axes_list = list(range(0, input_total_dims))
1594 1595 1596 1597
    (axes_list[axes[0]], axes_list[axes[1]]) = (
        axes_list[axes[1]],
        axes_list[axes[0]],
    )
Z
zmxdream 已提交
1598 1599 1600 1601 1602 1603 1604
    if k == 1:
        return transpose(flip(x, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(x, axes_list), axes[1])


1605
def flatten(x, start_axis=0, stop_axis=-1, name=None):
1606
    r"""
1607 1608
    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

1609
    Note:
1610
        The output Tensor will share data with origin Tensor and doesn't have a Tensor copy in ``dygraph`` mode.
1611
        If you want to use the Tensor copy version, please use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.
1612

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
Y
yaoxuefeng 已提交
1642
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float32,
1643
                      float64, int8, int32, int64, uint8.
1644 1645
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
1646
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1647 1648

    Returns:
L
Ligoml 已提交
1649
        Tensor, A tensor with the contents of the input tensor, with input \
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
1660

Y
yaoxuefeng 已提交
1661 1662
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
1663

1664 1665
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
1666 1667 1668 1669

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
1670 1671
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
1672
        raise ValueError("The input x should be a Tensor")
1673

Z
zhiboniu 已提交
1674
    if not paddle.in_dynamic_mode():
1675
        check_variable_and_dtype(
1676 1677
            x,
            'x',
1678
            ['float32', 'float64', 'int8', 'int16', 'int32', 'int64', 'uint8'],
1679 1680
            'flatten',
        )
1681 1682

    x_dim = len(x.shape)
1683 1684 1685 1686 1687
    if (
        not (isinstance(start_axis, int))
        or (start_axis > x_dim - 1)
        or start_axis < -x_dim
    ):
1688
        raise ValueError(
1689 1690 1691 1692 1693 1694 1695
            "The start_axis should be a int, and in range [-rank(x), rank(x))"
        )
    if (
        not (isinstance(stop_axis, int))
        or (stop_axis > x_dim - 1)
        or stop_axis < -x_dim
    ):
1696
        raise ValueError(
1697 1698
            "The stop_axis should be a int, and in range [-rank(x), rank(x))"
        )
1699 1700 1701 1702 1703 1704 1705
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1706
    if in_dygraph_mode():
1707
        return _C_ops.flatten(x, start_axis, stop_axis)
1708 1709

    if _in_legacy_dygraph():
1710
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range(
1711 1712
            x, 'start_axis', start_axis, 'stop_axis', stop_axis
        )
1713 1714
        return dy_out

1715
    helper = LayerHelper('flatten', **locals())
1716 1717
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
1718 1719 1720 1721 1722 1723
    helper.append_op(
        type='flatten_contiguous_range',
        inputs={"X": x},
        outputs={'Out': out, 'XShape': x_shape},
        attrs={"start_axis": start_axis, "stop_axis": stop_axis},
    )
1724 1725 1726
    return out


1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
1737 1738 1739 1740 1741
    if (
        not (isinstance(start_axis, int))
        or (start_axis > x_dim - 1)
        or start_axis < -x_dim
    ):
1742
        raise ValueError(
1743 1744 1745 1746 1747 1748 1749
            "The start_axis should be a int, and in range [-rank(x), rank(x))"
        )
    if (
        not (isinstance(stop_axis, int))
        or (stop_axis > x_dim - 1)
        or stop_axis < -x_dim
    ):
1750
        raise ValueError(
1751 1752
            "The stop_axis should be a int, and in range [-rank(x), rank(x))"
        )
1753 1754 1755 1756 1757 1758 1759
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1760
    if in_dygraph_mode():
1761
        return _C_ops.flatten_(x, start_axis, stop_axis)
1762 1763

    if _in_legacy_dygraph():
1764
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range_(
1765 1766
            x, 'start_axis', start_axis, 'stop_axis', stop_axis
        )
1767
        return dy_out
1768 1769


Y
yaoxuefeng 已提交
1770
def roll(x, shifts, axis=None, name=None):
1771
    """
1772 1773 1774
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that
    roll beyond the last position are re-introduced at the first according to 'shifts'.
    If a axis is not specified,
1775 1776 1777
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
1778
        x (Tensor): The x tensor as input.
1779
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
1780
                           of the `x` tensor are shifted.
Y
Yuang Liu 已提交
1781
        axis (int|list|tuple, optional): axis(axes) along which to roll. Default: None
C
Chen Long 已提交
1782 1783 1784
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                For more information, please refer to :ref:`api_guide_Name` .

1785 1786

    Returns:
L
Ligoml 已提交
1787
        Tensor, A Tensor with same data type as `x`.
1788 1789 1790

    Examples:
        .. code-block:: python
1791

1792 1793
            import paddle

1794 1795 1796
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
1797
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
1798
            print(out_z1)
Y
yaoxuefeng 已提交
1799 1800 1801 1802
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
1803
            print(out_z2)
Y
yaoxuefeng 已提交
1804 1805 1806
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
Y
Yuang Liu 已提交
1807 1808 1809 1810 1811
            out_z3 = paddle.roll(x, shifts=1, axis=1)
            print(out_z3)
            #[[3. 1. 2.]
            # [6. 4. 5.]
            # [9. 7. 8.]]
1812
    """
Y
yaoxuefeng 已提交
1813
    origin_shape = x.shape
1814 1815
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
1816 1817 1818 1819
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
1820
    if axis is not None:
Y
yaoxuefeng 已提交
1821 1822 1823
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
1824 1825 1826 1827
                    "axis is out of range, it should be in range [{}, {}), but received {}".format(
                        -len_origin_shape, len_origin_shape, axis
                    )
                )
S
sunli 已提交
1828 1829 1830
    else:
        axis = []

F
From00 已提交
1831
    if in_dygraph_mode():
1832
        return _C_ops.roll(x, shifts, axis)
F
From00 已提交
1833 1834

    if _in_legacy_dygraph():
1835
        return _legacy_C_ops.roll(x, 'axis', axis, 'shifts', shifts)
1836

1837 1838
    helper = LayerHelper("roll", **locals())
    check_type(axis, 'axis', (list, tuple), 'roll')
1839

Y
yaoxuefeng 已提交
1840
    out = helper.create_variable_for_type_inference(x.dtype)
1841

1842
    if isinstance(shifts, Variable):
1843 1844 1845 1846 1847 1848
        helper.append_op(
            type='roll',
            inputs={'X': x, "ShiftsTensor": shifts},
            outputs={'Out': out},
            attrs={'axis': axis},
        )
1849 1850
    else:
        check_type(shifts, 'shifts', (list, tuple), 'roll')
1851 1852 1853 1854 1855 1856
        helper.append_op(
            type='roll',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'shifts': shifts},
        )
1857
    return out
1858 1859


L
Leo Chen 已提交
1860
def stack(x, axis=0, name=None):
1861
    """
1862
    Stacks all the input tensors ``x`` along ``axis`` dimemsion.
L
Leo Chen 已提交
1863
    All tensors must be of the same shape and same dtype.
1864 1865 1866

    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked
L
Leo Chen 已提交
1867
    tensor is [A, N, B], etc.
1868

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
1904
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
1905 1906 1907 1908 1909 1910 1911 1912

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
1913
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
1914
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
1915
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
1916
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``.
L
Leo Chen 已提交
1917
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
1918
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1919

1920
    Returns:
L
Ligoml 已提交
1921
        Tensor, The stacked tensor with same data type as input.
1922

1923
    Example:
1924
        .. code-block:: python
L
Leo Chen 已提交
1925

1926
            import paddle
1927

L
Leo Chen 已提交
1928 1929 1930
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
1931

L
Leo Chen 已提交
1932 1933
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
1934
            print(out)
L
Leo Chen 已提交
1935 1936 1937
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
1938

1939 1940 1941 1942 1943 1944
        out = paddle.stack([x1, x2, x3], axis=-2)
        print(out.shape)  # [1, 3, 2]
        print(out)
        # [[[1., 2.],
        #   [3., 4.],
        #   [5., 6.]]]
L
Leo Chen 已提交
1945
    """
1946 1947 1948
    axis = 0 if axis is None else axis

    if in_dygraph_mode():
1949
        return _C_ops.stack(x, axis)
1950 1951

    if _in_legacy_dygraph():
1952
        return _legacy_C_ops.stack(x, 'axis', axis)
1953 1954 1955 1956

    if not isinstance(x, list) and not isinstance(x, tuple):
        # NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc.
        # In that case, Variable is array of tensors indeed.
1957 1958 1959 1960
        if (
            isinstance(x, Variable)
            and x.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1961 1962
            x = [x]
        else:
1963
            raise TypeError(
1964 1965 1966 1967 1968 1969 1970 1971
                "The type of '%s' in %s must be %s, but received %s"
                % (
                    'x',
                    'stack',
                    'list[Tensor], tuple[Tensor] or TensorArray',
                    type(x),
                )
            )
1972 1973 1974 1975 1976

    helper = LayerHelper('stack', **locals())

    out = helper.create_variable_for_type_inference(x[0].dtype)
    if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
1977 1978 1979 1980
        assert len(x) == 1, (
            "If the elements of 'x' in stack are Variable(LoDTensorArray), "
            "number of the elements must be 1, but received %s." % len(x)
        )
1981 1982 1983
        out_index = helper.create_variable_for_type_inference(dtype="int32")

        for i in x:
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
            check_variable_and_dtype(
                i,
                'x',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'stack',
            )

        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': x[0]},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': True},
        )
1997
    else:
1998 1999 2000 2001 2002 2003
        helper.append_op(
            type='stack',
            inputs={'X': x},
            outputs={'Y': out},
            attrs={'axis': axis},
        )
2004 2005

    return out
2006 2007


2008
def split(x, num_or_sections, axis=0, name=None):
2009 2010
    """
    Split the input tensor into multiple sub-Tensors.
2011

2012
    Args:
2013
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
2014
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
2015 2016 2017 2018
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
2019
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
2020 2021 2022 2023
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
2024
    Returns:
L
Ligoml 已提交
2025
        list(Tensor), The list of segmented Tensors.
2026

2027 2028
    Example:
        .. code-block:: python
2029

2030
            import paddle
2031

L
Leo Chen 已提交
2032 2033
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
2034

L
Leo Chen 已提交
2035 2036 2037 2038
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
2039 2040

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
2041 2042 2043
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
2044 2045

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
2046 2047 2048
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
2049

L
Leo Chen 已提交
2050
            # axis is negative, the real axis is (rank(x) + axis)=1
2051
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
2052 2053 2054
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
2055
    """
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
    input = x
    dim = axis
    if _non_static_mode():
        num = None
        attrs = ()

        if isinstance(dim, Variable):
            dim = dim.numpy()
            dim = dim.item(0)
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input.shape) + dim) if dim < 0 else dim
        attrs += ('axis', dim)

        if isinstance(num_or_sections, int):
            num = num_or_sections
            attrs += ('num', num_or_sections)
        elif isinstance(num_or_sections, (list, tuple)):
            num = len(num_or_sections)
            if utils._contain_var(num_or_sections):
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
2077 2078 2079
                        num_or_sections[index] = num_or_sections[index].numpy()[
                            0
                        ]
2080 2081 2082 2083 2084 2085
                attrs += ('sections', list(num_or_sections))
            else:
                attrs += ('sections', list(num_or_sections))
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
2086 2087
                "received %s." % (type(num_or_sections))
            )
2088
        if in_dygraph_mode():
C
Charles-hit 已提交
2089 2090 2091 2092
            if isinstance(num_or_sections, int):
                return _C_ops.split_with_num(input, num_or_sections, dim)
            else:
                return _C_ops.split(input, num_or_sections, dim)
2093 2094
        elif _in_legacy_dygraph():
            out = [_varbase_creator() for n in range(num)]
2095
            _legacy_C_ops.split(input, out, *attrs)
2096
            return out
2097

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
    check_variable_and_dtype(
        input,
        'input',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'uint8',
            'int8',
        ],
        'split',
    )
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')

    helper = LayerHelper('split', **locals())

    input_shape = input.shape
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
2132
                assert isinstance(dim_size, int)
2133 2134 2135
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
2136 2137 2138
                        "be -1. But received num_or_section[%d] is also -1."
                        % idx
                    )
2139 2140
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
2141 2142 2143
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        if isinstance(dim, int) and input_shape[dim] > 0:
2158 2159 2160 2161 2162 2163
            assert input_shape[dim] % num_or_sections == 0, (
                "The input's size along the split dimension "
                "must be evenly divisible by Attr(num_or_sections). "
                "But %d is not evenly divisible by %d. "
                % (num_or_sections, input_shape[dim])
            )
2164 2165 2166
        num = num_or_sections
    else:
        if isinstance(dim, int) and input_shape[dim] > 0:
2167 2168 2169
            assert (
                len(num_or_sections) <= input_shape[dim]
            ), 'len(num_or_sections) must not be more than input.shape[dim].'
2170 2171
        num = len(num_or_sections)
        attrs['sections'] = list(
2172 2173 2174 2175 2176
            map(
                lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections,
            )
        )
2177 2178
        if utils._contain_var(num_or_sections):
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
2179 2180
                num_or_sections
            )
2181 2182 2183 2184 2185

    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
2186 2187 2188
    helper.append_op(
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
    )
2189
    return outs
2190 2191


2192 2193 2194
def vsplit(x, num_or_sections, name=None):
    """
    Split the input tensor into multiple sub-Tensors along the vertical axis, which is equivalent to ``paddle.split`` with ``axis=0``.
2195

2196 2197
    Args:
        x (Tensor): A Tensor whose dimension must be greater than 1. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
2198
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
2199 2200 2201 2202 2203 2204 2205 2206
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of axis 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list[Tensor], The list of segmented Tensors.
2207

2208 2209
    Example:
        .. code-block:: python
2210

2211
            import paddle
2212

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
            # x is a Tensor of shape [8, 6, 7]
            x = paddle.rand([8, 6, 7])
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=2)
            print(out0.shape)  # [4, 6, 7]
            print(out1.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[1, 3, 4])
            print(out0.shape)  # [1, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[2, 3, -1])
            print(out0.shape)  # [2, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [3, 6, 7]
    """
    if x.ndim < 2:
        raise ValueError(
2229 2230 2231 2232
            "The input tensor's dimension must be greater than 1, but got {}".format(
                x.ndim
            )
        )
2233 2234 2235
    return split(x, num_or_sections, axis=0, name=name)


L
Leo Chen 已提交
2236
def squeeze(x, axis=None, name=None):
2237
    """
2238 2239 2240 2241
    Squeeze the dimension(s) of size 1 of input tensor x's shape.

    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2242
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
2243

2244 2245
    If axis is provided, it will remove the dimension(s) by given axis that of size 1.
    If the dimension of given axis is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2246
    If axis is not provided, all dims equal of size 1 will be removed.
2247 2248 2249 2250 2251 2252

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
2253 2254
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
2255
          Output:
L
Leo Chen 已提交
2256
            out.shape = [3, 5]
2257 2258 2259 2260

        Case2:

          Input:
L
Leo Chen 已提交
2261 2262 2263 2264
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
2265

L
Leo Chen 已提交
2266 2267 2268
        Case4:

          Input:
2269
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2270
            axis = [0, 2, 3]
2271
          Output:
L
Leo Chen 已提交
2272
            out.shape = [3, 5]
2273

L
Leo Chen 已提交
2274
        Case4:
2275 2276

          Input:
2277
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x).
L
Leo Chen 已提交
2278
            axis = [-2]
2279
          Output:
L
Leo Chen 已提交
2280
            out.shape = [1, 3, 5]
2281 2282

    Args:
2283
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
2284
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
2285 2286 2287
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
2288 2289 2290
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
L
Ligoml 已提交
2291
        Tensor, Squeezed Tensor with the same data type as input Tensor.
2292 2293 2294

    Examples:
        .. code-block:: python
2295

2296
            import paddle
2297

L
Leo Chen 已提交
2298 2299
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
2300 2301

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
2302
            print(output.shape)  # [5, 10]
2303

2304 2305 2306 2307
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

2308
    """
L
Leo Chen 已提交
2309 2310 2311 2312 2313 2314
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
2315

2316 2317 2318
    input = x
    axes = axis
    if in_dygraph_mode():
2319
        return _C_ops.squeeze(input, axes)
2320
    if _in_legacy_dygraph():
2321
        out, _ = _legacy_C_ops.squeeze2(input, 'axes', axes)
2322 2323 2324
        return out

    helper = LayerHelper("squeeze", **locals())
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'squeeze',
    )
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'squeeze')
    attrs = {}
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        attrs["axes"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            attrs["axes"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

2353 2354
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
2355 2356 2357 2358 2359 2360
    helper.append_op(
        type="squeeze2",
        inputs={"X": input},
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
2361 2362

    return out
2363 2364


2365
@inplace_apis_in_dygraph_only
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

2378 2379 2380
    input = x
    axes = axis
    if in_dygraph_mode():
2381
        return _C_ops.squeeze_(input, axes)
2382
    if _in_legacy_dygraph():
2383
        out, _ = _legacy_C_ops.squeeze2_(input, 'axes', axes)
2384
        return out
2385 2386


2387 2388 2389 2390 2391 2392 2393 2394
def unique_consecutive(
    x,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
Z
Zman 已提交
2395
    """
D
duanboqiang 已提交
2396 2397
    Eliminates all but the first element from every consecutive group of equivalent elements.

2398
    Note:
Z
Zman 已提交
2399 2400
        This function is different from :ref:`api_paddle_unique` in the sense that this function
        only eliminates consecutive duplicate values. This semantics is similar to :ref:`api_paddle_unique` in C++.
D
duanboqiang 已提交
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
Z
Zman 已提交
2416 2417 2418 2419 2420 2421
        - out (Tensor), the unique consecutive tensor for x.
        - inverse (Tensor), the element of the input tensor corresponds to
            the index of the elements in the unique consecutive tensor for x.
            inverse is provided only if return_inverse is True.
        - counts (Tensor), the counts of the every unique consecutive element in the input tensor.
            counts is provided only if return_counts is True.
D
duanboqiang 已提交
2422 2423 2424 2425

    Example:
        .. code-block:: python

2426
            import paddle
D
duanboqiang 已提交
2427 2428

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
2429
            output = paddle.unique_consecutive(x) #
2430 2431 2432 2433
            print(output)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 3, 1, 2])

D
duanboqiang 已提交
2434
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
2435 2436 2437 2438 2439 2440
            print(inverse)
            # Tensor(shape=[8], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 0, 1, 1, 2, 3, 3, 4])
            print(counts)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [2, 2, 1, 2, 1])
D
duanboqiang 已提交
2441 2442

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2443
            output = paddle.unique_consecutive(x, axis=0) #
2444 2445 2446 2447 2448
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2449 2450

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2451
            output = paddle.unique_consecutive(x, axis=0) #
2452 2453 2454 2455 2456
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2457 2458 2459 2460 2461 2462 2463
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2464
    if in_dygraph_mode():
2465
        out, inverse, counts = _C_ops.unique_consecutive(
2466 2467
            x, return_inverse, return_counts, axis, attr_dtype
        )
2468 2469 2470 2471 2472 2473 2474 2475 2476
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
    elif paddle.in_dynamic_mode():
2477
        out, inverse, counts = _legacy_C_ops.unique_consecutive(
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
            x,
            'dtype',
            attr_dtype,
            'return_inverse',
            return_inverse,
            'return_counts',
            return_counts,
            'axis',
            axis,
        )
D
duanboqiang 已提交
2488 2489 2490 2491 2492 2493 2494 2495
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
2496 2497 2498 2499 2500 2501
    check_variable_and_dtype(
        x,
        "input",
        ['float32', 'float64', 'int32', 'int64'],
        'unique_consecutive',
    )
D
duanboqiang 已提交
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
    check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
    check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique_consecutive')
    helper = LayerHelper('unique_consecutive', **locals())
    attrs = {
        'dtype': attr_dtype,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
    }
2514 2515 2516 2517 2518 2519 2520 2521 2522
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True
    )
    inverse = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
D
duanboqiang 已提交
2523 2524 2525 2526 2527 2528
    outputs = {"Out": out, "Index": inverse, "Counts": counts}
    outs = [out]
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)
2529 2530 2531
    helper.append_op(
        type="unique_consecutive", inputs={"X": x}, attrs=attrs, outputs=outputs
    )
D
duanboqiang 已提交
2532 2533 2534 2535 2536
    if len(outs) == 1:
        return outs[0]
    return tuple(outs)


2537 2538 2539 2540 2541 2542 2543 2544 2545
def unique(
    x,
    return_index=False,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
2546
    r"""
Z
Zhang Ting 已提交
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
2558 2559
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
2560 2561 2562
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

2563
    Returns:
2564
        tuple (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
Z
Zhang Ting 已提交
2565 2566 2567 2568 2569
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python
2570

Z
Zhang Ting 已提交
2571 2572
            import paddle

2573
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
2574
            unique = paddle.unique(x)
2575 2576 2577 2578
            print(unique)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 3, 5])

Z
Zhang Ting 已提交
2579
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
2580 2581 2582 2583 2584 2585 2586 2587 2588
            print(indices)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [3, 0, 1, 4])
            print(inverse)
            # Tensor(shape=[6], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 2, 0, 3, 2])
            print(counts)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 1, 3, 1])
Z
Zhang Ting 已提交
2589

2590
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
2591
            unique = paddle.unique(x)
2592 2593 2594
            print(unique)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 1, 2, 3])
Z
Zhang Ting 已提交
2595 2596

            unique = paddle.unique(x, axis=0)
2597 2598 2599 2600
            print(unique)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1]])
Z
Zhang Ting 已提交
2601 2602 2603 2604 2605
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
2606
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2607 2608
    if _non_static_mode():
        if in_dygraph_mode():
2609
            out, indices, inverse, counts = _C_ops.unique(
2610 2611
                x, return_index, return_inverse, return_counts, axis, attr_dtype
            )
2612
        if _in_legacy_dygraph():
2613
            out, inverse, indices, counts = _legacy_C_ops.unique(
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
                x,
                'dtype',
                attr_dtype,
                'return_index',
                return_index,
                'return_inverse',
                return_inverse,
                'return_counts',
                return_counts,
                'axis',
                axis,
                "is_sorted",
                True,
            )
Z
Zhang Ting 已提交
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

2641 2642 2643
    check_variable_and_dtype(
        x, "input", ['float32', 'float64', 'int32', 'int64'], 'unique'
    )
Z
Zhang Ting 已提交
2644 2645 2646
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
2647
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
2648 2649 2650 2651 2652
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
2653
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
2654 2655 2656 2657
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
2658
        "is_sorted": True,
Z
Zhang Ting 已提交
2659
    }
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True
    )
    indices = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    inverse = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
2672 2673 2674 2675
    outputs = {
        "Out": out,
        "Indices": indices,
        "Index": inverse,
2676
        "Counts": counts,
2677
    }
Z
Zhang Ting 已提交
2678 2679 2680 2681 2682 2683 2684 2685
    outs = [out]
    if return_index:
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)

2686 2687 2688
    helper.append_op(
        type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs
    )
Z
Zhang Ting 已提交
2689 2690 2691 2692 2693 2694 2695

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


2696
def unsqueeze(x, axis, name=None):
2697
    """
2698 2699 2700
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
2701

2702 2703
    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2704 2705
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

2706
    Args:
2707
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
2708 2709
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` .
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
2710 2711 2712
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
2713 2714

    Returns:
L
Ligoml 已提交
2715
        Tensor, Unsqueezed Tensor with the same data type as input Tensor.
2716 2717 2718

    Examples:
        .. code-block:: python
2719

2720 2721
            import paddle

2722 2723
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
2724

2725 2726
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
2727 2728

            out2 = paddle.unsqueeze(x, axis=[0, 2])
2729
            print(out2.shape)  # [1, 5, 1, 10]
2730

L
Leo Chen 已提交
2731
            axis = paddle.to_tensor([0, 1, 2])
2732
            out3 = paddle.unsqueeze(x, axis=axis)
2733
            print(out3.shape)  # [1, 1, 1, 5, 10]
2734 2735 2736 2737 2738 2739

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
2740

2741
    """
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
    input = x
    axes = axis
    if _non_static_mode():
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
            axes = axes.numpy().tolist()
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
        if _in_legacy_dygraph():
2755
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
2756
            return out
2757
        return _C_ops.unsqueeze(input, axes)
2758 2759

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'unsqueeze',
    )
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
2794 2795 2796 2797 2798 2799
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
2800

2801
    return out
2802 2803


2804
@inplace_apis_in_dygraph_only
2805 2806 2807 2808 2809
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
2810 2811 2812 2813 2814 2815 2816 2817
    input = x
    axes = axis
    if isinstance(axes, int):
        axes = [axes]
    elif isinstance(axes, Variable):
        axes = axes.numpy().tolist()
    elif isinstance(axes, (list, tuple)):
        axes = [
2818
            item.numpy().item(0) if isinstance(item, Variable) else item
2819
            for item in axes
2820
        ]
2821
    if in_dygraph_mode():
2822 2823
        return _C_ops.unsqueeze_(input, axes)
    out, _ = _legacy_C_ops.unsqueeze2_(input, 'axes', axes)
2824
    return out
2825 2826


2827
def gather(x, index, axis=None, name=None):
2828
    """
2829 2830
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
2831 2832 2833 2834 2835 2836

    .. code-block:: text


                Given:

2837
                x = [[1, 2],
2838 2839 2840
                     [3, 4],
                     [5, 6]]

2841 2842
                index = [1, 2]
                axis=[0]
2843 2844 2845

                Then:

2846
                out = [[3, 4],
2847
                       [5, 6]]
2848

2849
    Args:
2850
        x (Tensor): The source input tensor with rank>=1. Supported data type is
2851 2852
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
2853
        index (Tensor): The index input tensor with rank=0 or rank=1. Data type is int32 or int64.
2854
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
2855 2856
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
2857 2858

    Returns:
2859
        output (Tensor), If the index is a 1-D tensor, the output is a tensor with the same shape as ``x``. If the index is a 0-D tensor, the output will reduce the dimension where the axis pointing.
2860

2861 2862 2863 2864 2865 2866
    Examples:

        .. code-block:: python

            import paddle

2867 2868
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
2869 2870
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
2871
    """
2872 2873
    if axis is None:
        axis = 0
2874

2875
    if in_dygraph_mode():
2876
        return _C_ops.gather(x, index, axis)
2877
    if _in_legacy_dygraph():
2878
        axis = axis.item() if isinstance(axis, paddle.Tensor) else axis
2879 2880 2881
        return _legacy_C_ops.gather(
            x, index, None, "axis", axis, "overwrite", False
        )
2882 2883

    check_variable_and_dtype(
2884 2885
        x,
        'x',
2886
        ['float16', 'float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
2887 2888
        'gather',
    )
2889
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
2890

2891 2892 2893
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')

2894
    helper = LayerHelper('gather', **locals())
2895
    dtype = helper.input_dtype('x')
2896
    out = helper.create_variable_for_type_inference(dtype)
2897
    if not isinstance(axis, Variable):
2898 2899 2900 2901 2902 2903
        helper.append_op(
            type="gather",
            inputs={"X": x, "Index": index},
            attrs={'axis': axis, 'overwrite': False},
            outputs={"Out": out},
        )
2904
    else:
2905 2906 2907 2908 2909 2910
        helper.append_op(
            type="gather",
            inputs={"X": x, "Index": index, "Axis": axis},
            attrs={"overwrite": False},
            outputs={"Out": out},
        )
2911

2912
    return out
myq406450149's avatar
myq406450149 已提交
2913 2914 2915 2916


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
2917

myq406450149's avatar
myq406450149 已提交
2918
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
2919

myq406450149's avatar
myq406450149 已提交
2920
    Args:
2921
        input (Tensor): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
2922
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind.
2923
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
2924
    Returns:
L
Ligoml 已提交
2925
        list(Tensor), The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
2926 2927 2928

    Example:
        .. code-block:: python
2929

myq406450149's avatar
myq406450149 已提交
2930
            import paddle
2931

C
Chen Long 已提交
2932 2933
            # input is a Tensor which shape is [3, 4, 5]
            input = paddle.rand([3, 4, 5])
2934

2935
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
2936 2937 2938
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
C
Chen Long 已提交
2939

2940
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
2941 2942 2943 2944 2945
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]
    """
2946
    if in_dygraph_mode():
2947
        return _C_ops.unbind(input, axis)
2948

myq406450149's avatar
myq406450149 已提交
2949
    if not isinstance(axis, (int)):
2950 2951 2952
        raise TypeError(
            "The type of 'axis'  must be int, but received %s." % (type(axis))
        )
myq406450149's avatar
myq406450149 已提交
2953 2954 2955 2956 2957
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
2958
    if _in_legacy_dygraph():
2959
        return _legacy_C_ops.unbind(input, num, 'axis', axis)
2960 2961 2962 2963

    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
2964 2965 2966
    check_dtype(
        dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'], 'unbind'
    )
myq406450149's avatar
myq406450149 已提交
2967 2968 2969 2970
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
2971 2972 2973 2974 2975 2976
    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis},
    )
myq406450149's avatar
myq406450149 已提交
2977
    return outs
L
lilong12 已提交
2978 2979


S
ShenLiang 已提交
2980 2981 2982 2983
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
2984

S
ShenLiang 已提交
2985
    .. code-block:: python
2986

S
ShenLiang 已提交
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

3008
    **NOTICE**: The order in which updates are applied is nondeterministic,
S
ShenLiang 已提交
3009 3010 3011 3012
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
3013 3014
        index (Tensor): The index is a 1-D or 0-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): Update input with updates parameter based on index. When the index is a 1-D tensor, the updates shape should be the same as input, and dim value with dim > 1 should be the same as input. When the index is a 0-D tensor, the updates should be a (N-1)-D tensor, the ith dim of the updates should be queal with the (i+1)th dim of the input.
3015 3016
        overwrite (bool): The mode that updating the output when there are same indices.

S
sunzhongkai588 已提交
3017
            If True, use the overwrite mode to update the output of the same index,
3018
            if False, use the accumulate mode to update the output of the same index.Default value is True.
3019

S
ShenLiang 已提交
3020
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3021

S
ShenLiang 已提交
3022
    Returns:
L
Ligoml 已提交
3023
        Tensor, The output is a Tensor with the same shape as x.
S
ShenLiang 已提交
3024 3025 3026

    Examples:
        .. code-block:: python
3027

S
ShenLiang 已提交
3028 3029
            import paddle

3030 3031 3032
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
3033

S
ShenLiang 已提交
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
J
Jiabin Yang 已提交
3054
    if in_dygraph_mode():
3055
        return _C_ops.scatter(x, index, updates, overwrite)
J
Jiabin Yang 已提交
3056 3057
    else:
        if _in_legacy_dygraph():
3058 3059 3060
            return _legacy_C_ops.scatter(
                x, index, updates, 'overwrite', overwrite
            )
J
Jiabin Yang 已提交
3061 3062
        else:
            check_variable_and_dtype(
3063 3064 3065 3066 3067
                x,
                'dtype',
                ['float32', 'float64', 'float16', 'int32', 'int64'],
                'scatter',
            )
J
Jiabin Yang 已提交
3068 3069 3070
            check_type(overwrite, 'overwrite', bool, 'scatter')
            helper = LayerHelper('scatter', **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
3071 3072 3073 3074 3075 3076
            helper.append_op(
                type="scatter",
                inputs={"X": x, "Ids": index, "Updates": updates},
                attrs={'overwrite': overwrite},
                outputs={"Out": out},
            )
J
Jiabin Yang 已提交
3077
            return out
S
ShenLiang 已提交
3078 3079


3080
@inplace_apis_in_dygraph_only
3081 3082 3083 3084 3085
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
3086
    if in_dygraph_mode():
3087 3088
        return _C_ops.scatter_(x, index, updates, overwrite)
    return _legacy_C_ops.scatter_(x, index, updates, 'overwrite', overwrite)
3089 3090


3091
def scatter_nd_add(x, index, updates, name=None):
3092
    r"""
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
Z
Zeng Jinle 已提交
3134
        x (Tensor): The x input. Its dtype should be int32, int64, float32, float64.
3135 3136 3137 3138 3139 3140 3141
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
L
Ligoml 已提交
3142
        output (Tensor), The output is a tensor with the same shape and dtype as x.
3143 3144 3145 3146 3147 3148 3149 3150 3151

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
C
Chen Long 已提交
3152 3153 3154
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype='int64')
3155

3156
            output = paddle.scatter_nd_add(x, index, updates)
C
Chen Long 已提交
3157 3158
            print(output.shape)
            # [3, 5, 9, 10]
3159
    """
3160
    if in_dygraph_mode():
3161
        return _C_ops.scatter_nd_add(x, index, updates)
3162 3163
    else:
        if _in_legacy_dygraph():
3164
            op = getattr(_legacy_C_ops, 'scatter_nd_add')
3165 3166 3167 3168 3169 3170 3171 3172
            return op(x, index, updates)
        else:
            if x.dtype != updates.dtype:
                raise ValueError("x and updates must have same data type.")

            helper = LayerHelper('scatter_nd_add', **locals())
            dtype = helper.input_dtype(input_param_name='x')
            output = helper.create_variable_for_type_inference(dtype)
3173 3174 3175 3176 3177
            helper.append_op(
                type="scatter_nd_add",
                inputs={"X": x, "Index": index, "Updates": updates},
                outputs={"Out": output},
            )
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
            return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)`
    is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` .
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated.
    Because of the numerical approximation issues, the different order of repeated elements
    in :attr:`index` may cause different results. The specific calculation method can be
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
3195
        index (Tensor): The index input with ndim >= 1 and index.shape[-1] <= len(shape).
3196 3197 3198 3199 3200 3201 3202
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64.
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output Tensor name. If set None, the layer will be named automatically.

    Returns:
L
Ligoml 已提交
3203
        output (Tensor), The output is a tensor with the same type as :attr:`updates` .
3204 3205 3206 3207 3208 3209 3210

    Examples:

        .. code-block:: python

            import paddle

3211 3212 3213
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype="int64")
3214 3215 3216 3217 3218 3219
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            shape = [3, 5, 9, 10]

            output = paddle.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
3220 3221


3222 3223 3224
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
3225

3226 3227 3228
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
3229
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
3230 3231 3232 3233 3234
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
L
Ligoml 已提交
3235
        list(Tensor), The list of segmented Tensors.
3236

3237
    Examples:
3238
        .. code-block:: python
3239

3240
            import paddle
3241

3242
            x = paddle.rand([3, 9, 5])
3243

3244
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
3245 3246 3247 3248
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

3249

3250 3251 3252 3253 3254 3255 3256 3257
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
3258
    return split(x, num_or_sections=chunks, axis=axis, name=name)
3259 3260


L
lilong12 已提交
3261 3262
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
3263 3264

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
3265
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
3266 3267 3268

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
3269
    Args:
L
lilong12 已提交
3270
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
3271
        repeat_times (list|tuple|Tensor): The number of repeating times. If repeat_times is a list or tuple, all its elements
L
lilong12 已提交
3272 3273 3274
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
3275
    Returns:
3276
        N-D Tensor. The data type is the same as ``x``. The size of the i-th dimension is equal to ``x[i] * repeat_times[i]``.
L
lilong12 已提交
3277

L
lilong12 已提交
3278 3279
    Examples:
        .. code-block:: python
L
lilong12 已提交
3280

L
lilong12 已提交
3281
            import paddle
L
lilong12 已提交
3282

3283
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3284
            out = paddle.tile(data, repeat_times=[2, 1])
3285 3286 3287 3288
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3289

3290
            out = paddle.tile(data, repeat_times=(2, 2))
3291 3292 3293 3294
            print(out)
            # Tensor(shape=[2, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3],
            #         [1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3295

3296
            repeat_times = paddle.to_tensor([1, 2], dtype='int32')
L
lilong12 已提交
3297
            out = paddle.tile(data, repeat_times=repeat_times)
3298 3299 3300
            print(out)
            # Tensor(shape=[1, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3301
    """
H
hong 已提交
3302
    if in_dygraph_mode():
3303
        if isinstance(repeat_times, core.eager.Tensor):
3304 3305 3306
            assert (
                repeat_times.ndim == 1
            ), "Only support ndim == 1 while repeat_times is a Tensor."
3307 3308
            repeat_times = repeat_times.numpy().tolist()

3309
        return _C_ops.tile(x, repeat_times)
H
hong 已提交
3310 3311

    if _in_legacy_dygraph():
3312
        return _legacy_C_ops.tile(x, 'repeat_times', repeat_times)
H
hong 已提交
3313

3314 3315
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
    if isinstance(repeat_times, Variable):
3316 3317 3318
        assert (
            len(repeat_times.shape) == 1
        ), 'repeat_times must be an 1-D Tensor.'
3319 3320 3321
    else:
        for elem in repeat_times:
            if isinstance(elem, Variable):
3322 3323 3324
                assert (
                    len(elem.shape) == 1
                ), 'Elements in repeat_times must be 1-D Tensors or integers.'
3325
            else:
T
tianshuo78520a 已提交
3326
                type_tuple = (int, np.int32, np.int64)
3327 3328 3329
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in repeat_times must be 1-D Tensors or integers.'
3330

3331 3332 3333
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'tile'
    )
3334
    if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
L
lilong12 已提交
3335 3336
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
3337
            "must set its stop_gradient to be True by "
3338 3339
            "some_var.stop_gradient == True supporting some_var is the input."
        )
3340 3341

    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
3342

L
lilong12 已提交
3343 3344 3345
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
3346 3347 3348 3349 3350 3351 3352
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
3353 3354 3355
                assert (
                    times > 0
                ), "All elements in repeat_times must be positive for tile."
L
lilong12 已提交
3356 3357 3358 3359
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
3360 3361
        inputs['RepeatTimes'] = repeat_times
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
3362 3363 3364
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
3365
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
3366 3367
                repeat_times
            )
L
lilong12 已提交
3368 3369 3370

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3371 3372 3373
    helper.append_op(
        type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
L
lilong12 已提交
3374
    return out
3375 3376


L
lilong12 已提交
3377 3378 3379 3380 3381 3382 3383 3384 3385
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
3386
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
3387 3388 3389
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
3390
        N-D Tensor, A Tensor with the same shape as ``y``. The data type is the same as ``x``.
L
lilong12 已提交
3391 3392 3393 3394 3395 3396

    Examples:
        .. code-block:: python

            import paddle

3397 3398
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
3399
            out = paddle.expand_as(data_x, data_y)
3400 3401 3402 3403
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3404
    """
H
hong 已提交
3405
    if in_dygraph_mode():
3406
        return _C_ops.expand_as(x, None, y.shape)
H
hong 已提交
3407

H
hong 已提交
3408
    if _non_static_mode():
3409
        return _legacy_C_ops.expand_as_v2(x, 'target_shape', y.shape)
3410

3411 3412 3413
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand_as'
    )
L
lilong12 已提交
3414 3415
    check_type(y, 'y', Variable, 'expand_as')

3416
    if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
L
lilong12 已提交
3417 3418 3419 3420
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
3421 3422
            "some_var as the input 'x'."
        )
3423
    inputs = {"X": [x], "Y": [y]}
L
lilong12 已提交
3424

3425
    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
3426 3427
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3428 3429 3430 3431 3432 3433
    helper.append_op(
        type='expand_as_v2',
        inputs=inputs,
        attrs={'target_shape': y.shape},
        outputs={'Out': out},
    )
L
lilong12 已提交
3434 3435 3436
    return out


3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 1.


    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
3448
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
3449
            The value -1 in shape means keeping the corresponding dimension unchanged.
3450
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3451
    Returns:
L
Ligoml 已提交
3452
        N-D Tensor, A Tensor with the given shape. The data type is the same as ``x``.
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
3464
    if in_dygraph_mode():
3465
        return _C_ops.expand(x, shape)
3466
    if _in_legacy_dygraph():
3467
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3468 3469

    if isinstance(shape, Variable):
3470
        assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
3471 3472 3473
    else:
        for elem in shape:
            if isinstance(elem, Variable):
3474 3475 3476
                assert (
                    len(elem.shape) == 1
                ), 'Elements in shape must be 1-D Tensors or integers.'
3477
            else:
T
tianshuo78520a 已提交
3478
                type_tuple = (int, np.int32, np.int64)
3479 3480 3481
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in shape must be 1-D Tensors or integers.'
3482

3483 3484 3485
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'broadcast_to'
    )
3486
    check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
3487
    if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
3488 3489 3490 3491
        raise ValueError(
            "When the data type of input 'x' for broadcast_to is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
3492 3493
            "some_var as the input."
        )
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506

    inputs = {"X": [x]}
    attrs = {}

    helper = LayerHelper('expand', **locals())

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
3507 3508 3509
                assert (
                    shape > 0 or shape == -1
                ), "All elements in shape of broadcast_to must be positive or -1."
3510 3511 3512 3513 3514 3515 3516 3517 3518
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
3519 3520
                shape
            )
3521 3522 3523

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3524 3525 3526
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
3527 3528 3529
    return out


3530 3531 3532 3533 3534
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

3535
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. And the number of dimensions of ``x`` should be less than the number of elements in ``shape``. The dimension to expand must have a value 1.
3536 3537 3538


    Args:
C
Chen Long 已提交
3539
        x (Tensor): The input Tensor, its data type is bool, float32, float64, int32 or int64.
L
lilong12 已提交
3540
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
3541
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
L
lilong12 已提交
3542
            The value -1 in shape means keeping the corresponding dimension unchanged.
3543 3544 3545
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
3546
        N-D Tensor, A Tensor with the given shape. The data type is the same as ``x``.
3547 3548 3549 3550 3551 3552

    Examples:
        .. code-block:: python

            import paddle

3553
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3554
            out = paddle.expand(data, shape=[2, 3])
3555
            print(out)
3556 3557
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
3558
    if in_dygraph_mode():
3559
        return _C_ops.expand(x, shape)
H
hong 已提交
3560

Z
zhiboniu 已提交
3561
    if paddle.in_dynamic_mode():
3562
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3563

3564
    if isinstance(shape, Variable):
3565
        assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
3566 3567 3568
    else:
        for elem in shape:
            if isinstance(elem, Variable):
3569 3570 3571
                assert (
                    len(elem.shape) == 1
                ), 'Elements in shape must be 1-D Tensors or integers.'
3572
            else:
T
tianshuo78520a 已提交
3573
                type_tuple = (int, np.int32, np.int64)
3574 3575 3576
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in shape must be 1-D Tensors or integers.'
3577

3578
    check_variable_and_dtype(
3579 3580 3581 3582 3583
        x,
        'x',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'expand',
    )
3584
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
3585
    if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
3586 3587 3588 3589 3590 3591
        raise ValueError(
            "When the data type of input 'x' for expand is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input."
        )
3592

3593 3594 3595
    inputs = {"X": [x]}
    attrs = {}

3596
    helper = LayerHelper('expand', **locals())
3597 3598 3599 3600 3601

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
L
lilong12 已提交
3602
                attrs_expand_shape.append(-2)
3603 3604
            else:
                attrs_expand_shape.append(shape)
3605 3606 3607
                assert (
                    shape > 0 or shape == -1
                ), "All elements in shape of expand must be positive or -1."
3608 3609 3610 3611 3612 3613 3614 3615 3616
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
3617 3618
                shape
            )
3619 3620 3621

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3622 3623 3624
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
3625
    return out
L
lilong12 已提交
3626 3627


3628 3629
def reshape(x, shape, name=None):
    """
3630
    Changes the shape of ``x`` without changing its data.
3631

3632
    Note that the output Tensor will share data with origin Tensor and doesn't
3633 3634
    have a Tensor copy in ``dygraph`` mode.
    If you want to use the Tensor copy version, please use `Tensor.clone` like
3635 3636
    ``reshape_clone_x = x.reshape([-1]).clone()``.

3637 3638
    Some tricks exist when specifying the target shape.

3639
        - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.
3640

3641
        - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x.
3642 3643 3644

    Here are some examples to explain it.

3645
        - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.
3646

3647
        - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.
3648

3649
        - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.
3650 3651

    Args:
3652 3653
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
3654 3655
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
3656
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3657 3658

    Returns:
L
Ligoml 已提交
3659
        Tensor, A reshaped Tensor with the same data type as ``x``.
3660 3661 3662 3663 3664 3665

    Examples:
        .. code-block:: python

            import paddle

3666 3667
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
3668

3669 3670 3671
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
3672

3673 3674
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
3675
            # the shape of out_2 is [4, 12].
3676

3677
            shape_tensor = paddle.to_tensor([8, 6], dtype=paddle.int32)
3678
            out = paddle.reshape(x, shape=shape_tensor)
3679
            print(out.shape)
3680
            # the shape is [8, 6].
3681 3682 3683 3684 3685
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

3686
    """
3687 3688 3689 3690 3691 3692
    actual_shape = None

    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        if isinstance(shape, (list, tuple)):
            shape = [
3693
                item.numpy().item(0)
3694 3695 3696
                if isinstance(item, tmp_tensor_type)
                else item
                for item in shape
3697
            ]
3698 3699 3700 3701 3702
            if shape == x.shape:
                out = x
            else:
                out = _C_ops.reshape(x, shape)
        elif isinstance(shape, core.eager.Tensor):
3703
            shape.stop_gradient = True
3704
            out = _C_ops.reshape(x, shape)
3705 3706 3707
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
3708 3709
                " got '{}.'".format(type(shape))
            )
3710

3711
        return out
3712 3713 3714 3715 3716 3717 3718 3719
    else:
        if _in_legacy_dygraph():
            tmp_tensor_type = Variable
            if isinstance(shape, (list, tuple)):
                shape = [
                    item.numpy().item(0) if isinstance(item, Variable) else item
                    for item in shape
                ]
3720
                out, _ = _legacy_C_ops.reshape2(x, None, 'shape', shape)
3721 3722
            elif isinstance(shape, tmp_tensor_type):
                shape.stop_gradient = True
3723
                out, _ = _legacy_C_ops.reshape2(x, shape)
3724 3725 3726
            else:
                raise ValueError(
                    "shape must be an instance of `list`, `tuple` or `Variable`,"
3727 3728
                    " got '{}.'".format(type(shape))
                )
3729

3730
            return out
3731

3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
    check_variable_and_dtype(
        x,
        'x',
        [
            'float16',
            'float32',
            'float64',
            'int16',
            'int32',
            'int64',
            'bool',
            'uint16',
        ],
        'reshape',
    )
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')

    helper = LayerHelper("reshape2", **locals())

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1.\n"
                        "\n\t# N = x.shape()[2]\t\t# N is an int. "
                        "(NOT recommend under @to_static)\n\tN = paddle.shape(x)[2]\t\t"
                        "# N is a Tensor. (Recommend)\n\tz = paddle.reshape([N, -1, 4])"
                        "\t# z.shape is [-1, -1, 4]\n\n"
                        "    If your target shape in Reshape represents dynamic shape, "
                        "please turn it into a Tensor under @to_static. See above example for details."
3770 3771
                        % dim_idx
                    )
3772 3773 3774 3775 3776
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
3777 3778 3779
                        "But received shape[%d] = 0, X's dimensions = %d."
                        % (dim_idx, len(x.shape))
                    )
3780 3781 3782 3783
                else:
                    assert dim_size > 0, (
                        "Each dimension value of 'shape' in reshape must not "
                        "be negative except one unknown dimension. "
3784 3785 3786
                        "But received shape[%d] = %s."
                        % (dim_idx, str(dim_size))
                    )
3787 3788 3789 3790 3791 3792 3793 3794
        return attrs_shape

    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
3795 3796 3797 3798
        assert len(shape) > 0, (
            "The size of 'shape' in reshape can't be zero, "
            "but received %s." % len(shape)
        )
3799 3800 3801 3802 3803 3804 3805
        attrs["shape"] = get_attr_shape(shape)
        if utils._contain_var(shape):
            inputs['ShapeTensor'] = utils._convert_to_tensor_list(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

3806
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3807
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
3808 3809 3810 3811 3812 3813
    helper.append_op(
        type="reshape2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
3814

3815
    return out
3816 3817


3818
@inplace_apis_in_dygraph_only
3819 3820 3821 3822 3823
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
3824 3825 3826 3827 3828
    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0)
3829 3830 3831
                if isinstance(item, tmp_tensor_type)
                else item
                for item in shape
3832
            ]
3833 3834 3835 3836
            if shape == x.shape:
                out = x
            else:
                out = _C_ops.reshape_(x, shape)
3837 3838
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3839
            out = _C_ops.reshape_(x, shape)
3840 3841 3842
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
3843 3844
                " got '{}.'".format(type(shape))
            )
3845

3846
        return out
3847 3848 3849 3850 3851 3852
    else:
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in shape
            ]
3853
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape)
3854 3855 3856 3857 3858 3859 3860 3861 3862
            return out
        elif isinstance(shape, Variable):
            shape.stop_gradient = True
            # NOTE(pangyoki): Cannot support the case where the shape Tensor
            # is negative. In the infer_shape stage, the input's dim will
            # be changed to a negative number.
            # Thus, convert Shape Tensor to list firstly and then call
            # reshape inplace op.
            shape_list = shape.numpy().tolist()
3863
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape_list)
3864
            return out
3865 3866


3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
3886 3887 3888 3889 3890 3891 3892
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
3893 3894 3895 3896

            * Case 1:
                index = [[1]]

3897 3898
                gather_nd(x, index)
                         = [x[1, :, :]]
3899 3900 3901 3902 3903 3904 3905
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

3906 3907
                gather_nd(x, index)
                         = [x[0, 2, :]]
3908 3909 3910 3911 3912
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

3913 3914
                gather_nd(x, index)
                         = [x[1, 2, 3]]
3915 3916 3917 3918 3919 3920
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
3921
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3922 3923

    Returns:
L
Ligoml 已提交
3924
        output (Tensor), A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
3925

3926 3927 3928
    Examples:

        .. code-block:: python
3929

3930
            import paddle
3931

3932 3933 3934
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
3935

3936 3937 3938
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """
3939
    if in_dygraph_mode():
3940
        return _C_ops.gather_nd(x, index)
3941 3942
    else:
        if _in_legacy_dygraph():
3943
            return _legacy_C_ops.gather_nd(x, index)
3944
    check_variable_and_dtype(
3945 3946 3947 3948 3949
        x,
        'x',
        ['bool', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'gather_np',
    )
3950 3951 3952 3953
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather_np')
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
3954 3955 3956 3957 3958
    helper.append_op(
        type="gather_nd",
        inputs={"X": x, "Index": index},
        outputs={"Out": output},
    )
3959
    return output
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
4008

4009
    Args:
4010
        x (Tensor): An N-D ``Tensor``. The data type is ``bool``, ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of                                                                                          it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.                                                                                    It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .                                                                                     It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Tensor, it should be an 1-D Tensor .                                                                                  It represents slice step of corresponding axis in ``axes``.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
4022
        Tensor, A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
4037
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].
4038 4039
            # example 2:
            # attr starts is a list which contain tensor Tensor.
4040
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
4041 4042 4043
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """
4044
    if in_dygraph_mode():
4045
        return _C_ops.strided_slice(x, axes, starts, ends, strides)
4046

4047 4048
    helper = LayerHelper('strided_slice', **locals())

4049
    check_variable_and_dtype(
4050 4051 4052 4053 4054
        x,
        'x',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'strided_slice',
    )
4055 4056 4057 4058 4059 4060 4061
    check_type(axes, 'axes', (list, tuple), 'strided_slice')
    check_type(starts, 'starts', (list, tuple, Variable), 'strided_slice')
    check_type(ends, 'ends', (list, tuple, Variable), 'strided_slice')
    check_type(strides, 'strides', (list, tuple, Variable), 'strided_slice')

    def check_list_elements_dtype(list_input, input_name):
        if isinstance(list_input, Variable):
4062 4063 4064
            check_dtype(
                list_input.dtype, input_name, ['int32'], 'strided_slice'
            )
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
        else:
            for i, var in enumerate(list_input):
                var_name = input_name + '[' + str(i) + ']'
                if isinstance(var, Variable):
                    check_dtype(var.dtype, var_name, ['int32'], 'strided_slice')

    check_list_elements_dtype(axes, 'axes')
    check_list_elements_dtype(starts, 'starts')
    check_list_elements_dtype(ends, 'ends')
    check_list_elements_dtype(strides, 'strides')

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
4083
                assert isinstance(dim, int)
4084 4085 4086 4087 4088 4089 4090 4091 4092
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': x}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

4093
    if _in_legacy_dygraph():
4094 4095 4096 4097 4098 4099
        inputs = {'Input': x}
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'strides': strides,
4100
            'infer_flags': infer_flags,
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if utils._contain_var(starts):
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if utils._contain_var(ends):
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends

        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
            if utils._contain_var(strides):
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
            else:
                attrs['strides'] = strides
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
4155 4156 4157 4158 4159
        dtype=helper.input_dtype('x')
    )
    helper.append_op(
        type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
    )
4160 4161

    return out
F
From00 已提交
4162 4163 4164 4165


def tensordot(x, y, axes=2, name=None):
    r"""
4166
    This function computes a contraction, which sum the product of elements from two tensors along the given axes.
F
From00 已提交
4167 4168 4169 4170 4171 4172

    Args:
        x (Tensor): The left tensor for contraction with data type ``float32`` or ``float64``.
        y (Tensor): The right tensor for contraction with the same data type as ``x``.
        axes (int|tuple|list|Tensor, optional):  The axes to contract for ``x`` and ``y``, defaulted to integer ``2``.

4173
            1. It could be a non-negative integer ``n``,
F
From00 已提交
4174
               in which the function will sum over the last ``n`` axes of ``x`` and the first ``n`` axes of ``y`` in order.
4175 4176

            2. It could be a 1-d tuple or list with data type ``int``, in which ``x`` and ``y`` will be contracted along the same given axes.
F
From00 已提交
4177
               For example, ``axes`` =[0, 1] applies contraction along the first two axes for ``x`` and the first two axes for ``y``.
4178 4179 4180 4181

            3. It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type ``int``.
               When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes for ``x`` and ``y`` to contract.
               When containing two tuple|list|Tensor, the first will be applied to ``x`` and the second to ``y``.
F
From00 已提交
4182
               When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.
4183 4184 4185

            4. It could be a tensor, in which the ``axes`` tensor will be translated to a python list
               and applied the same rules described above to determine the contraction axes.
F
From00 已提交
4186
               Note that the ``axes`` with Tensor type is ONLY available in Dygraph mode.
4187
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
F
From00 已提交
4188 4189
                             For more information, please refer to :ref:`api_guide_Name` .

4190
    Return:
L
Ligoml 已提交
4191
        Output (Tensor), The contraction result with the same data type as ``x`` and ``y``.
F
From00 已提交
4192
        In general, :math:`output.ndim = x.ndim + y.ndim - 2 \times n_{axes}`, where :math:`n_{axes}` denotes the number of axes to be contracted.
4193

F
From00 已提交
4194
    NOTES:
4195
        1. This function supports tensor broadcast,
F
From00 已提交
4196
           the size in the corresponding dimensions of ``x`` and ``y`` should be equal, or applies to the broadcast rules.
4197 4198 4199 4200 4201
        2. This function also supports axes expansion,
           when the two given axis sequences for ``x`` and ``y`` are of different lengths,
           the shorter sequence will expand the same axes as the longer one at the end.
           For example, if ``axes`` =[[0, 1, 2, 3], [1, 0]],
           the axis sequence for ``x`` is [0, 1, 2, 3],
F
From00 已提交
4202
           while the corresponding axis sequences for ``y`` will be expanded from [1, 0] to [1, 0, 2, 3].
4203

F
From00 已提交
4204 4205 4206 4207 4208 4209 4210 4211
    Examples:
        .. code-block:: python

            import paddle

            data_type = 'float64'

            # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product.
4212
            # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases.
F
From00 已提交
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
            x = paddle.arange(4, dtype=data_type).reshape([2, 2])
            y = paddle.arange(4, dtype=data_type).reshape([2, 2])
            z = paddle.tensordot(x, y, axes=0)
            # z = [[[[0., 0.],
            #        [0., 0.]],
            #
            #       [[0., 1.],
            #        [2., 3.]]],
            #
            #
            #      [[[0., 2.],
            #        [4., 6.]],
            #
            #       [[0., 3.],
            #        [6., 9.]]]]


            # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product.
            x = paddle.arange(10, dtype=data_type)
            y = paddle.arange(10, dtype=data_type)
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.dot(x, y)
            # z1 = z2 = [285.]


            # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication.
            x = paddle.arange(6, dtype=data_type).reshape([2, 3])
            y = paddle.arange(12, dtype=data_type).reshape([3, 4])
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.matmul(x, y)
            # z1 = z2 =  [[20., 23., 26., 29.],
            #             [56., 68., 80., 92.]]


            # When axes is a 1-d int list, x and y will be contracted along the same given axes.
            # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]].
            x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4])
            y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4])
            z = paddle.tensordot(x, y, axes=[1, 2])
            # z =  [[506. , 1298., 2090.],
            #       [1298., 3818., 6338.]]


            # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y.
            x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5])
            y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2])
            z = paddle.tensordot(x, y, axes=([1, 0], [0, 1]))
            # z =  [[4400., 4730.],
            #       [4532., 4874.],
            #       [4664., 5018.],
            #       [4796., 5162.],
            #       [4928., 5306.]]


            # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]].
            x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6])
            y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6])
            z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]])
            # z = [[23217330., 24915630., 26613930., 28312230.],
            #      [24915630., 26775930., 28636230., 30496530.],
            #      [26613930., 28636230., 30658530., 32680830.],
4274
            #      [28312230., 30496530., 32680830., 34865130.]]
F
From00 已提交
4275 4276 4277 4278 4279 4280 4281 4282 4283
    """
    op_type = 'tensordot'
    input_dtype = ['float32', 'float64']

    check_variable_and_dtype(x, 'x', input_dtype, op_type)
    check_variable_and_dtype(y, 'y', input_dtype, op_type)
    check_type(axes, 'axes', (int, tuple, list, Variable), op_type)

    def _var_to_list(var):
Z
zhiboniu 已提交
4284
        if paddle.in_dynamic_mode():
F
From00 已提交
4285 4286
            return tolist(var)
        raise TypeError(
4287 4288 4289
            "The 'axes' with type 'Tensor' in "
            + op_type
            + " is not available in static graph mode, "
F
From00 已提交
4290 4291 4292 4293 4294 4295 4296
            "please convert its type to int|Tuple|List, or use dynamic graph mode."
        )

    axes_x = []
    axes_y = []
    if np.issubdtype(type(axes), np.integer):
        assert axes >= 0, (
4297 4298 4299 4300
            "The 'axes' in "
            + op_type
            + f" should not be negative, but received axes={axes}."
        )
F
From00 已提交
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
        axes_x = range(x.ndim - axes, x.ndim)
        axes_y = range(axes)
    else:
        if isinstance(axes, Variable):
            axes = _var_to_list(axes)

        if not axes or np.issubdtype(type(axes[0]), np.integer):
            axes_x = axes
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]

            if isinstance(axes_x, Variable):
                axes_x = _var_to_list(axes_x)
            if isinstance(axes_y, Variable):
                axes_y = _var_to_list(axes_y)

    axes_x, axes_y = list(axes_x), list(axes_y)
    len_axes_x, len_axes_y = len(axes_x), len(axes_y)
    if len_axes_x < len_axes_y:
        axes_x.extend(axes_y[len_axes_x:])
    elif len_axes_y < len_axes_x:
        axes_y.extend(axes_x[len_axes_y:])

    shape_x, shape_y = list(x.shape), list(y.shape)
    need_contracted_dim_x = np.zeros((x.ndim), dtype=bool)
    need_contracted_dim_y = np.zeros((y.ndim), dtype=bool)
    contraction_size = 1
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = y.sum(dim_y).reshape(shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = x.sum(dim_x).reshape(shape_x)
        else:
4340 4341 4342 4343 4344
            assert sx == sy, (
                "The dimensional size for 'x' and 'y' in "
                + op_type
                + f" should match each other, but 'x' has size {sx} in dim {dim_x} while 'y' has size {sy} in dim {dim_y}."
            )
F
From00 已提交
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371

        need_contracted_dim_x[dim_x] = True
        need_contracted_dim_y[dim_y] = True
        contraction_size *= shape_x[dim_x]

    perm_x = []
    perm_y = []
    shape_out = []
    not_contraction_size_x = 1
    not_contraction_size_y = 1
    for i in range(x.ndim):
        if not need_contracted_dim_x[i]:
            perm_x.append(i)
            shape_out.append(shape_x[i])
            not_contraction_size_x *= shape_x[i]
    perm_x.extend(axes_x)
    perm_y.extend(axes_y)
    for i in range(y.ndim):
        if not need_contracted_dim_y[i]:
            perm_y.append(i)
            shape_out.append(shape_y[i])
            not_contraction_size_y *= shape_y[i]

    if not shape_out:
        shape_out = [1]

    x = x.transpose(perm=perm_x).reshape(
4372 4373
        [not_contraction_size_x, contraction_size]
    )
F
From00 已提交
4374
    y = y.transpose(perm=perm_y).reshape(
4375 4376
        [contraction_size, not_contraction_size_y]
    )
F
From00 已提交
4377 4378
    out = x.matmul(y).reshape(shape_out)
    return out
4379 4380 4381


def as_complex(x, name=None):
4382 4383
    """Transform a real tensor to a complex tensor.

4384 4385 4386
    The data type of the input tensor is 'float32' or 'float64', and the data
    type of the returned tensor is 'complex64' or 'complex128', respectively.

4387
    The shape of the input tensor is ``(* ,2)``, (``*`` means arbitary shape), i.e.
4388 4389 4390 4391 4392 4393 4394 4395
    the size of the last axis shoule be 2, which represent the real and imag part
    of a complex number. The shape of the returned tensor is ``(*,)``.

    Args:
        x (Tensor): The input tensor. Data type is 'float32' or 'float64'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4396
        Tensor, The output. Data type is 'complex64' or 'complex128', with the same precision as the input.
4397

4398 4399 4400 4401 4402 4403
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
4404
            print(y)
4405

4406 4407 4408
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(gpu:0), stop_gradient=True,
            #        [[1j      , (2+3j)  , (4+5j)  ],
            #         [(6+7j)  , (8+9j)  , (10+11j)]])
4409
    """
4410 4411
    if in_dygraph_mode():
        return _C_ops.as_complex(x)
4412 4413
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_complex(x)
4414 4415 4416 4417 4418 4419

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'as_complex')
    op_type = "as_complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
4420 4421
        dtype=_real_to_complex_dtype(x.dtype)
    )
4422 4423 4424 4425 4426 4427 4428
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out


def as_real(x, name=None):
4429 4430 4431
    """Transform a complex tensor to a real tensor.

    The data type of the input tensor is 'complex64' or 'complex128', and the data
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
    type of the returned tensor is 'float32' or 'float64', respectively.

    When the shape of the input tensor is ``(*, )``, (``*`` means arbitary shape),
    the shape of the output tensor is ``(*, 2)``, i.e. the shape of the output is
    the shape of the input appended by an extra ``2``.

    Args:
        x (Tensor): The input tensor. Data type is 'complex64' or 'complex128'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4443
        Tensor, The output. Data type is 'float32' or 'float64', with the same precision as the input.
4444

4445 4446 4447 4448 4449 4450 4451
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            z = paddle.as_real(y)
4452
            print(z)
4453

4454 4455 4456 4457
            # Tensor(shape=[2, 3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[0. , 1. ],
            #          [2. , 3. ],
            #          [4. , 5. ]],
4458

4459 4460 4461
            #         [[6. , 7. ],
            #          [8. , 9. ],
            #          [10., 11.]]])
4462
    """
4463 4464
    if in_dygraph_mode():
        return _C_ops.as_real(x)
4465 4466
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_real(x)
4467 4468 4469 4470 4471 4472

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'as_real')
    op_type = "as_real"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
4473 4474
        dtype=_complex_to_real_dtype(x.dtype)
    )
4475 4476 4477
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
4478 4479


K
kuizhiqing 已提交
4480 4481 4482 4483 4484 4485 4486 4487 4488
def repeat_interleave(x, repeats, axis=None, name=None):
    """

    Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
    the entries in ``repeats`` which is a int or a Tensor.

    Args:
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
4489
        axis (int, optional): The dimension in which we manipulate. Default: None, the output tensor is flatten.
K
kuizhiqing 已提交
4490 4491 4492 4493 4494
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4495
        Tensor, A Tensor with same data type as ``x``.
K
kuizhiqing 已提交
4496

4497 4498 4499 4500 4501
    Examples:
        .. code-block:: python

            import paddle

K
kuizhiqing 已提交
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            repeats  = paddle.to_tensor([3, 2, 1], dtype='int32')

            paddle.repeat_interleave(x, repeats, 1)
            # [[1, 1, 1, 2, 2, 3],
            #  [4, 4, 4, 5, 5, 6]]

            paddle.repeat_interleave(x, 2, 0)
            # [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]

            paddle.repeat_interleave(x, 2, None)
            # [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
    """

    if axis is None:
        x = paddle.flatten(x)
        axis = 0

S
seemingwang 已提交
4520 4521
    if in_dygraph_mode():
        if isinstance(repeats, Variable):
4522 4523
            return _C_ops.repeat_interleave_with_tensor_index(x, repeats, axis)
        return _C_ops.repeat_interleave(x, repeats, axis)
K
kuizhiqing 已提交
4524 4525

    helper = LayerHelper("repeat_interleave", **locals())
4526 4527 4528 4529 4530 4531
    check_variable_and_dtype(
        x,
        'x',
        ['float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.repeat_interleave',
    )
K
kuizhiqing 已提交
4532 4533 4534

    out = helper.create_variable_for_type_inference(x.dtype)

4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
    helper.append_op(
        type='repeat_interleave',
        inputs={
            'X': x,
            'RepeatsTensor': repeats if isinstance(repeats, Variable) else None,
        },
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'Repeats': repeats if isinstance(repeats, int) else 0,
        },
    )
K
kuizhiqing 已提交
4547 4548 4549
    return out


4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
def moveaxis(x, source, destination, name=None):
    """
    Move the axis of tensor from ``source`` position to ``destination`` position.

    Other axis that have not been moved remain their original order.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
        source(int|tuple|list): ``source`` position of axis that will be moved. Each element must be unique and integer.
        destination(int|tuple|list(int)): ``destination`` position of axis that has been moved. Each element must be unique and integer.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4564
        Tensor, A new tensor whose axis have been moved.
4565 4566 4567

    Examples:
        .. code-block:: python
4568

4569 4570 4571 4572 4573 4574 4575
            import paddle

            x = paddle.ones([3, 2, 4])
            paddle.moveaxis(x, [0, 1], [1, 2]).shape
            # [4, 3, 2]

            x = paddle.ones([2, 3])
4576
            paddle.moveaxis(x, 0, 1).shape # equivalent to paddle.t(x)
4577
            # [3, 2]
4578 4579 4580 4581 4582
    """
    src = [source] if isinstance(source, int) else source
    dst = [destination] if isinstance(destination, int) else destination

    assert len(src) == len(
4583 4584
        dst
    ), "'source' must have the same number with 'destination'"
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600

    count = Counter(src).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'source' must be unique!")
    count = Counter(dst).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'destination' must be unique!")

    ndim = len(x.shape)

    # perm is the new order after move axis
    perm = list(range(ndim))
    src_dims = list(range(ndim))
    dst_dims = list(range(ndim))

    for i, axis in enumerate(zip(src, dst)):
4601 4602 4603
        assert isinstance(
            axis[0], int
        ), "Each elemment of 'source' must be integer."
4604
        if axis[0] < 0:
4605 4606 4607
            assert (
                axis[0] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4608 4609
            src[i] += ndim
        else:
4610 4611 4612
            assert (
                axis[0] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4613

4614 4615 4616
        assert isinstance(
            axis[1], int
        ), "Each elemment of 'source' must be integer."
4617
        if axis[1] < 0:
4618 4619 4620
            assert (
                axis[1] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4621 4622
            dst[i] += ndim
        else:
4623 4624 4625
            assert (
                axis[1] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4626 4627 4628 4629 4630 4631 4632
        perm[dst[i]] = src[i]
        src_dims.remove(src[i])
        dst_dims.remove(dst[i])

    for i in range(len(src_dims)):
        perm[dst_dims[i]] = src_dims[i]

4633
    if in_dygraph_mode():
4634
        out = _C_ops.transpose(x, perm)
4635 4636 4637
        return out

    if _in_legacy_dygraph():
4638
        out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
4639 4640
        return out

4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'moveaxis',
    )
4656 4657 4658 4659

    helper = LayerHelper('moveaxis', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
4660 4661 4662 4663 4664 4665
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
4666
    return out
4667 4668


4669 4670 4671
def non_negative_axis(arr, axis):
    ndim = len(arr.shape)
    if axis >= 0:
4672 4673 4674
        assert (
            axis < ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4675
    else:
4676 4677 4678
        assert (
            axis >= -ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4679 4680 4681 4682 4683 4684
        axis += ndim

    return axis


def infer_broadcast_shape(arr, indices, axis):
4685
    # This function is used in take/put_along_axis
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
    broadcast_shape_list = list(arr.shape)
    broadcast_shape_list[axis] = list(indices.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    for i in range(len(arr.shape)):
        if arr.shape[i] < indices.shape[i]:
            # if indices matrix has larger size than arr matrix, do not broadcast.
            return None
    return broadcast_shape


4696 4697 4698 4699 4700
def take_along_axis(arr, indices, axis):
    """
    Take values from the input array by given indices matrix along the designated axis.

    Args:
4701
        arr (Tensor) : The input Tensor. Supported data types are float32 and float64.
4702
        indices (Tensor) : Indices to take along each 1d slice of arr. This must match the dimension of arr,
4703
            and need to broadcast against arr. Supported data type are int and int64.
4704
        axis (int) : The axis to take 1d slices along.
4705

4706
    Returns:
L
Ligoml 已提交
4707
        Tensor, The indexed element, same dtype with arr
4708

4709 4710 4711 4712 4713
    Examples:
        .. code-block:: python

            import paddle

4714 4715
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7,8,9]])
            index = paddle.to_tensor([[0]])
4716 4717 4718 4719 4720
            axis = 0
            result = paddle.take_along_axis(x, index, axis)
            print(result)
            # [[1, 2, 3]]
    """
4721
    if len(arr.shape) != len(indices.shape):
4722
        raise ValueError(
4723 4724
            "`indices` and `arr` must have the same number of dimensions!"
        )
4725 4726 4727 4728 4729
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
    if not broadcast_shape:
        # if indices matrix have larger size than arr, arr should broadcast into indices shape.
        broadcast_shape = indices.shape
H
hong 已提交
4730
    if _non_static_mode():
4731
        indices = paddle.broadcast_to(indices, broadcast_shape)
4732 4733 4734 4735
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
H
hong 已提交
4736
        if not _in_legacy_dygraph():
4737 4738
            return _C_ops.take_along_axis(arr, indices, axis)
        return _legacy_C_ops.take_along_axis(arr, indices, 'Axis', axis)
4739
    check_variable_and_dtype(
4740 4741 4742 4743 4744 4745 4746 4747
        arr,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'take_along_axis',
    )
    check_variable_and_dtype(
        indices, 'index', ['int32', 'int64'], 'take_along_axis'
    )
4748
    indices = paddle.broadcast_to(indices, broadcast_shape)
4749 4750 4751 4752
    broadcast_shape_list = list(broadcast_shape)
    broadcast_shape_list[axis] = list(arr.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    arr = paddle.broadcast_to(arr, broadcast_shape)
4753 4754 4755
    helper = LayerHelper('take_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
4756 4757 4758 4759 4760 4761
    helper.append_op(
        type="take_along_axis",
        inputs={"Input": arr, "Index": indices},
        attrs={"Axis": axis},
        outputs={"Result": result},
    )
4762
    return result
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772


def put_along_axis(arr, indices, values, axis, reduce='assign'):
    """
    Put values into the destination array by given indices matrix along the designated axis.

    Args:
        arr (Tensor) : The Destination Tensor. Supported data types are float32 and float64.
        indices (Tensor) : Indices to put along each 1d slice of arr. This must match the dimension of arr,
            and need to broadcast against arr. Supported data type are int and int64.
4773
        axis (int) : The axis to put 1d slices along.
G
gouzil 已提交
4774 4775 4776
        reduce (str, optional): The reduce operation, default is 'assign', support 'add', 'assign', 'mul' and 'multiply'.

    Returns:
L
Ligoml 已提交
4777
        Tensor, The indexed element, same dtype with arr
4778

4779 4780 4781 4782 4783
    Examples:
        .. code-block:: python

            import paddle

4784 4785
            x = paddle.to_tensor([[10, 30, 20], [60, 40, 50]])
            index = paddle.to_tensor([[0]])
4786 4787 4788 4789 4790 4791 4792 4793
            value = 99
            axis = 0
            result = paddle.put_along_axis(x, index, value, axis)
            print(result)
            # [[99, 99, 99],
            # [60, 40, 50]]

    """
4794
    if len(arr.shape) != len(indices.shape):
4795
        raise ValueError(
4796 4797
            "`indices` and `arr` must have the same number of dimensions!"
        )
4798 4799
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
H
hong 已提交
4800
    if _non_static_mode():
4801 4802 4803 4804 4805
        values = (
            paddle.to_tensor(values)
            if not isinstance(values, paddle.Tensor)
            else values
        )
4806 4807 4808
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
H
hong 已提交
4809
        if in_dygraph_mode():
4810
            return _C_ops.put_along_axis(arr, indices, values, axis, reduce)
4811 4812 4813
        return _legacy_C_ops.put_along_axis(
            arr, indices, values, "Axis", axis, "Reduce", reduce
        )
4814 4815

    check_variable_and_dtype(
4816 4817 4818 4819 4820 4821 4822 4823
        arr,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'put_along_axis',
    )
    check_variable_and_dtype(
        indices, 'index', ['int32', 'int64'], 'put_along_axis'
    )
4824 4825 4826
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4827 4828 4829
    helper = LayerHelper('put_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
4830 4831 4832 4833 4834 4835
    helper.append_op(
        type="put_along_axis",
        inputs={"Input": arr, "Index": indices, "Value": values},
        attrs={"Axis": axis, "Reduce": reduce},
        outputs={"Result": result},
    )
4836 4837 4838 4839 4840 4841
    return result


@inplace_apis_in_dygraph_only
def put_along_axis_(arr, indices, values, axis, reduce='assign'):
    r"""
4842
    Inplace version of ``put_along_axis`` API, the output Tensor will be inplaced with input ``arr``.
4843 4844
    Please refer to :ref:`api_tensor_put_along_axis`.
    """
4845
    if len(arr.shape) != len(indices.shape):
4846
        raise ValueError(
4847 4848
            "`indices` and `arr` must have the same number of dimensions!"
        )
4849 4850
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4851 4852 4853 4854 4855
    values = (
        paddle.to_tensor(values)
        if not isinstance(values, paddle.Tensor)
        else values
    )
4856 4857 4858
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4859
    if in_dygraph_mode():
4860
        return _C_ops.put_along_axis_(arr, indices, values, axis, reduce)
4861 4862 4863
    return _legacy_C_ops.put_along_axis_(
        arr, indices, values, "Axis", axis, "Reduce", reduce
    )
4864 4865


L
Li Min 已提交
4866 4867 4868 4869 4870 4871 4872 4873
def index_add(x, index, axis, value, name=None):
    """
    Adds the elements of the input tensor with value tensor by selecting the indices in the order given in index.

    Args:
        x (Tensor) : The Destination Tensor. Supported data types are int32, int64, float16, float32, float64.
        index (Tensor): The 1-D Tensor containing the indices to index.
            The data type of ``index`` must be int32 or int64.
4874
        axis (int): The dimension in which we index.
L
Li Min 已提交
4875 4876 4877 4878
        value (Tensor): The tensor used to add the elements along the target axis.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
L
Ligoml 已提交
4879
        Tensor, same dimention and dtype with x.
L
Li Min 已提交
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1, 1], [1, 1, 1]], dtype="float32")
            outplace_res = paddle.index_add(input_tensor, index, 0, value)
4891 4892 4893 4894 4895
            print(outplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 2., 2.],
            #         [1., 1., 1.],
            #         [2., 2., 2.]])
L
Li Min 已提交
4896 4897 4898 4899 4900 4901
    """
    if in_dygraph_mode():
        return _C_ops.index_add(x, index, value, axis)

    helper = LayerHelper("index_add", **locals())
    check_variable_and_dtype(
4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
    check_variable_and_dtype(
        index,
        'index',
        ['int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4913
    check_variable_and_dtype(
4914 4915 4916 4917 4918
        value,
        'add_value',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4919 4920 4921

    out = helper.create_variable_for_type_inference(x.dtype)

4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
    helper.append_op(
        type='index_add',
        inputs={
            'X': x,
            'Index': index,
            'AddValue': value,
        },
        outputs={'Out': out},
        attrs={'axis': axis},
    )
L
Li Min 已提交
4932 4933 4934 4935 4936 4937 4938
    return out


@inplace_apis_in_dygraph_only
def index_add_(x, index, axis, value, name=None):
    """
    Inplace version of ``index_add`` API, the output Tensor will be inplaced with input ``x``.
4939
    Please refer to :ref:`api_paddle_index_add`.
4940

L
Li Min 已提交
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1], [1, 1], [1, 1]], dtype="float32")
            inplace_res = paddle.index_add_(input_tensor, index, 1, value)
4951 4952 4953 4954 4955
            print(inplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 1., 2.],
            #         [2., 1., 2.],
            #         [2., 1., 2.]])
L
Li Min 已提交
4956 4957 4958 4959
    """
    return _C_ops.index_add_(x, index, value, axis)


4960 4961 4962 4963 4964 4965 4966
# TODO(dev): We need avoid implementing it by this way.
__METHODS = {
    'fill_': fill_,
    'zero_': zero_,
    'fill_diagonal_': fill_diagonal_,
    'fill_diagonal_tensor_': fill_diagonal_tensor_,
    "fill_diagonal_tensor": fill_diagonal_tensor,
4967
    'tolist': tolist,
4968 4969 4970 4971
}
for name, func in __METHODS.items():
    setattr(core.VarBase, name, func)
    setattr(core.eager.Tensor, name, func)